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Towards deterministic equations for Lévy walks: The fractional material derivative
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Lévy walks are random processes with an underlying spatiotemporal coupling. This coupling penalizes long
jumps, and therefore Le´vy walks give a proper stochastic description for a particle’s motion with broad jump
length distribution. We derive a generalized dynamical formulation for Le´vy walks, in which thefractional
equivalent of thematerial derivativeoccurs. Our approach is expected to be useful for the dynamical formu-
lation of Lévy walks in an external force field or in phase space, for which the description in terms of the
continuous time random walk or its corresponding generalized master equation are less well suited.

DOI: 10.1103/PhysRevE.67.010101 PACS number~s!: 05.40.Fb, 05.60.Cd, 02.50.Ey
d

re

s

re

ity
-

m
p

o
rc
T
o

,
ize
ly
tic
fin
e

o
fr

te
th
th
-

th
a

dis-
i-

he
re-
on

ng

ral
oice

ing
-

la-
as

ents
not
is
ely

tly
ects
on
Mar-

h
ld.
e a
x-
i-

-
onal

de-
ral-
by
e

b-
he
Anomalous diffusion processes are characterized by
viations from the traditional linear time dependence^x2(t)&
52Kt of the mean squared displacement in the force-f
limit. In particular, one distinguishes subdiffusion (0,k
,1) and superdiffusion (k.1) for the wide class of system
displaying a power-law anomalŷx2(t)&52Kktk/G(11k);
here,Kk is a generalized diffusion constant@1,2#. A versatile
framework for the description of anomalous diffusion a
continuous time random walks~CTRWs!, which define a
random walk that is governed by two probability dens
functions~pdfs!, the jump length and waiting time distribu
tions l(x) and c(t) from which the jump lengthx and the
waiting time t of each jump are drawn@3#. Although the
stochastic formulation of the CTRW fully defines the rando
process and leads to the closed integral equation for the
of the particle’s positionP(x,t) in terms ofl(x) andc(t),
its mathematical handling gets awkward as soon as n
natural boundary conditions, the presence of external fo
fields, or the description in phase space are considered.
same complication holds true for the formulation in terms
generalized master equations, which are equivalent
CTRWs with uncorrelatedl(x) andc(t) @4#. In such cases
the corresponding deterministic equations of the general
Fokker-Planck type, in which the drift terms occur explicit
and which can be attacked with the standard mathema
tools, render a much more amenable description. To
such equations for anomalous transport statistics has be
focal point in stochastic systems studies@5#.

For subdiffusion processes, a complete framework
transport equations has been established, namely, the
tional Fokker-Planck and Klein-Kramers equations@5–7#.
These are natural generalizations of their Brownian coun
parts, and their solution exists, whenever the solution of
corresponding regular Fokker-Planck equation exists, as
correspond to asubordinationof the analogous normal sto
chastic process@5,7–9#.

The description of superdiffusive processes within
same framework is still far from being completed. Where
Lévy flights in the absence of an external force display
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Lévy stable pdf, and therefore a diverging mean squared
placement~and thus could apply only to rather exotic phys
cal processes! @1–3,5,10#, Lévy walks~LWs! give a proper
dynamical description in the superdiffusive domain. T
temporal and spatial variables of LWs are strongly cor
lated, their steps being governed by a joint distributi
c(x,t), in which waiting time and step length pdfs,c(t) and
l(x) are no longer independent. In LWs, the occasional lo
jumps which are typical for Le´vy flights are penalized
through the introduction of a time cost. This spatiotempo
coupling can be achieved, in the simplest case, by the ch
of c(x,t)5 1

2 c(t)d(uxu2vt), i.e., by a constant velocity@3#.
Such a model arises naturally when describing some limit
cases of molecular collisions@11#; its close relatives are rea
sonable candidates for describing turbulent dispersion@12#.
A question of fundamental interest is therefore the formu
tion of LWs in terms of deterministic equations. Where
previous approaches@13,14# in terms of fractional Klein-
Kramers equations could reproduce the lower order mom
of an LW, they were hampered by the fact that they could
describe the full pdf. The main complication on this way
the fact, that the overall LW process cannot be immediat
considered as subordinated to a Wiener one~or to a simple
random walk!; however, as we proceed to show, it is exac
the strong correlation of the temporal and the spatial asp
of LWs which makes it possible to provide a descripti
based on a process subordinated to a simple two-state
kovian process, cf. Ref.@15#. In the present work, we derive
the exact deterministic evolution equation for LWs whic
holds both for the free motion and in a constant force fie
The fact that the corresponding equation does not hav
form of a Fokker-Planck or a Klein-Kramers equation e
plains the failure of previous attempts on the way of dynam
cal description of Le´vy walks. In the following, we use res
caled quantities and concentrate on the one-dimensi
case.

We first define a two-state Markovian random process
scribing the velocity switching and then proceed to gene
ize it to two different domains of LWs. Thus, let us denote
P1 and P2 the probabilities to move to the right or to th
left, respectively. Probability conservation demands thatP1

1P251. Moreover, for simplicity we assume that the a
solute value of the velocity of motion to the right and to t
©2003 The American Physical Society01-1
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left is 1. Within the rate description, for a symmetric cas
the probabilitiesP6 satisfy the differential equation

d

dt
P75P62P7 . ~1!

Equation~1! can be readily solved: TakingP2512P1 we
get (d/dt)P15122P1 . The equilibrium situation corre
sponds toP15P251/2, and the relaxation to this equilib
rium from the initial conditionP151 is exponential,

P65 1
2 6 1

2 exp~22t !. ~2!

Let us concentrate first on the switching process descr
by this equation: It is an alternating random process with
waiting-time pdfc(t)5exp(2t). At each ‘‘tick’’ the state is
changed from11 to 21 and back.P1(t) is then the prob-
ability that at timet, the state of the system is ’’11,’’ i.e. that
the overall number of full steps~changes of sign! was even.
The Laplace transform of this probability is

P1~u!5 (
n50

`

x2n~u!5C~u! (
n50

`

c2n~u!5
1

u@11c~u!#
.

~3!

A similar expression forP2 involves the summation over th
odd numbers of steps. In Eq.~3!, thex2n(t) denote the prob-
ability that the walker performs 2n direction changes within
an overall waiting timet. The probability of making no step
is x0(t)5C(t)512*0

t c(t)dt with Laplace transform
C(u)5u212c(u)/u @3#. For our exponential function
@c(u)51/(11u)#, the result becomesP1(u)51/(2u)
11/@2(21u)#, which is exactly the Laplace transform o
Eq. ~2!.

Consider now a long-tailed waiting-time pdfc(t)
;t212a of the explicit form@16#

c~u!5
1

11ua
, 0,a,1 ~4!

in Laplace space. This specific form has the following orig
due to subordination@17#. In a system whose relaxation in it
operational time is given by an exponentialf(t)
5exp(2t), we can introduce a coarse graining in which t
operational time is divided into intervalsDt ~andDt taken
as a new time unit!. Assume that the duration of the physic
time interval corresponding toDt is given by a one-sided
Lévy distribution. The duration of the physical time corr
sponding to the intervalt is then a convolution ofn
5t/Dt such distributions, and its Laplace transform
exp(2nua). Averaging over n we get c(u);
*exp(2nua)exp(2n)dn, exactly reproducing Eq.~4!. As an
example we can explicitly determinec(t) for a5 1

2 :
c1/2(t)5(pt)21/22eterfcAt, with the asymptotic behavior
t21/2 (t!1) andt23/2 (t@1).

With waiting-time pdf~4!, Eq. ~1! generalizes to the frac
tional form

d

dt
P750Dt

12a~P62P7!, ~5!
01010
,

d
e

where 0Dt
12a5(d/dt)0Dt

2a , and 0Dt
2a is the fractional

Riemann-Liouville integral operator defined in terms of

0Dt
2a f ~ t ![

1

G~a!
E

0

t

dt8 f ~ t8!~ t2t8!a21, ~6!

with the convenient property*0
`e2ut

0Dt
2a f (t)5u2a f (u)

@5,18#. In Eq. ~5!, the fractional derivative on the rhs de
scribes a process which is subordinated to the simple ex
nential switching, being parametrized by the operational ti
t; the subordination is defined by the Le´vy stable waiting-
time pdf. To see this let us compare two solutions: one us
the ‘‘CTRW’’ time and another solving Eq.~5! directly.

From Eq. ~5!, with the initial conditionsP1(0)51 and
P2(0)50, we recover upon Laplace transformation

uP12152u12aP11u12aP2 ,

uP25u12aP12u12aP2 ;

from the second equation,P251/(ua11)P1 , and therefore
we find by insertion into the first,

P15
11ua

2u1ua11
, and P25

1

2u1ua11
. ~7!

It is easy to verify that the same result is obtained by co
bining Eq.~4! with Eq. ~3!. Equation~7! describes the kinet-
ics of moving to the left and to the right.

We now combine the purely temporal results forP6 with
the drift invoked by a constant velocity, distinguishing b
tween two different cases. The ensuing propagatorP of the
associated symmetric random walk is combined from a
perposition of two realizations of the switching process, ta
ing place with the rate of 1/2 each, one in which the first s
goes to the right, and one in which it goes left. This intr
duces an additional factor of 1/2 in all the following equ
tions.

(i) Ballistic regime. In the Markovian case, the combina
tion of process~2! with a velocity of magnitude 1 introduce
the material derivativesd6[(]/]t)6(]/]x). Viewing now
P6 as functions ofx and t, the evolution equation for
P6(x,t) result,

d6P65 1
2 ~P72P6!. ~8!

Both together produce the telegrapher’s equation

]

]t
P1

]2

]t2
P5

]2

]x2
P ~9!

also known as the Cattaneo equation@19#, for the quantity of
interest, the propagatorP5P11P2 . The Cattaneo equation
describes a process which at short times behaves ballistic
^x2(t)&;t2, and at long times exhibits normal diffusion
^x2(t)&;t. This derivation was based on the material deriv
tives d6 , whose Fourier-Laplace transform isu6 ik. We
now demonstrate that we reproduce exactly the propagato
1-2
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an LW if we assume~ad hoc! that the corresponding frac
tional material derivative is defined through

FxLt$d6
12a f ~x,t !%5~u6 ik !12a f ~k,u!. ~10!

This choice is motivated by the fact that a waiting time
still coupled to a walk of lengthx5t, and that for anomalous
transport processes the Fourier-Laplace space is the na
basis to introduce generalizations. Thus, we obtain

d6P65 1
2 d6

12a~P72P6!, ~11!

where the fractional material derivatives are to be interpre
in terms of Eq.~10!. We solve Eq.~11! under the initial
condition P1(x,0)5P2(x,0)5d(x)/2 so that, when intro-
ducing the propagatorP5P11P2 and its counterpartQ
5P12P2 , we haveP(x,0)5d(x) and Q(x,0)50. With
the abbreviationsl15u1 ik andl25l1* 5u2 ik, Eqs.~11!
can be rewritten in terms of Fourier-Laplace transformedP
andQ, as

l6~P6Q!2 1
2 57 1

2 l6
12aQ. ~12!

The solution forP reads

P5
l1

a l2
a211l2

a l1
a211l1

a211l2
a21

l1
a 1l2

a 12l1
a l2

a
. ~13!

Let us show that this is an exact expression for the LW w
waiting time pdf~4!. To this end, note that within the CTRW
the propagator is obtained asP(k,u)5C(k,u)/@1
2c(k,u)# in the case of spatiotemporal coupling wi
c(x,t)5 1

2 @d(x2t)1d(x1t)#c(t) and C(x,t)5 1
2 @d(x2t)

1d(x1t)#C(t) @20#. Consequently, we find

c~u,k!5 1
2 @c~u1 ik !1c~u2 ik !#

and an analogous expression forC(u,k), such that we arrive
at the Fourier-Laplace form ofP:

P5
@12c~l1!#/l11@12c~l2!#/l2

22c~l1!2c~l2!
. ~14!

With c(u) given by Eq.~4!, Eq. ~13! is reproduced and we
have shown that Eq.~12! with definition ~10! describes an
LW. From representation~14!, we find the Laplace spac
form ^x2(u)&52(ua112a)/(u31u31a) of the second mo-
ment, from which we obtain the limiting behaviors^x2(t)&
;t2 for t!1 and ^x2(t)&;(12a)t2 for t@1, i.e., a mere
decrease in the amplitude of anoverall ballistic process: the
memory which we introduced by the long-tailed form ofc
leads to an extreme persistence in a given direction on
time scales. There is no turnover to a process with a sma
exponent oft as in the Cattaneo case.

(ii) Subballistic regime. Let us now compare this with th
better known case of the subballistic domain. We again
low our above obtained recipe of formulating two equatio
for the direction-switching process with the waiting-time d
tribution of interest, and then change the time derivatives
01010
ral

d

h
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er

l-
s

r

the material ones. There is an heuristic way immediat
leading to the equations: in the Laplace representation,
system of equations

uP1215 1
2 f ~u!~2P11P2!,

uP25 1
2 f ~u!~P12P2! ~15!

leads to the solutionP15@2(u1 f (u))#/@u(u12 f (u))#.
Noting that according to Eq.~3!, this should correspond to
P15$u@11c(u)#%21, we find the relationc(u)51/@1
1u/ f (u)#. If we want a function behaving for smallu as
c(u);12u2u11b ~i.e., one witha511b being in the
interval between 1 and 2!, we have to choosef (u)51
1ub, such thatc(u)5(11ub)/(11ub1u) is the desired
pdf. Following along the lines of case~i!, we infer the equa-
tions

d

dt
P65 1

2 ~110Dt
b!~P72P6! ~16!

for the alternating process, and we obtain the equation w
material derivatives,

d6P65 1
2 ~11d6

b !~P72P6! ~17!

for the Lévy walk. Using our formal rules, we find in the
Fourier-Laplace representation:

1
2 l6~P6Q!2 1

2 57 1
2 ~11l1

b !Q,

whose solution is

P5
21l1

b 1l2
b 1l11l2

2l1l21l1~11l2
b !1l2~11l1

b !
. ~18!

This corresponds exactly to Eq.~14! for the newc and again
corroborates the recipe to generalized6 to the fractional ma-
terial derivativesd6

b in the Fourier-Laplace domain. The se
ond moment of this process is obtained as^x2(u)&52(u
1bub)/(u41u31b1u3), giving rise to the limiting behav-
iors ^x2(t)&;t2 for t!1 and^x2(t)&;2bt22b/G(32b) for
t@1, i.e., a transition from initial ballistic to terminal sub
ballistic superdiffusive behavior, in an analogy to the CTR
result @3,20#.

Let us now discuss the coordinate-time representation
the fractional material derivative. Using the well-known r
lation L 21$F(u1b)%5e2btf (t) of the Laplace transforma
tion, we obtain after some steps

d6
a P~x,t !50Dt

aP~x6t,t !. ~19!

That is, the fractional material derivative generalizes
regular material derivative,d6P(x,t)5(d/dt)P(x6t,t)
[(]/]t6]/]x)P for a51, through the introduction of the
standard~acting ont only! Riemann-Liouville operator act
ing on the entire right hand side.

For subdiffusion, the major advantage of the fraction
dynamical equation formulation is in the possibility to eas
generalize to situations with an external force field, whi
1-3
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led to the fractional Fokker-Planck equation@5,6#. Here, we
start with incorporating a constant external force. To this e
let us consider the physical realization of the walk in a sp
ting flow: in the upper half plane, the particle moves to t
right; vx

15v0 for y.0, in the lower half plane it moves to
the left: vx

252v0 for y,0. The motion in they direction
dictates the waiting-time distribution. If it is a simple diffu
sion, the overall process is a Le´vy walk with a51/2 @1#.
Imagine now, we have a force acting in thex direction. The
force causes a sliding of the particle with respect to the fl
so that nowvx

15v01m f for y.0 andvx
252v01m f for

y,0. This corresponds to changingd6
a to the constructs

corresponding to

df ,6
a P~x,t !50Dt

aP„x1~m f 6v !t,t…, ~20!

whose Fourier-Laplace transform produces

df ,6
a →@u1 i ~m f 6v !k#a. ~21!

This can be verified by the comparison of the CTRW resu
for a constant force@6#. That is, in both the force-free and th
constant force cases, we observe some type of genera
d’Alembert principle reflecting thed coupling of x and t
@21#. Translating the dynamic equations~10! and ~17! with
the fractional material derivatives into an equation for t
-

01010
,
-

,

s

ed

propagatorP produces a rather complicated expression. T
can be circumvented by a different definition of the fra
tional operators, as shown in Ref.@22#. However, the latter
does not allow for the incorporation of a bias and is thus
suited for our purpose.

In our approach we were guided by the equivalence
tween positionx and timet in the LW framework, enforced
by the d-coupling c(x,t)5 1

2 d(uxu2t)c(t), which could in
fact be rewritten in terms of the jump length distribution wi
the appropriate long-tailed form forl @3#. This equivalence
gives rise to the occurrence of the material derivative,
complete analogy to the Brownian Cattaneo case. Howe
in the presence of long-tailed temporal correlations of
kind c(t);t212a, the fractional variant of the material de
rivative emerges, with its simple representations in b
Fourier-Laplace and (x,t) domains. This treatment is ame
nable for the case of a constant external force. Whether th
is a similar treatment for arbitrary forcef (x) is not clear at
present. The representation of LWs in terms of the left-rig
processesP6 reveals a surprisingly simple structure for th
generalization of the material derivative, and therefore
are confident that it is the right direction towards including
general external forcef (x).
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