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Abstract

Following the modelling of Zener, we establish a connection between the fractional Fokker-
Planck equation and the anomalous relaxation dynamics of a class of viscoelastic materials which
exhibit scale-free memory. On the basis of fractional relaxation, generalisations of the classical

rheological model analogues are introduced, and applications to stress–strain relaxation in filled
and unfilled polymeric materials are discussed. A possible generalisation of Reiner’s Deborah
number is proposed for systems which exhibit a diverging characteristic relaxation time.
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1. Introduction

The systematic study of exponential relaxation types dates back to Maxwell (1867)
and Debye (1929) in whose honour the exponential relaxation is often calledMaxwell–
Debye, or Debye relaxation. Accordingly, the relaxation equation
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d

dt
� tð Þ ¼ ��� tð Þ; � 0ð Þ ¼ �0 ð1Þ

with the initial condition �0 defines the exponential relaxation function

� tð Þ ¼ �0e
�t=�; t5 0: ð2Þ

Real materials often show deviations from the Maxwell–Debye form (Plonka,
1997; Ramakrishnan and Raj Lakshmi, 1987), and they are often fitted with the
stretched exponential law

� tð Þ ¼ �0e
� t=�ð Þ

�

; 0 < � < 1 ð3Þ

which was introduced by Kohlrausch (1847), and later rediscovered by Williams and
Watts (1970). It is therefore referred to as KWW-relaxation. Alternatively, experi-
mental data also have been fitted with the asymptotic power-law

� tð Þ ¼
�0

1þ t=�ð Þ
n � �0

�

t

� �n
; n > 0: ð4Þ

It seems that B.G. Buelfinger was the first to have used inverse power-law fits in
1729 (Reiner, 1969). Asymptotic power-laws were used by W. Weber in 1830.
Usually, Eq. (4) or the corresponding power-law are referred to as Nutting or Nut-
ting–Scott–Blair laws (Reiner, 1969; Scott Blair, 1943). It should be noted that, for a
narrow data window, it is fairly impossible to distinguish the numerical quality of
either function (3) or (4) by fit.
Materials featuring non-Debye relaxation functions necessarily possess a spectrum

of relaxation times, i.e., their actual relaxation function �(t) can be represented in
terms of the integral

� tð Þ ¼

ð1
�1

S �ð Þe�t=�dlog �ð Þ: ð5Þ

The kernel S is called the relaxation time spectrum which can be calculated analyti-
cally for both KWW and Nutting laws through inverse Laplace transformation of
Eq. (5) (Metzler et al., 1998).
A typical property issued by materials relaxing non-Debye fashion is memory, i.e.,

temporal correlation due to which the present response is a summation of incre-
mental relaxation responses accumulated during a certain time interval. This has
been expressed by Boltzmann in the superposition integral (Tschoegl, 1989; Ward,
1983).

� tð Þ ¼

ðt
0

dt0G t� t0ð Þ
d" t0ð Þ

dt0
ð6Þ
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which we have written for an experiment recording the stress response �(t) to infi-
nitesimal changes of the strain "(t) mediated through the time-dependent relaxation
modulus G(t) [not to be confused with delayed or retarded stress relaxation (Reiner,
1971) which also exists in a perfect Debye case]. We have chosen the initial condition
to be given through a system preparation at time t=0; systems with t0=�1 which
were prepared in the distant past were considered by Schiessel et al. (1995).
In what follows, we present a mathematical framework for a class of rheological

systems which exhibit scale-free memory kernels of the power-law form G(t)�
G0(t/�)

�1-� where 0<�<1 such that G(t) possesses a diverging characteristic time
scale. This framework is embedded in fractional calculus which, in essence, dates
back to Leibniz (Miller and Ross, 1993; Oldham and Spanier, 1974). We will con-
nect fractional relaxation to a generalised diffusion approach similar to the Zener
model, and then construct generalised rheological models based on fractional elements.
Applications to experimental results for unfilled and filled polymer networks demon-
strate the usefulness of the fractional approach which captures the dynamics of these
systems withinmany orders of magnitude with a relatively small number of parameters.
Any natural substance flows on some length scale. Reiner has introduced an elu-

cidating dimensionless quantity to enumerate the ‘‘flowness’’ of a substance, the
Deborah number (Metzner et al., 1966; Reiner, 1964)1

¼
relaxation time

observation time
: ð7Þ

Accordingly, a substance appears as a liquid if is small, and as a solid if it is
large, in respect to the observation time, i.e., the duration of the experiment. This is a
crucial notion for viscoelastic bodies exemplified in everyday substances like honey,
toothpaste, chewing gum, but also marble or concrete. For Debye systems, the
number is a very useful quantity. For systems with scale-free memory, however, no
finite characteristic relaxation time exists. We propose therefore an extension of
definition (7) for such systems.
An extensive bibliography provides ready reference to relevant articles, some of

which might be less familiar to the reader.

2. The connection between diffusion and relaxation

In an effort to modelling the relaxation of the strain field in a linear solid, Zener
(1948) (see also Zener, 1937, 1938; Zener et al., 1938) complemented the wave-type
phonon contribution following @2"=@t2 ¼ cr2" where c is the velocity of sound with
a diffusive part governed through

@"

@t
¼ Kr2" x; tð Þ; ð8Þ

1 is the Hebrew letter ‘‘daleth’’, the initial of the name Deborah.
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including the associated diffusion constant K. This equation is based on the obser-
vation that inhomogeneities in stress in condensed matter in turn give rise to fluc-
tuations in the temperature field, i.e., local heat currents, the latter being subject to
the diffusion equation. Moreover, the heat currents lead to an increase in the body’s
entropy and are therefore a cause for internal friction. For a fixed wave vector k, Eq.
(8) describes an exponential relaxation process

" k; tð Þ ¼ e�K k2t ð9Þ

where k= kj j. In a system where stress � and strain are coupled linearly, the stress
relaxation for a given k will follow the same Debye pattern. If more than a narrow
interval of modes contribute to the relaxation, the function (9) has to be weighted
according to some distribution.
Due to the connection of diffusion with the central limit theorem, the Gaussian

probability density function, and therefore also the associated exponential mode
relaxation, acquire a universal character. Except for the relaxation rate Kk2, the
relaxation law (9) is actually parameter free. However, there exist numerous systems
which exhibit certain forms of disorder, dynamic or static, and which are known to
give rise to anomalous diffusion (Bouchaud and Georges, 1990) which is charac-
terised through a scale-free memory kernel of the inverse power-law type. For these
systems, the strain diffusion Eq. (8) and the associated exponential mode relaxation (9)
have to be modified. Our generalisation of the Zener model is based on fractional
dynamics which has recently been reviewed by Metzler and Klafter (2000a, 2001).
Fractional processes are governed by a generalisation of the central limit theorem such
that they are described by a unique distribution like the Gaussian is unique for a central
limit theorem system. However, a given system is characterised by an additional para-
meter a, the ‘‘strength’’ of the memory, which has to be determined separately, from
models or experiment. The fundamental equation, the fractional Fokker–Planck
equation will be introduced and its relaxation properties analysed in the next section.
We note that Zener’s relaxation theory was generalised and abstracted by Glarum

(1960). In this abstraction, defects like holes or microscopic cavities, or the random
orientation of crystallites are supposed to diffuse within the body, and when they
meet an excitation (stress, microscopic electric dipole etc.), the latter is allowed to
relax. This theory was generalised to anomalous dynamics systems by Shlesinger
(1984) and Blumen et al. (1984), who introduced the target model, to processes with
anomalous statistics. On the basis of the latter, Glöckle and Nonnenmacher (1993)
derived fractional relaxation processes. We also note that an anomalous diffusion-
caused relaxation was used to describe the stress relaxation in an anelastic perco-
lating solid (Gosh et al., 1989). We do not pursue the target model here.

2.1. Fractional Fokker–Planck equation and anomalous relaxation with power-law
memory

The fractional Fokker–Planck (Smoluchowski) equation ruling the temporal evo-
lution of the probability density function W(x, t) under the influence of the external
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potential field V(x)=�
Ð x
F x 0ð Þdx 0 reads (Metzler et al., 1999a; Metzler and Klafter,

2000a)

@W

@t
¼ 0D

1��
t

@

@x

V 0 xð Þ

m��
þ K�

@2

@x2

� �
W x; tð Þ ð10Þ

in one dimension. It involves the generalised diffusion constant K� of dimension
[K�]=cm2 s�a which is connected to the generalised friction constant �� through the
generalised Einstein–Stokes relation K�=kBT/(m��) (Metzler et al., 1999a; Metzler
and Klafter, 2000a). The fractional Fokker–Planck equation can be derived from
generalised random walk schemes (Metzler et al., 1999b), or from a multiple trap-
ping model with broad waiting time distribution (Metzler and Klafter, 2000b,c;
Metzler, 2000). Substituting the r operator for the partial derivatives @x and @x2,
one obtains the three-dimensional version of the fractional Fokker–Planck equation.
If the external potential is constant, Eq. (10) reduces to the fractional diffusion

equation

@W

@t
¼ 0D

1��
t K�r

2W x; tð Þ ð11Þ

which is the differential form of the equation originally proposed by Schneider and
Wyss (1989).
The fractional Riemann–Liouville operator 0D

1��
t � d

dt 0D
��
t occurring in Eqs.

(10) and (11) is defined through the convolution (Miller and Ross, 1993; Oldham
and Spanier, 1974)

0D
��
t W x; tð Þ �

1

G �ð Þ

ðt
0

dt 0
W x; tð Þ

t� t 0ð Þ
1��

; ð12Þ

which possesses the important property

L 0D
��
t W x; tð Þ

� �
�

ð1
0

dte
�pt
0 D��

t W x; tð Þ

¼ p��W x; pð Þ ð13Þ

under Laplace transformation. The definition (12) can be viewed as a real-value fold
generalisation of Cauchy’s multiple integral in a similar way as fractal dimensions
extend the integer order Euclidean dimension (Rocco and West, 1999).
The fractional Fokker–Planck Eq. (10) can be derived from the continuous time

Chapman Kolmogoroff equation for a multiple trapping process (Metzler and
Klafter, 2000b,c; Metzler, 2000), and it can be shown that it is equivalent to the
generalised master equation for a power-law memory form of the kernel (Metzler,
2001). Eq. (10) can thus be regarded as a natural generalisation of the standard
Fokker–Planck equation for scale-free dynamic processes.

R. Metzler, T.F. Nonnenmacher / International Journal of Plasticity 19 (2003) 941–959 945



2.2. Fractional relaxation equation and the Mittag-Leffler function

Using the Zener argument, one can replace the strain field "(x, t) for the prob-
ability density function W in the fractional Eqs. (10) and (11). Then, the corre-
sponding mode relaxation, i.e., the dynamical equation governing the temporal
evolution of the strain mode "(k, t) can be obtained through the method of separa-
tion of variables (Metzler and Klafter, 2000a). One finds

d"

dt
¼ �k2 0D

1��
t " k; tð Þ; ð14Þ

the fractional relaxation equation. Its solution is given in terms of the Mittag-Leffler
function (Erdélyi, 1954; Mittag-Leffler, 1903, 1904, 1905)

" k; tð Þ ¼ E� �K�k
2t�

	 

ð15Þ

which is, in turn, defined through the series

E� �zð Þ �
X1
n¼0

�zð Þ
n

� 1þ �zð Þ
; ð16Þ

the Mittag-Leffler function is therefore often said to be the natural extension of the
exponential function. For 0<�<1, the Mittag-Leffler interpolates between the
initial stretched exponential (KWW) behaviour

E� �K�k
2t�

	 

� exp �

K�k
2t�

� 1þ �ð Þ

� �
ð17Þ

and the final inverse power-law pattern (Nutting law)

E� �K�k
2t�

	 

� K�k

2t�� 1� �ð Þ
	 
�1

: ð18Þ

In Fig. 1, we show an example of the Mittag-Leffler function interpolating
between initial KWW and final Nutting behaviour (Glöckle and Nonnenmacher,
1991; Nonnenmacher, 1991).
It should be noted that the fractional relaxation Eq. (14) is equivalent to the

Boltzmann superposition integral (6) with a power-law form for the kernel G
(Schiessel et al., 1995). Moreover, fractional relaxation can be connected with long-
tailed continuous time random walk processes (Metzler et al., 1999b; Metzler and
Klafter, 2000b,c; Metzler, 2000). We also note that a first discussion of a fractional
initial value problem for the Maxwell and Zener models connected with the Mittag-
Leffler relaxation type was given by Nonnenmacher (1991), Nonnenmacher and
Glöckle (1991) and Glöckle and Nonnenmacher (1991). Cognisance of this problem
was originally taken by Schneider and Wyss in their fractional diffusion model
(Schneider and Wyss, 1989).
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2.3. A possible generalisation of the Deborah number for scale-free processes

For Debye relaxation processes following the exponential pattern (2), the relaxa-
tion time is often defined by measuring when the initial signal has decayed to 1/e,
i.e., one imposes � t1ð Þ ¼ e� t2ð Þ so that �t � t2 � t1 ¼ �. The same definition yields
a time-dependent result, �t ¼ t1 e�n � 1ð Þ for self-similar processes of the power-law
type � tð Þ � t=�ð Þ

�n. This is, the characteristic relaxation time determined through
this criterion depends on time explicitly.
To find a stringent definition for the Deborah number for scale-free processes, we

note that the characteristic relaxation time for a Debye process (2) can alternatively
be determined through the differential definition � � �1= dlog� tð Þ=dt½ �, or through
the integral approach � �

Ð1
0 � tð Þdt where it is assumed that the experiment starts at

t=0. In the power-law case, these definitions produce the time dependent results t/n
for the differential, whereas the integral definition does not make sense for all n>0.
Noting that t corresponds exactly to the observation time Tobs, the scale-free char-
acter becomes obvious: the relaxation time becomes the larger the longer the experi-
ment is carried out. For such processes, the Deborah number is no longer a number
which compares two time scales, but it becomes a criterion for the process type!
Let us define the dynamical Deborah number in terms of the differential form

Tobsð Þ � �
dlog� Tobsð Þ

dlogTobs

� ��1

: ð19Þ

Then, we can distinguish the three typical relaxation processes as follows: (i) the
exponential Debye pattern (2) gives rise to a dynamical Deborah number
(Tobs)=�/Tobs, and it is thus equivalent to Reiner’s Deborah number ; (ii) the

inverse power-law behaviour (Tobs)=� �/(�T�
obs) corresponds to a KWW process

Fig. 1. Stress relaxation at constant strain, for two different initial conditions: data from Schofield and

Scott Blair (1932). (– – –) stretched exponential (3), (. . .) Nutting law (4), and (—) Mittag-Leffler function

corresponding to Eq. (15). The dimension of the stress � is dyn/mm2 (from Nonnenmacher, 1991).
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(3) with characteristic relaxation time � 1þ 1=�ð Þ�; (iii) if (Tobs)=const, the process
under observation belongs to the power-law class with index n=1/ (Tobs).
For cases (i) and (ii), the dynamical Deborah number can be used as the classical

Deborah number to decide whether the process is fast or slow in comparison to the
observation time Tobs. On finding case (iii), one encounters a material which exhibits
slow creep on all accessible time scales. Of course, a power-law can eventually exhi-
bit a transition to a faster relaxation pattern, and then the dynamical Deborah
number defines the separation of the two regimes.

3. Fractional rheological models: general remarks

Standard rheological models are combinations of a small number of fundamental
elements such as the Hookean spring, the Newton/Trouton dashpot, and the St.
Venant or stick–slip element (Reiner, 1971). They correspond, mathematically, to
linear, differential, and cutoff relations between stress and strain. From these basic
elements, the following combinations with up to five elements are known: the Max-
well, Bingham, Prandtl, Jeffreys (or Lethersich), Schwedoff, Poynting and Thomson
(or Zener), Burgers, Trouton and Rankine, and Schofield and Scott Blair models
(Reiner, 1971; Tschoegl, 1989; Ward, 1983). There exists a shorthand notation for
rheological elements, and over the time more and more complicated combinations
had to be considered in order to explain the increasingly more detailed experimental
findings in terms of these Debye-type elements (Tschoegl, 1989; Ward, 1983). Of
course, each element causes additional parameters to enter the associated relaxation
function, blowing up the number of quantities to be determined by fit. This decrea-
ses the predictability of such a model for comparable experiments (e.g., prediction of
the compliance function from the relaxation function). Often, such elements are
defined through series whose integral transformation turns out to sometimes lack
the necessary numerical precision. In order to overcome this problem, certain
correlations between the parameters can be assumed, such as in the Rouse or Zimm
models (Tschoegl, 1989; Ward, 1983).
Another special form of correlations corresponds to fractional relaxation which

can be solved in analytical, closed form (Glöckle and Nonnenmacher, 1995). Frac-
tional relaxation is an intermediate between a Hookean spring and a Newton/
Trouton dashpot, and can be defined through a fractional element, depicted by an
upright triangle symbolising a ‘‘ladder’’, i.e., an hierarchical array of springs and
dashpots (Schiessel and Blumen, 1993). Fractional rheological elements can then be
used to generate combinations such as the Zener model whose fractional general-
isation will be discussed in the following. The interplay of differently weighted
power-law allometric elements gives rise to an interesting mathematical behaviour of
the related rheological functions, and we demonstrate that it is an excellent candi-
date for the description of experimental findings.
Let us note that fractional rheology dates back to Bagley and Torvik (1983, 1986).

Further applications of fractional calculus ideas in relaxation modelling have been
reported by Koeller (1984), Friedrich (1991), Nonnenmacher (1991), Glöckle and
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Nonnenmacher (1991), and, more recently, Schiessel et al. (1995), and Heymans and
Bauwens (1994), among others. It is interesting to note that Douglas recovered
fractional equations from a Feynman path integral approach to surface interacting
polymers (Douglas, 1989). An overview is found in the book of Hilfer (1999).
It should also be noted that our approach concerns one class of rheological behaviours,

namely, those related to power-laws. The modelling of new rheological patterns is a wide
and active field, compare, for instance, to the recent contributions of Krempl (2001),
Khan and Zhang (2001), Puzrin and Houlsby (2001), Mähler et al. (2001), Nemast-Nas-
ser and Zhang (in press), Kok et al. (in press), and Zbib and de la Rubia (in press).

4. Fractional Zener model

As a particular case, let us now consider the fractional Zener model generalising
the standard Zener model combining a serial arrangement of a spring and a dashpot
(Maxwell element), with a parallel spring. The latter enforces a long-time elastic
behaviour such that for any times, the elongation stays finite. The standard Zener
model has the well-known stress–strain relation

� tð Þ þ �0
d�

dt
¼ Gm þ Geð Þ�0

de

dt
þ Ge" tð Þ ð20Þ

including the Maxwell relaxation time �0=�m/Gm, the dashpot viscosity �m, and the
spring constant Gm where the index m denotes the quantities of the Maxwell arm of
the Zener model. Ge is the spring constant of the parallel spring. Glöckle and Non-
nenmacher have obtained the fractional generalisation

� tð Þ � �0 þ ��q
0D

�q
t � tð Þ ¼ Ge�

��
0 0D

��
t " tð Þ þ Ge þ Gmð Þ " tð Þ � "0ð Þ ð21Þ

of the standard Zener model (Glöckle and Nonnenmacher, 1991). Accordingly, the
functionals describing the stress and the strain are assumed to involve a different
memory strength, q and � which both are to be chosen from the interval [0,1]. In
respect to the diffusion model established above, the different memory strengths can
be included through the assumption that the "-diffusion is related to the �-diffusion
through an additional memory. The very combination of different fractional ele-
ments is on a phenomenological level. However, in the next section we will argue
that the occurring parameters are physically meaningful.
Fractional equations of the Riemann–Liouville type are closely related to the

Laplace transformation as their definition corresponds to a Laplace convolution.
This gives rise to the simple behaviour (13) for the Laplace transform of a fractional
expression. Defining the quantity

� pð Þ ¼ Q pð Þ" pð Þ ð22Þ
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connecting stress and strain in Laplace space, the fractional Zener Eq. (21) reduces
to the simple algebraic relation

Q pð Þ ¼
Gm þ Geð Þ þ Ge�

��
0 p��

1þ ��q
0 p�q

ð23Þ

for a stress relaxation experiment defined through an elongation jump "(t)="0�(t),
where �(t) is the Heaviside jump function. Similar results are obtained for strain
relaxation experiments, or for harmonic driving Obviously, in Eq. (23), the initial
modulus G0 � �0="0 ¼ Gm þ Ge has a different time evolution than the Ge term.2

Moreover, we see from Eq. (23) that � 4q if we require the stress to decay in the
course of time, see also below.
These last two observation are reflected in the stress relaxation function

G tð Þ ¼ G0Eq;1 � t=�0ð Þ
q

ð Þ þ Ge t=�0ð Þ
�Eq;1þ� � t=�0ð Þ

q
ð Þ ð24Þ

which consists of two summands. Here, E�,
(�z) �
P1

n¼0 �zð Þ
n=� 
þ �nð Þ is the

generalised Mittag-Leffler function (Erdélyi, 1954). Accordingly, we find the
asymptotic behaviour

G tð Þ �
G0 t=�0ð Þ

�q

� 1� qð Þ
þ
Ge t=�0ð Þ

��q

� 1� qð Þ
ð25Þ

from where we are reminded of the condition � 4q for monotonic decrease of the
stress relaxation function. If we consider the short time behaviour of Eq. (24),

G tð Þ � G0

XN
n¼0

�1ð Þ
n t=�0ð Þ

qn

� 1þ qnð Þ
þ Ge

XN
n¼0

�1ð Þ
n t=�0ð Þ

qnþ�

� 1þ �þ qnð Þ
; ð26Þ

the known theorems for the generalised Mittag-Leffler functions state that the sec-
ond term decreases only if � 5q. In order to have a monotonically decreasing
function for all times, we necessarily have q=�. In the following, we restrict all
results to this limit which corresponds to the famed Cole–Cole relaxation function
(Cole and Cole, 1941). Note, however, that some of the results presented in the next
section actually employ q> �. Such cases might have a phenomenological relevance,
and one might view them as a model for a finite time window. The general results
are reported by Glöckle and Nonnenmacher (1994).
In the Cole–Cole case q=�, both �- and "-diffusion in the associated Zener relax-

ation picture are coupled linearly and carry the same memory strength, and conse-
quently the dynamics is governed by one power-law index, q, only. For the Cole–Cole
limit, the asymptotic behaviour of the stress relaxation function is given in terms of

G tð Þ �
G0 t=�0ð Þ

�q

� 1� qð Þ
þ Ge � Ge ð27Þ

2 G0 actually corresponds to the glassy modulus of the material.
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which relaxes towards the equilibrium modulus Ge; i.e., in the Cole–Cole limit, the
fractional Zener model has solid-like long-time behaviour, compare the discussion
by Glöckle and Nonnenmacher (1994).
A powerful property of the fractional approach, due to few parameters and the

linearity of the model equations, is that the other viscoelastic function can also be
calculated analytically. A quantity which is important to a wide range of experi-
ments is the complex modulus G*=G0+iG00, the response function to a harmonic
driving, where G0 is the storage modulus, and G00 is referred to as the loss modulus
(Tschoegl, 1989; Ward, 1983). As G*=Q(p!i!), one finds

G0 !ð Þ ¼ G0 þ Geð Þ!~ qcos �q=2ð Þ þ Ge þ G0!~
2q

	 

=D !ð Þ ð28Þ

and

G00 !ð Þ ¼ G0 � Geð Þ!~ qsin �q=2ð Þð Þ=D !ð Þ; ð29Þ

in the Cole–Cole limit, where we used the abbreviation !~ � !�0, and

D !ð Þ ¼ !~ 2q þ 2!~ qcos �q=2ð Þ þ 1: ð30Þ

Other rheologic functions of interest include the retardation function J(t), the
associated complex compliance J*(!)=J 0(!)+iJ 00(!), and the relaxation and retar-
dation time spectra which were reported by Glöckle and Nonnenmacher (1994).
Here, we want to keep the mathematics to a minimum, and prefer to proceed with
the discussion of applications of the fractional Zener model to different experimental
results.

5. Applications to unfilled and filled polymeric materials

In Fig. 1, we represent the stress relaxation function of the data measured by
Schofield and Scott Blair (1932). The fractional Zener model in the Cole–Cole and
Ge=0 limits corresponding to the fractional Maxwell model introduced by Non-
nenmacher (1991) interpolates between the initial stretched exponential and the final
Nutting behaviours, over approximately two decades.
Another application of the fractional Maxwell model (Ge=0) is displayed in Fig. 2

where the moduli of a gel are plotted. The storage modulus shows excellent agree-
ment with the model function, the loss modulus exhibits some discrepancies for
higher frequencies, see below.
Figs. 3–5 show polyisobutylene data obtained by Tobolski and Catsiff (1956).

They are fitted with the fractional Zener model in the Cole–Cole limit in Fig. 3, and
then the obtained parameters are used to plot the theoretical curves in Figs. 4 and 5.
For the relaxation function and the storage modulus and compliance, the fit shows
good agreement over ca. 10 orders of magnitude. The fit quality for the loss quan-
tities is satisfactory over ca. 7 orders of magnitude. It is usual that the quality of the
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description for the loss is of a lesser quality as additional, uncontrolled dissipation
occurs. Note that the polyisobutylene system illustrates the heart of viscoelasticity,
i.e., that the system shows some type of flowness for long times. Accordingly, in
Fig. 3, the data show increasing deviations from the solid body plateau of the frac-
tional Zener model. In this region, the dynamical Deborah number (Tobs) decreases
in the course of time.
Data which require going beyond the Cole–Cole limit are displayed in Fig. 6

obtained by Sann for a natural rubber (Sann, 1990). Here, the storage modulus is in
excellent agreement with the data on a range of 14 decades. For comparison, fits
with the Cole–Cole limit and the standard Zener model are included.

Fig. 2. Storage and loss moduli of a gel of galactomannan-borax (data from Pezron et al., 1990).

Fig. 3. Stress relaxation in poly-isobutylene from Tobolski and Catsiff (1956). Theoretical curve from Eq.

(24) with G0=1.0 � 109 Pa, Ge=2.5 � 105 Pa, �0=1.2 � 108 s, and q=�=0.65.
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So far, we have demonstrated that (i) the fractional Zener model is able to
describe polymer data successfully, over many decades, and (ii) that the parameters
can be fitted for one given rheological function, and then complementary measure-
ments of the same substance can be described in full agreement with the previously
obtained parameters. Now, we want to address the dependence of the model para-
meters on externally controllable parameters. Here, we choose the dependence on
the filler content of rubbers typically used in the tyre industry. Typical data obtained
by Schick (1992) which were discussed by Metzler et al. (1995) are displayed in Fig. 7
for the storage modulus and in Fig. 8 for the loss modulus. The storage modulus is
successfully described on a range of ca. 15 orders of magnitude, the satisfactory

Fig. 4. Storage and loss moduli corresponding to Fig. 3, theoretical curves from Eqs. (28) and (29). The

ordinate is in Pa.

Fig. 5. Storage and loss compliances corresponding to Figs. 3 and 4.
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range for the loss modulus is of about 10 orders of magnitude. The investigated
rubber mainly contains carbon black which is varied over different samples. Both
graphs show curves for three different filler concentrations, using chemical mass
concentration (phr) units. In the fit procedure, the corresponding storage/loss pair
was fitted simultaneously.
Metzler et al. (1995) investigated the dependence of the equilibrium modulus Ge

and the so-called ‘‘inhomogeneity’’ defined through � � q ��. The equilibrium
modulus increases with growing filler content. This is caused by additional, adhesive
contacts between rubber chains and the filler, and the excluded volume brought

Fig. 6. Storage modulus of natural rubber, data points from Sann (1990). The full line corresponds to the

fractional Zener model with q=0.72 differing from �=0.6. The dashed line represents the fit through the

Cole–Cole limit with q=�=0.72. Finally, the dotted line is the solution of the standard Zener model

without memory.

Fig. 7. Storage modulus of NR32237 for the filler contents of 0, 30, and 60% phr (from bottom to top).
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about by the carbon black enhances the intrinsic pressure in the polymer matrix.
Employing standard models for concentration variation in suspensions, it was found
that Ge experiences a strong increase (idealised, it encounters a singularity) close to a
filler concentration corresponding to ca. 30 vol.%. Carbon black is known to form a
percolation cluster in the polymer matrix, and the obtained value 30% is deceivingly
close to the 31% percolation threshold on a cubic lattice. We conclude, that the
fractional model is reliably sensitive to this threshold.3 The second parameter
investigated, �=q�� reveals that is decreases with increasing filler content, flatten-
ing off for values close to the percolation threshold where it reaches a plateau. The
functional dependence on the filler content can be described by a Vogel–Fulcher
type law (Metzler et al., 1995). � is especially sensitive to changes of the filler con-
centration for smaller filler contents.
The parameters of the fractional model can be used to study the dependence on

external parameters like the pH, temperature (compare the study by Glöckle and
Nonnenmacher, 1995; Metzler and Klafter, 2000d) etc. Moreover, we have discussed
that they agree well with the physics of the system. Thus, we believe that the frac-
tional model is a physically meaningful, and useful phenomenological approach.

6. Conclusions

Rheology assumes that, under certain conditions, a natural body flows. This basic
assumption characterised through the Deborah number , finds its supreme expres-
sion already in Heraditus’ words: ��"��� �"��#, everything flows. It becomes beauti-
fully true in the physics of macromolecules.
We have developed a simple rheology of viscoelastic materials which exhibit

memory of the ubiquitous power-law type, In the simplest case, transitions from the

Fig. 8. Loss modulus of NR32237 for the filler contents of 0, 30, and 60% phr (from bottom to top).

3 It should be noted that, interestingly, the loss modulus behaves congruently for the two curves close

to and above percolation filler contents in Fig. 8.
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stretched exponential (KWW) pattern to an inverse power-law decay are described
through the fractional relaxation equation whose result is given in terms of the
Mittag-Leffler function. More complex materials have been demonstrated to fit well
to descriptions involving generalised rheological elements such as the fractional
Zener model studied.
The new aspect discussed herein is the connection between fractional relaxation

and the fractional Fokker–Planck equation which, in turn, can be connected with
multiple trapping effects well known from amorphous materials. This generalises the
Zener model of strain relaxation due to heat diffusion.
Our presentation focuses on macrorheology, i.e., the response of a body measured

in a macroscopic experiment such as harmonic stress–strain measurements on a
rubber sample of several cm length. Conversely, there has been considerable pro-
gress in the emerging field of nanorheology in which mesoscopic beads of less than 1
mm diameter are used to probe the viscoelastic properties of solutions (Crocker et
al., 2000; Gisler and Weitz, 1999). For such situations, the fractional Fokker–Planck
equation can be viewed as the description of a real diffusion in an external force field
given by the disordered environment, and the basic principles developed herein are
therefore expected to be valid in this nanoregime, as well.
Finally, we suggested an extension to Reiner’s Deborah number which is valid

for systems which exhibit diverging characteristic relaxation times, such as the frac-
tional models do.
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