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Abstract. We investigate the effects of topological constraints (entanglements) on two-dimensional polymer
loops in the dense phase, and at the collapse transition (Θ-point). Previous studies have shown that in the
dilute phase the entangled region becomes tight, and is thus localised on a small portion of the polymer. We
find that the entropic force favouring tightness is considerably weaker in dense polymers. While the simple
figure-eight structure, created by a single crossing in the polymer loop, localises weakly, the trefoil knot and
all other prime knots are loosely spread out over the entire chain. In both the dense and Θ conditions, the
uncontracted-knot configuration is the most likely shape within a scaling analysis. By contrast, a strongly
localised figure-eight is the most likely shape for dilute prime knots. Our findings are compared to recent
simulations.

PACS. 87.15.-v Biomolecules: structure and physical properties – 82.35.-x Polymers: properties; reactions;
polymerization – 02.10.Kn Knot theory

1 Introduction

Knots, and topological constraints in general, play an
important role in macromolecular systems. In gels and
rubbers, permanent entanglements strongly influence the
equilibrium and relaxation properties [1–4]. Even single
molecules with identical chemical structure but differ-
ent topology may exhibit different physical properties [5].
Knots are also present in biological molecules: For exam-
ple, some proteins exhibit knotted configurations [6], and
the active modification of DNA knots through energy-
consuming enzymes (topoisomerases) poses interesting
challenges to the issue of the knot detection [7,8]. Ex-
perimentally, the observation of individual molecules by
single-molecule force spectroscopy has come of age [9,10];
these methods can be used to probe the mechanical be-
haviour of knotted biopolymers directly.

Given a knot in a closed ring, an obvious question is
whether, on average, the knot segregates into a small re-
gion in which all topological details are confined, and a
large, simply connected segment; or whether it is loosely
spread over the entire chain. In the dilute phase, it has
been found by numerical evidence that flattened (hence
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two-dimensional [11]) knots are localised, i.e. tight [12].
In a previous study [13], we developed an analytical ap-
proach, based on scaling results for polymer networks [14,
15], which explains and quantifies the tightness of any
prime knot in flat (2D) dilute polymer loops. Some as-
pects of our results have been verified experimentally by
means of a vibrated granular chain [16]. It should be men-
tioned that DNA chains have experimentally been flat-
tened by adsorption on an adhesive membrane [17]. In
3D, the global topological constraints of a knot are hard
to implement by analytical methods [18]. (A simpler topo-
logical invariant, the linking number of closed DNA rings,
can be incorporated in the mapping to a field theory [1]
by means of suitable gauge fields [19].) Consequently, the
tightness or localisation of 3D knots has not been conclu-
sively characterised. A number of phenomenological mod-
els and numerical studies support the localisation of sim-
ple knots [20]. Tightness has also been found in 3D slip-
linked polymer chains in the dilute phase [21]. Conversely,
delocalisation has been predicted for more complicated
knots [22].

In many situations, however, polymer chains are not
dilute. Polymer melts, gels, or rubbers exhibit fairly high
densities of chains, and the behaviour of an individual
chain in such systems is significantly different compared
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to the dilute phase [1,2]. Similar considerations apply to
biomolecules: In bacteria, the gyration radius of the al-
most freely floating ring DNA is often larger than the cell
radius itself. Moreover, under certain conditions, there is
a non-negligible osmotic pressure due to vicinal layers of
protein molecules, which tends to confine the DNA [23].
In protein-folding studies, globular proteins in their native
state are often modelled as compact polymers on a lattice
(see [24] for a recent review).

Given this motivation, in this work we consider
self-avoiding dense polymers with permanent entangle-
ments, complementing our previous studies for the dilute
phase [13,21]. A polymer is considered dense if, on a lat-
tice, the fraction f of occupied sites has a finite value
f > 0. This can be realised by a single polymer of total
length L inside a box of volume V and taking the limit
L → ∞, V → ∞ in such a way that f = L/V stays fi-
nite [25,26]. Alternatively, dense polymers can be obtained
in an infinite volume through the action of an attractive
force between monomers. Then, for temperatures T be-
low the transition (Theta) temperature Θ, the polymers
collapse to a dense phase, with a density f > 0, which is
a function of T [26,27]. For a dense polymer in d dimen-
sions, the exponent ν, defined by the radius of gyration
Rg ∼ Lν , is simply ν = 1/d. In 2D, the dense polymer
phase for 0 < f < 1 is related to a conformal field theory,
and the resulting scaling behaviour is known exactly [25,
26,28]. The limit f = 1 is realised in Hamiltonian paths,
where a random walk visits every site of a given lattice
exactly once. For some cases, their scaling behaviour is
known exactly as well [29,30]. Another way to make poly-
mers collapse in 2D is to exert a pressure on self-avoiding
loops (2D vesicles), conjugate to their area, which results
in double-walled, branched structures [31,32]. Recently,
the corresponding crossover scaling function from linear
to branched polymers (lattice animals) has been obtained
exactly [33]. It is believed that the branched and dense
polymer phases are different.

Here, we extend our previous scaling analysis of knots
in dilute polymers [13] to the dense phase, and at the Θ-
point. The general conclusion is that the entropic mech-
anism for tightening of entanglements is considerably
weaker in the denser regimes. While the simple figure-
eight structure is still tight in these phases, the trefoil
becomes loose, with the trends more pronounced in the
dense phase. Note that at the Θ-point in 2D, the swelling
exponent is ν = 4/7, implying a fractal dimension 1/ν
smaller than d = 2, and an asymptotic density of f = 0.
In a recent numerical study, Orlandini, Stella, and Van-
derzande [34] (hereafter referred to as OSV) investigate
the tightness of the 2D projection of the trefoil knot, and
find delocalisation, in contrast to the strong localisation
obtained in the dilute case [13].

The main focus of this work is thus the localisation
of flat entangled polymers in the dense phase and at the
Θ-point by means of scaling arguments, in analogy to the
dilute case [13]. When possible, we compare these results
with our own numerical simulations, as well as those by
OSV. In Section 2 we first review the differentiation be-

tween tight (localised) and loose (delocalised) segments
in entangled polymers. In Section 3 we then consider the
2D figure-eight structure (F8) and compare our scaling re-
sults with Monte Carlo simulations. In Section 4 we derive
the scaling results for the 2D projection of the trefoil, and
compare them with the simulations by OSV. Section 5
contains our conclusions. In Appendix A we compile some
scaling results for general polymer networks. Finally, at
the end of Appendix A, we consider briefly a newly dis-
covered phase of 2D dense polymers where the strict non-
crossing condition is relaxed [28].

2 Tight and loose segments

Consider an entangled polymer chain in 2D of length L,
such as a simple flat, once-twisted ring with one cross-
ing (called “figure-eight” (F8), see position III in Figure 1
top row) or the 2D projection of the trefoil pressed flat
against a surface by an external force (Fig. 1) [11]. The
orientations of the crossings are irrelevant, and can thus
be considered as vertices with 4 outgoing legs. Thus, each
structure is mapped on a 2D polymer network with a num-
ber of vertices which are joined by N segments of variable

lengths {si} under the constraint
∑N

i=1 si = L. In the
following we shall use the convention s1 ≤ s2 ≤ . . . ≤ sN .

Since we are interested in the tightness of such a net-
work, we define the size of the entangled region as � =∑N−1

i=1 si so that the remaining (largest) segment is sN =
L− �. Clearly, for the F8, N = 2 and � = s1, while for the
trefoil N = 6 and � =

∑5
i=1 si. Note that the above defini-

tion does not necessarily imply that � is small; however, if
� 	 L, the structure assumes the form of a possibly mul-
tiply connected knot region of size � and a large simple
loop of size L − �. For a knot represented by the network
G, an important quantity is its number of configurations
ωG(�, L) for fixed �. In general, in the tight limit � 	 L,
the configuration number scales as a power law:

ωG(�, L) ∼ �−cG (� 	 L) , (1)

where the exponent cG depends on the topology of the
network G1.

For given ω(�, L), various quantities of interest can be
calculated. For example, the mean size of the knot region
is given by2

〈�〉 =
∫ L/2

a

d� � p(�, L) , (2)

with the (normalised) probability density function (PDF)

p(�, L) = ω(�, L)
/ ∫ L/2

a

d� ω(�, L) . (3)

1 In the remainder of this section, we drop the index G for
ease of notation.

2 The upper integration limit can be chosen as any finite frac-
tion of L in principle; the choice of L/2 imposes no restriction
on generality.
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Fig. 1. “Contractions” of the flat trefoil knot, arranged according to higher scaling orders. The protruding legs stand for the
remaining simply connected ring. Below the contractions, we list the associated scaling exponent c (see text). Both for dense
polymers and polymers at the Θ-point, the leading shape is the original (uncontracted) trefoil configuration on the very left.
For comparison, we also show the corresponding ordering for the dilute phase [13].

We have introduced a short-distance cutoff a, set by the
lattice constant, to control the non-integrable singularity
at � = 0 which occurs in equation (2) for c > 2, and in the
denominator of equation (3) for c > 1. Thus, depending
on the value of c, three cases can be distinguished:
i) c < 1: Both integrals are well-defined for a = 0, and

one immediately obtains 〈�〉 ∼ L due to dimensional
considerations. The knot region grows linearly with L
and is thus delocalised , i.e. spanning the whole poly-
mer.

ii) 1 < c < 2: To leading order in a, one finds 〈�〉 ∼
ac−1L2−c. The size of the knot region scales with L,
but with an exponent 2 − c < 1, and is thus weakly
localised , i.e., 〈�〉/L → 0 for L → ∞.

iii) c > 2: To leading order in a, one finds 〈�〉 ∼ a, i.e., the
size of the knot region is independent of L for L → ∞,
and is thus strongly localised .
In a more complicated network, such as for the trefoil

in Figure 1, several segments can be simultaneously tight.
We shall refer to the emerging structures as possible shapes
(or contractions) of the original network. Each shape cor-
responds again to a network G. The parameter c not only
determines the tightness of the knot region for given shape
G, but also controls the overall likelihood PG , of different
possible shapes. The latter is obtained (up to normalisa-
tion) by integrating ωG(�, L) over all possible values of �,
as in the denominator of equation (3). Depending on the
values of c, different cases can be distinguished:
i) c < 1: The integral is convergent for small � with a fi-

nite limit for a → 0, and scales as (a/L)c−1. If there is
a variety of shapes with c < 1, the one with the lowest
value cm is the most likely, PG for the others scaling

with a factor of (a/L)c−cm . This is expected, since net-
works with c < 1 are delocalised over the whole chain
of length L.

ii) c > 1: The integral is divergent for small �, and is
thus dominated by the lower cutoff. To make sure that
the knot region is large enough to consider different
vertices (crossings) as separated on a scale much larger
than a, one should use a lower cutoff A of intermediate
length a 	 A 	 L3. The relative probabilities for
different shapes with c > 1 now scale with a factor of
(a/A)c. Different shapes with c > 1 scale differently
with the lower cutoff A, but not differently with L.
This reflects the fact that for c > 1 the probability PG
is dominated by the small � behaviour of ωG(�, L).

In both cases PG scales with a factor of ac. This is
the scaling order of such a shape G, as the likelihood of
possible shapes with distinct values of c can be ordered
according to powers of ac with more dominant networks
for smaller values of c [13].

3 The 2D figure-eight: scaling analysis &
simulations

The most elementary entangled object in 2D is the F8,
which consists of two loops of variable lengths � and L− �

3 In a MC simulation, a larger A gives worse statistics since
configurations with � > A become less frequent. In our case,
we considered two vertices as separated if the segment between
them was larger than 5 monomers. For the original trefoil this
gives A ≈ 25 monomer lengths (5 monomers × 5 segments).
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Fig. 2. Symmetric (� = L/2 = 128) initial configuration of
a 2D dense F8 (left), and its equilibrium configuration (right)
with periodic boundary conditions. The slip-link is represented
by the three (tethered) black dots.

(position III in Fig. 1 top row). The crossing point can be
considered as a vertex with 4 outgoing legs, and the F8
corresponds to a network with N = 2 segments of lengths
s1 = � and s2 = L − � [11]. The number of configurations
ω8(�, L) for the F8 can be deduced from results for general
polymer networks, obtained by Duplantier and cowork-
ers [25,26,29,35], which are compiled in Appendix A. In
2D it has the scaling form

ω8(�, L) ∼ ω0(L) (L − �)γ8X
(

�

L − �

)
. (4)

As discussed in the previous section, the localisation of
F8 is controlled by the limit of ω8(�, L) for � → 0, i.e.,
the behaviour of the scaling function X (x) for x = �/(L−
�) → 0. The latter can be determined by the following
argument (see text below Eq. (59) in Ref. [26]): Clearly,
for � 	 L, the big loop of length L − � will behave like a
simple ring, so that ω8(�, L) should reduce to ω0(L). This
implies X (x) ∼ xγ8 as x → 0 and thus

ω8(�, L) ∼ ω0(L) �−c (� 	 L) . (5)

The value of the exponent c for the 2D dense F8 (see
App. A) is

c = −γ8 = 11/8 = 1.375 , (6)

implying that the smaller loop is weakly localised . This
means that the probability for the size of each loop is
peaked at � = 0 and, by symmetry, at � = L. An analogous
reasoning for the 2D F8 at the Θ-point gives

c = 11/7 = 1.571 , (7)

i.e., in this case the smaller loop is also weakly localised.
Figure 2 shows the symmetric initial and a typical

equilibrium configuration for periodic boundary condi-
tions obtained from Monte Carlo (MC) simulations, see
below for details. In Figure 2, the lines represent the bonds
(tethers) between the monomers (beads, not shown here).
The three black dots mark the locations of the tethered
beads forming the slip-link in 2D, by which we model the
crossing [13,21]. The initial symmetric configuration soon
gives way to a configuration with � 	 L on approaching
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Fig. 3. The breaking of the initial symmetry between the two
loops of the F8, as a function of MC steps at 55% area coverage.
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Fig. 4. The loop size probability distribution p(�) at ρ =
55% area coverage, for the F8 with 512 (top line) and 1024
monomers (solid line). The power law with the predicted ex-
ponent c = 1.375 in equation (6) is indicated by the dashed
line.

equilibrium. Figure 3 shows the development of this sym-
metry breaking as a function of the number of MC steps.
We note, however, that the fluctuations of the loop sizes
in the “stationary” regime appear to be larger in compari-
son to the dilute case studied in reference [21]. We checked
that for densities (area coverage) above 40% the scaling
behaviour becomes independent of the density. The above
simulation results correspond to a density of 55%, which
is roughly half of the maximal possible density of 90%
(closed-packed-area coverage). The size distribution data
is well fitted to a power law (for over 1.5 decades with 1024
monomers), and the corresponding exponent with 512 and
1024 monomers in Figure 4 is in good agreement with the
predicted value.
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For our MC analysis, we used a hard-core bead-and-
tether chain, in which self-crossings were prevented by
keeping a maximum bead-to-bead distance of 1.9 times
the bead diameter, and a maximum step length of 0.27
times the bead diameter (cf. also [11]). The slip-link was
represented by three tethered beads enforcing the sliding
pair contact such that the loops cannot fully retract, see
Figure 2. To create the dense F8 initial condition, a free
F8 is squeezed into a quadratic box with hard walls. This
is achieved by starting off from the free F8, surrounding it
by a box, and turning on a force directed towards one of
the edges. Then, the opposite edge is moved towards the
centre of the box, and so on. During these steps, the slip-
link is locked, i.e., the chain cannot slide through it, and
the two loops are of equal length during the entire prepa-
ration. Finally, when the envisaged density is reached, the
hard walls are replaced by periodic boundary conditions,
and the slip-link is unlocked. For all densities studied we
observe that one of the loops becomes much smaller than
the other one. We consider the chain as relaxed when the
structure has changed from symmetric (s1 = s2 = N/2)
to asymmetric (s1 ∼ 1, s2 ∼ N), then to symmetric and
back again to asymmetric. After this we start to sam-
ple the probability distribution for the loop lengths. The
probability distribution with chain length N = 1024 and
density ρ = 55% required about 3×109 Monte Carlo steps
(∼ 3 × 1012 attempted moves). We note that an explicit
simulation to obtain the PDF p(�) for more complicated
structures than the F8 was not possible within reasonable
computation time with the MC algorithm we used.

4 The 2D trefoil: scaling analysis &
simulations

We now turn to the 2D projection of the trefoil (denoted
“3”, cf. left part and position I in Fig. 1 top row). Each of
the three crossings is replaced with a vertex of order four,
resulting in a network with N = 6 segments of lengths
{si} and total length L =

∑6
i=1 si [11]. The size of the

knot region is � =
∑5

i=1 si and s6 = L − �. According to
Section 2, we need to know the behaviour of the configura-
tion number ω3(�, L) for � 	 L in order to decide how 〈�〉
scales with L. For fixed segment lengths {si} with � 	 L,
the configuration number of the network can be derived
by using equation (A.3) in Appendix A and an analogous
reasoning invoked to obtain equation (5), resulting in

ω′
3 ∼ ω0(L) �γ3 W

(s1

�
, . . . ,

s4

�

)
, � 	 L . (8)

The prime on ω′
3 indicates that the segment lengths {si}

are fixed. However, since in our case the individual seg-
ments of the knot region may exchange length with each
other and only the total length � of the knot region is
fixed, we integrate ω′

3 over all distributions of lengths {si}
under the constraint � =

∑5
i=1 si [13]. This yields the de-

sired number of configurations of the 2D trefoil with fixed
� 	 L as

ω3(�, L) ∼ ω0(L) �−c (9)

with c = −γ3−m, where γ3 = −33/8 from equation (A.2)
in Appendix A (L = 4, n4 = 3) and m = 4 is the number
of independent integrations over chain segments. Thus,
c = 1/8 < 1 which implies that the dense 2D trefoil is
delocalised.

The above analysis corresponds to the case for which
all segments {si} are large compared with the short-
distance cutoff a. Conversely, if some of the segments {si}
are of the order of a, the vertices they join can no longer
be resolved on macroscopic length scales, but constitute
a new, single vertex, possibly with more than four out-
going legs. The corresponding contractions of the original
2D trefoil thus represent different networks, each one with
its own topological exponent γ and localisation exponent
c = −γ − m (where m is the number of independent in-
tegrations, see above). These contractions correspond to
different shapes, which can be ordered according to their
scaling order in a, i.e., according to increasing powers of
c (cf. Sect. 2).

For dilute polymers, we have shown in this way that
the leading scaling order is the F8 with c = 43/16, and
that the original (uncontracted) trefoil shape is only found
at the third position [13]. For dense polymers, however,
the present scaling results show that both the original
trefoil shape (c = 1/8 < 1, see above) and position II
(c = 3/4 < 1) are in fact delocalised (top row in Fig. 1).
The F8 is only found at the third position and is weakly
localised (c = 11/8 > 1, cf. Sect. 3). Thus, in a MC simu-
lation of the dense 2D trefoil, we predict that one mainly
observes delocalised shapes corresponding to the original
trefoil, and less frequently the other shapes of the hierar-
chy (top row) in Figure 1.

These predictions are consistent with the numerical
simulations of Orlandini et al. [34] (OSV), who observe
that the mean value of the second largest segment of the
simulated 2D dense trefoil configurations grows linearly
with L, and conjecture the same behaviour also for the
other segments, corresponding to the delocalisation of the
trefoil obtained above. However, we note that the con-
figuration shown in Figure 1 of OSV corresponds in our
modelling to the shape at position II in Figure 1, where
we consider the two crossings to the right in Figure 1 of
OSV as one “molten” vertex.

The same reasoning can be applied to the 2D trefoil in
the Θ phase. In this case we find that the leading shape is
again the original (uncontracted) trefoil, with c = 5/7 < 1.
This implies that the 2D trefoil is delocalised also at the
Θ-point. All other shapes are at least weakly localised,
and subdominant to the leading scaling order represented
by the original trefoil. The resulting hierarchy of shapes
is shown in Figure 1 (middle row).

This finding is at variance with the simulation results
of OSV at the Θ-point, who observe a behaviour of the
simulated trefoil configurations similar to the F8, which is
weakly localised with c = 11/7 > 1, and is found only at
the third position in the hierarchy of Figure 1.
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5 Conclusions

We presented a scaling analysis for the 2D figure-eight
structure (F8) and the 2D projection of the trefoil knot
at equilibrium, both in the dense phase and at the Θ-
point [11]. Figure 1 shows the hierarchy of contractions
of the original trefoil, arranged according to scaling or-
der. The F8 structure represents the leading order of the
hierarchy in the dilute phase [13], but does not play a
special role in the other states. Thus we conclude that the
2D trefoil is delocalised both in the dense phase and at
the Θ-point, in contrast to its localisation in the dilute
case [13]. The delocalisation of the flat trefoil in the dense
phase has been observed in the simulations by Orlandini
et al. [34] (OSV). However, their observation of behaviour
corresponding to a weakly localised F8 at the Θ transition
contradicts our results.

If the chain’s topology is that of a F8, then one of the
loops is predicted to be tight in all cases, although the
localisation exponent depends on the polymer phase. We
explicitly verified the localisation exponent of c = 11/8
by a MC study of a F8 in the dense phase. (We employed
periodic boundary conditions for this simulations to avoid
any potential problems associated with surface effects.)

In 2D, the scaling analysis can be readily extended to
general prime knots. Indeed, the minimal 2D projection
of any prime knot can be mapped on a network G, for
which one can calculate the corresponding exponent c in
a similar way as before. Using the Euler relations 2N =∑

N≥1 NnN and L =
∑

N≥1
1
2 (N − 2)nN + 1, we find

cG = 2 +
∑
N≥4

nN

[
N

2
(dν − 1) + (|σN | − dν)

]
. (10)

Both for dense polymers and polymers at the Θ-point in
2D one has dν ≥ 1 and |σN | increases with N , so that the
term in the square brackets in the above expression in-
creases with N as well. For a fixed number V =

∑
N≥4 nN

of vertices this implies that cG is minimal if only vertices
with four outgoing legs are present. Using this and the
fact that for N = 4 the term in the square brackets is
negative4, we conclude that cG is minimal if the number
of such 4-vertices is maximal. This implies that the lead-
ing scaling order of the 2D projection of any prime knot
is the original (uncontracted) configuration, for which the
above vertices represent the crossings, and this configura-
tion will be delocalised (since the 2D trefoil configuration
is already delocalised).
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4 Conversely, for dilute polymers this bracket is positive. This
is the reason why the order of the first 3 contractions in each
row of Figure 1 (which have only vertices with four outgoing
legs) for dilute polymers is reverse compared to dense and Θ
polymers.

Fig. 5. Polymer network G with vertices (•) of different order
(n1 = 5, n3 = 4, n4 = 3, n5 = 1).

Appendix A. Scaling in general polymer
networks

In this appendix we review the scaling results for polymer
networks in the dense phase in 2D [25–27,29] and at the
Θ transition [35].

A general polymer network G, like the one depicted in
Figure 5, consists of a number of vertices which are joined
by N chain segments of total length L. First, consider the
dense phase in 2D. If all segments have equal length s and
L = N s, the configuration number ωG of such a network
scales as [25,26]5

ωG(s) ∼ ω0(L) sγG , (A.1)

where ω0(L) is the configuration number of a simple ring of
length L. For dense polymers, and in contrast to the dilute
and Θ phases, ω0(L) (and thus ωG) depends on the bound-
ary conditions and even on the shape of the system [26,
27]. For example, for periodic boundary conditions (which
we focus on in this study) corresponding to a 2D torus,
one finds ω0(L) ∼ µL LΨ−1 with a connectivity constant
µ and Ψ = 1 [26]. However, the network exponent

γG = 1− L+
∑
N≥1

nNσN (A.2)

is universal and depends only on the topology of the net-
work by the number L of independent loops, and by the
number nN of vertices of order N with vertex exponents
σN = (4 − N2)/32 [25,26]. For a linear chain, the cor-
responding exponent γlin = 19/16 has been verified by
numerical simulations [26,36]. For a network made up of
different segment lengths {si} of total length L =

∑N
i=1 si,

equation (A.1) generalises to (cf. Sect. 4 in Ref. [26])

ωG(s1, . . . , sN ) ∼ ω0(L) s
γG
N YG

(
s1

sN
, . . . ,

sN−1

sN

)
,

(A.3)
which involves the scaling function YG .

5 Note that due to the factor ω0(L) the exponent of s is γG ,
and not γG − 1 like in the expressions used in the dilute and
Θ phases, for which ω0(L) ∼ L−dν . However, for 2D dense
polymers one has dν = 1, so that both definitions of γG are
equivalent, cf. Section 3 in reference [26].
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For polymers in an infinite volume and endowed with
an attractive interaction between neighbouring monomers,
a different scaling behaviour emerges if the system is not
below but right at the Θ-point [35]. In this case the num-
ber of configurations of a general network G is given by

ωG(s1, . . . , sN ) ∼ µL s
γG−1
N YG

(
s1

sN
, . . . ,

sN−1

sN

)
, (A.4)

with the network exponent

γG = 1− dνL+
∑
N≥1

nNσN . (A.5)

Overlined symbols refer to polymers at the Θ-point. In
d = 2, ν = 4/7 and σN = (2− N)(2N + 1)/42 [35].

Finally, we note that equation (A.2) with σN = (4 −
N2)/32 holds for a 2D dense polymer network which
never intersects (apart from the vertices). However, it has
been shown recently that a different, so-called “Goldstone
phase” emerges if the strict non-crossing condition is re-
laxed; i.e., if crossings are allowed albeit, disfavoured [28].
It is argued in reference [28] that in this case the scaling
dimensions Xk of the so-called k-leg operators all vanish.
This implies σN = 0 in equation (A.2) (see Eq. (13) in [25]
and the Euler relations near Eq. (10) above), i.e., the
asymptotic behavior is similar to a network of chains with-
out self-avoiding constraints (ideal polymers). The locali-
sation exponent c is then simply given by c = −γG −m =
L − m − 1, resulting in c values of −1, 0, 1, 0, 0, 1, 1
for the 7 contractions shown in Figure 1, top row from
left to right. As argued before, all contractions with c < 1
are delocalised; in particular the original (uncontracted)
trefoil shape, is the dominant form with the smallest c.
Our finding for the 2D dense phase in Section 4 is thus
also applicable in the Goldstone phase. However, in a MC
simulation of the Goldstone phase it will be hard to iden-
tify the knot, as additional crossings are allowed and will
occur.
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