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Bifurcation, bimodality, and finite variance in confined Lévy flights
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We investigate the statistical behavior of Le´vy flights confined in a symmetric, quartic potential well
U(x)}x4. At stationarity, the probability density function features a distinct bimodal shape and decays with
power-law tails which are steep enough to give rise to a finite variance, in contrast to free Le´vy flights. From
a d-initial condition, abifurcation of the unimodal state is observed attc.0. The nonlinear oscillator with
potentialU(x)5ax2/21bx4/4, a,b.0, shows a crossover from unimodal to bimodal behavior at stationarity,
depending on the ratioa/b.
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Lévy flights ~LFs! in a homogeneous environment cons
tute a Markovian random process whose probability den
function ~PDF! is a Lévy stable law,f (x,t) of index 0,a

,2, defined in terms of the characteristic functionf̂ (k,t)
5*2`

` f (x,t)eikxdx5e2Dukuat, where D of dimension
cma/sec is the generalized diffusion constant@1–5#. The
most prominent property of LFs is the clustered~fractal! na-
ture of their points of visitation, intimately related to th
power-law asymptotic behaviorf (x,t);Dt/uxu11a and the
ensuing divergence of the variance^x2(t)&. LFs fall into the
basin of attraction of the generalized central limit theor
@1–4#, and have been recognized as the signature of a va
of systems ranging from turbulent plasma dynamics to sp
tral diffusion in single molecule spectroscopy, from bacter
motion to the albatross flight, see, e.g., Refs.@6,7#, and ref-
erences therein, or to impulsive noise in signal process
@8#.

An important point in understanding a random proces
its behavior in external fields. Although the stage has b
set for the study of such properties of LFs, only very limit
information is available. Thus, LFs have been studied, b
analytically and numerically in the framework of Langev
and Fokker-Planck equations@5,9–16#. For the case of an
harmonic potentialU(x)5ax2/2, one finds that the station
ary PDF is given by a~unimodal! Lévy stable law; in par-
ticular, ^x2(t)&→` @12,15#. A question arises on the beha
ior in steeper potentials. In the present communication,
investigate the dynamic evolution of the stationary PDF
der the nonlinear oscillator potential

U~x!5
a

2
x21

b

4
x4, a,b.0, ~1!

and show that this process exhibits, depending on the rat
a andb, hitherto unknown bifurcations between the unim
dal initial condition and a final bimodal state. The potent
~1! combines the famed harmonic form of the Ornste
Uhlenbeck potential exerting a restoring linear force on
test particle, with the quartic term. After a brief introductio
to fractional Fokker-Planck equations, we start off with t
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discussion of LFs in the quartic potentialU(x)5bx4/4, the
simplest form for which the unusual properties of the PD
can be recovered, before moving on to the general case~1! in
which the relative strength of harmonic and quartic term
a/b, can be tuned.

For stochastic processes whose underlying statistics s
fies the conditions of the central limit theorem, the co
tinuum description in the external force fieldF(x)5
2dU(x)/dx is given through the Fokker-Planck equatio
~FPE! @17#, whose stationary solution corresponds to t
Boltzmann distribution. In contrast, the spatial correlatio
underlying LFs can be described by a Langevin equation
an overdamped test particle driven by white Le´vy stable
noise@9–12,15#. On the level of the corresponding determi
istic equation, the PDFf (x,t) is determined by the fractiona
Fokker-Planck equation~FFPE! @5,10–13,15,16#

] f

]t
5S 2

]

]x

F~x!

mg
1D

]a

]uxua
D f ~x,t !, ~2!

where g is the friction constant,m is the mass of the tes
particle,D is a measure for the intensity of the Le´vy noise,
and the Riesz fractional derivative off (x,t) is defined
through its Fourier transform asF„]a f (x,t)/]uxua…[
2ukua f̂ (k,t) @18#. ~Note that this is just a formal way o
writing the fractional spatial derivative; it reduces to th
standard second derivative]2/]x2 in the limit a52 but does
not correspond to]/]x for a51.) Equation~2! is linear inf
and reduces to the standard FPE in the limita52 @19#.

Introducing dimensionless variablesx→x/x0 , t→t/t0,
with x05(mgD/b)1/(21a) and t05x0

a/D, and a→at0 /mg,
Eq. ~2! is transformed into the equation for the characteris
function f̂ (k,t),

]

]t
f̂ 1ukua f̂ 5Uk f̂ , Uk5k

]3

]k3
2ak

]

]k
. ~3!

The initial condition f̂ (k,t50)51 corresponds to ad con-
dition in x space. The solution of Eq.~3! is a real even
©2003 The American Physical Society02-1
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function obeying the following boundary conditions:~i!
f̂ (0,t)51, ~ii ! ] f̂ (0)/]k50, and~iii ! f̂ (k→6`,t)50.

Consider first the stationary quartic Cauchy oscillatora

50, a51, and] f̂ /]t50, for which Eq.~3! can be readily
integrated. By inverse Fourier transform, we obtain the s
tionary PDF

f ~x!5p21~12x21x4!21. ~4!

This PDF combines the distinct steep asymptotic power-
behaviorf (x)}x24, and therefore finite variance, with a b
modal structure: there is a local minimum atx50 and two
global maxima atxm561/A2. Let us now show that the
steep power-law asymptotics and the bimodality are inhe
for the stationary PDF for all Le´vy noise exponents 1<a
,2 of the quartic oscillator (a50). Due to symmetry, we
consider the positive semiaxis,k>0. With the transforma-
tion h(j)[k(a21)/3f̂ (k), wherej5k(a12)/3, the stationary
Eq. ~3! can be converted into an equation forh(j), whose
asymptotics for largej can be found by known method
@20,21#. The leading term of the asymptotics is obtain
from the equationd3h/dj35lh, wherel527/(21a)3. We
obtain for the characteristic function

f̂ ~k!'Ck2(a21)/3expS 2
3

2~21a!
k(a12)/3D

3cosS 3A3

2~21a!
k(a12)/32u D ~5!

for k→`. C and u are unknown constants, since we ma
use of the boundary condition at infinity, only. For smallk,
the stationary solutionf̂ (k) of Eq. ~3! for a50 can be rep-
resented in the form of a series as

f̂ ~k!5S12Ak2S2 , ~6!

where S15( j 50
` aj uku j (a12) and S25( j 50

` bj uku j (a12), and
the coefficientsaj and bj are determined by the recurre
relations aj j (a12)( j a12 j 21)( j a12 j 22)5aj 21, and
bj j (a12) ( j a12 j 11) ( j a12 j 12)5 bj 21 ( j >1, a05b0
51) @22#. The asymptotics of the PDF atx→6` are deter-
mined by the first nonanalytical term in Eq.~6!, i.e., by
a1ukua12. By inverse Fourier transformation, using the Ab
method of summation for the improper integral@23#, we ob-
tain

f ~x!'Cauxu2a23, uxu→`, ~7!

where Ca5sin(pa/2)G(a)/p @24#. This is consistent with
Eq. ~4! for a51. Although the Le´vy noise has a diverging
variance, the stationary PDF has a steep power-law tail,
hence the variancêx2& is finite. Thus, the effect of the quar
tic potential is toconfinethe flights and lead to a finite vari
ance PDF. The nature of confined Le´vy flights is, of course,
different from truncated Le´vy flights @25# which have finite
moments.

To construct the characteristic function numerically, w
use solution~6!, which is continued with the asymptotics~5!
01010
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for large k. The PDF is then obtained by inverse Fouri
transformation. In Fig. 1, the profiles of the stationary PD
are shown for the different Le´vy indices in the range 1<a
,2 and fora52, the bimodality being most pronounced fo
a51. With the Lévy index increasing, the bimodal profil
smoothes out, and, finally, it turns into the unimodal one
a52, that is, for the Boltzmann distribution. Besides an
lytical estimates, we use two methods of numerical simu
tion: one, based on numerical solution of the Langevin eq
tion, with the subsequent construction of the PDF, a
another one based on numerical solution of Eq.~2!, where
the fractional derivative is expressed through Gru¨nwald-
Letnikov operators@26#. Both methods produce comparab
results. In Fig. 2, we show a comparison of analytical a
numerical results for the stationary PDF of the quartic os
lator, demonstrating a good agreement. Qualitatively, the
currence of the bimodal structure can be understood a
trade-off between the relatively high probability for larg
amplitude of the Le´vy noise, and the sharp increase in t
slope}uxu4 of the quartic potential relative to the harmon
case.

Since the harmonic Le´vy oscillator has one hump at th
origin, and its quartic counterpart exhibits two humps, o
expects that the unimodal-bimodal crossover occurs w
the ratioa/b is varied. Letac be the critical value, in the
rescaled coordinates of Eq.~3!, which we determine from the
condition d2f (0)/dx250 at a5ac . Equivalently, J(ac)
50, whereJ(a)5*0

`dkk2 f̂ (k). If J.0, the stationary PDF

FIG. 1. Profiles of the stationary PDFs of the quartic oscilla
for different Lévy indices, froma51 ~top! to a52 ~bottom!.
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is unimodal; if J,0, it is bimodal. We consider the trans
tion for the anharmonic Cauchy oscillator,a51. For this
particular case, the stationary solution of Eq.~3! is
f̂ (k)5(zez* k2z* ezk)(z2z* )21, z being the complex roo
of the characteristic equationz32az2150, i.e.,
z52(u11u2)/21 iA3(u12u2)/2, where u65(1
6A124a3/27)/21/3. Inserting these expressions intoJ(a),
we get sgn (J)5sgn(z21z* 2)52sgn(u1

2 1u2
2 24a/3). De-

fining z541/3ac/3, we obtain 4z5(11A12z3)2/31(1
2A12z3)2/3, from which z50.420, and thereforeac
50.794, follow. Fora.ac , the quadratic term in the poten

FIG. 2. The dots show the stationary PDF for the quartic os
lator obtained from numerical evaluation of the underlying Lan
vin equation fora51.5. Left: the solid line indicates the PDF ob
tained from Eqs.~5! and ~6! after inverse Fourier transformation
Right: the solid line indicates the asymptoticsCauxu2a23 on a log-
log scale.

FIG. 3. Stationary PDFs of the anharmonic Cauchy oscilla
for different values of the dimensionless parametera in the poten-
tial energy function (ac50.794).
01010
tial energy function prevails, and the stationary PDF has
maximum at the origin. In contrast, fora,ac , the quartic
term dominates and dictates the shape of the PDF. As a
sult, the bimodal stationary PDF appears with the local m
mum at the origin. Returning to the dimensional variabl
we can rewrite the condition of transition in terms of a cri
cal value bc of the quartic term amplitude: bc
5a3/0.7943(mgD)2. This relation implies that increasin
noise requires smaller anharmonicity to cause the bimo
stationary PDF. Thus, the bimodality results indeed from
combination of the Le´vy character of the noise and the a
harmonicity of the potential well. In Fig. 3, the profiles of th
stationary PDFs are shown for the anharmonic Cauchy os
lator for different values of the dimensionless coefficienta,
the bimodality being most pronounced fora50.

Let us now turn to the nonstationary properties. The f
mal solution of Eq.~3! can be obtained after rewriting it in
the equivalent integral form,

f̂ ~k,t !5 p̂a~k,t !1E
0

t

dt p̂a~k,t2t!Uk f̂ ~k,t!, ~8!

where p̂a(k,t)[exp(2ukuat) is the characteristic function o
the Lévy stable process. Equation~8! can be solved by itera
tions,

l-
-

r

FIG. 4. ~a!–~d!: The thick lines show the time evolution of th
PDF obtained from numerical solution of the FFPE~2! using the
Grünwald-Letnikov representation of the fractional Riesz deriv
tive. The thin lines indicate the Boltzmann distribution. Dimensio
less times:ta50.06, tb50.39, tc50.83 ~at the bifurcation time!,
and td51.33. ~e! Locationsxm of the two maxima of the PDF vs
time. ~f! Transition timetc versus order of the Le´vy exponent. The
solid line represents the theoretical curve, which is in qualitat
agreement to the results of the numerical solution of the FF
indicated by the dots.
2-3
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f̂ ~k,t !5 (
n50

`

p̂a~* Ukp̂a!n, ~9!

where * implies convolution. The bimodality of the statio
ary PDF stems from a unimodal-bimodal bifurcation in tim
if the initial condition is given by thed function at the origin.
In Figs. 4~a!–4~d!, the time evolution of the propagator
obtained by numerical solution of Eq.~2! for the quartic
oscillator, a51.2. The initial state disperses and, attc
50.833, the transition occurs. Figure 4~e! shows the location
uxmu of the two maxima of the PDF. After the transition,
valley is formed between the maxima, and the PDF
proaches the stationary state. The bifurcation timetc can be
determined from the condition]2f (0,t5tc)/]x250, which
implies the appearance of the inflection point during tim
evolution. IntroducingJ(t)5*0

`dkk2 f̂ (k,t), this is equiva-
lent to the conditionJ(tc)50, from which one can get suc
cessive approximations totc by inserting iterative approxi-
-

,

a
J.

gn

01010
,

-

mations f̂ 1(k,t), f̂ 2(k,t), . . . from Eq.~9!. In Fig. 4~f!, the
solid line demonstrates the second approximation totc vs a
for the quartic oscillator, using Maple6.

In summary, we have investigated some interesting ana
priori unexpected statistical properties of systems driven
Lévy noise. In particular, we have shown that Le´vy noise can
be confined by a quartic external potential and that the
tionary distribution is characterized by a bimodality whic
occurs at a critical time. We suggest that external potent
of the formuxuc, c.2, confine Le´vy noise, leading to bimo-
dality and to a finite variance of the stationary PDF.
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@1# P. Lévy, Théorie de l’addition des variables ale´atoires
~Gauthier-Villars, Paris, 1954!.

@2# G. Samorodnitsky and M.S. Taqqu,Stable Non-Gaussian Ran
dom Processes~Chapman and Hall, New York, 1994!.

@3# B.D. Hughes,Random Walks and Random Environments, Ran-
dom Walks Vol. 1~Oxford University Press, Oxford, London
1995!.

@4# J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@5# R. Metzler and J. Klafter, Phys. Rep.339, 1 ~2000!.
@6# J. Klafter, M.F. Shlesinger, and G. Zumofen, Phys. Tod

49„2…, 33 ~1996!; M.F. Shlesinger, G.M. Zaslavsky, and
Klafter, Nature~London! 363, 31 ~1993!.

@7# Anomalous Diffusion, from Basics to Applications, edited by
R. Kutner, A. Pe¸kalski, and K. Sznajd-Weron~Springer-Verlag,
Berlin, 1999!.

@8# C.L. Nikias and M. Shao,Signal Processing witha-Stable
Distributions and Applications~Wiley, New York, 1995!; J.
Friedmann, H. Messer, and J.-F. Cardoso, IEEE Trans. Si
Process.48, 935 ~2000!.

@9# B.J. West and V. Seshadri, Physica A113, 203 ~1982!.
@10# F.E. Peseckis, Phys. Rev. A36, 892 ~1987!.
@11# H.C. Fogedby, Phys. Rev. Lett.73, 2517~1994!.
@12# S. Jespersen, R. Metzler, and H.C. Fogedby, Phys. Rev. E59,

2736 ~1999!.
@13# R. Metzler, E. Barkai, and J. Klafter, Europhys. Lett.46, 431

~1999!; R. Metzler, Eur. Phys. J. B19, 249 ~2001!; Phys. Rev.
E 62, 6233~2000!.

@14# D. Kusnezov, A. Bulgac, and G.D. Dang, Phys. Rev. Lett.82,
1136 ~1999!.

@15# A.V. Chechkin and V.Yu. Gonchar, J. Eksp. Theor. Phys.91,
y

al

635 ~2000!; V.V. Yanovsky, A.V. Chechkin, D. Schertzer, an
A.V. Tur, Physica A282, 13 ~2000!.

@16# E. Lutz, Phys. Rev. Lett.86, 2208~2001!.
@17# H. Risken,The Fokker-Planck Equation~Springer-Verlag, Ber-

lin, 1996!.
@18# S.G. Samko, A.A. Kilbas, and O.I. Marichev,Fractional Inte-

grals and Derivatives—Theory and Applications~Gordon and
Breach, New York, 1993!.

@19# Note that a fractional generalization of the FPE for Le´vy type
processes different from Eq.~2! was proposed in I. Sokolov, J
Klafter, and A. Blumen, Phys. Rev. E64, 021107 ~2001!,
where the Boltzmann stationarity is required as a condition

@20# E. Kamke,Differentialgleichungen, Lo¨sungsmethoden und Lo¨-
sungen~Akademische Verlagsgesellschaft, Leipzig, 1959!.

@21# V. I. Smirnov, A Course of Higher Mathematics~Pergamon
Press, Oxford, 1964!, Vol. 4.

@22# S1 andk2S2 are, in fact, two particular solutions, obeying th

conditions f̂ (0)51 andd f̂(0)/dk50, andA52d2 f̂ (0)/dk2

is just the variance:A5^x2&, which is determined numerically
from Eq. ~6! by using the boundary condition at infinity:A
5 lim

k→`
S1 /(k2S2),`.

@23# G.H. Hardy, Divergent Series~Clarendon Press, Oxford
1949!.

@24# Note thatCa is the same as in the asymptotics of the Le´vy
stable PDF@1#; in this sense, it is ‘‘universal.’’

@25# R.N. Mantegna and H.E. Stanley, Phys. Rev. Lett.73, 2946
~1994!.

@26# R. Gorenflo and F. Mainardi, inFractals and Fractional Cal-
culus in Continuum Mechanics, edited by A. Carpinteri and F
Mainardi ~Springer-Verlag, Wien, 1997!, p. 223.
2-4


