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Abstract

The dynamics within nanoscale systems, in biological cells, or in macroscopic ecosystems often involves low

populations of molecules or members, provoking the need for a discrete description instead of a continuum theory.

We consider a classical birth–immigration–death process in such a few number system and show in how far fluctu-

ations become prominent in the system’s dynamics. The exact analytical results are investigated and new functions for

the characterisation of the population dynamics established. We investigate the corresponding continuum approxi-

mation of the process and derive a Fokker–Planck equation for the fluctuations.

� 2002 Elsevier Science B.V. All rights reserved.

PACS: 02.50.)r; 05.40.)a; 87.10.þe; 87.16.)b

1. Introduction

Recently, interest in the modifications of mac-

roscopic chemical kinetic laws required by the

discreteness of molecular entities has been revivi-
fied by two technological developments. One of

these is the dramatic improvement of analytical

techniques leading to methods which now rou-

tinely can experimentally access the dynamics of

even single molecules. This development opens up

new vistas in unravelling the dynamics of complex

molecular systems where new phenomena such as

intermittency can be observed. Concomitantly, the

drive forward building miniaturised systems makes
more urgent understanding how various machines

function in the face of inevitable molecular fluc-

tuations. This problem arises both in designing the

artificial systems envisioned by nanotechnologists

and in describing the existing nanotechnology

embodied in the biological cell.

Single molecule kinetics enters into the de-

scription of ion channels regulating electrical
information transfer between cells and the de-

scription of biomolecular motors which power
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not only material transport within cells but also

much of the machinery for transcribing and

translating genetic information. Molecular num-

ber fluctuations also will affect the regulation of

genes. Not only is an individual gene a single

molecule itself but furthermore its activity is usu-
ally regulated by a nanoscale chemical kinetic

switch which involves the binding of other mole-

cules. These repressor or promoter molecules are

often present in only low concentrations and

therefore are sometimes few in total number. The

macroscopic description of several individual ge-

netic switches has been elegantly worked out. The

effects of number fluctuations on such switches has
also begun to be discussed. For some well studied

cases the detailed macroscopic mechanism of ge-

netic switches turns out to be quite complex so it is

hard to analyse fluctuation effects without simu-

lation. However, crudely speaking the kinetic

switches can be described by a threshold model:

when a crucial molecular component reaches a

certain level the system flips, from one collective
state to an other. With this in mind we analyse

here, in some detail, a simple model of a kinetic

switch involving a finite number of molecular en-

tities. Although we have in mind the application of

the threshold model to cell biological and nano-

technological systems, the model may also be of

interest in areas ranging from ecology and mac-

roscopic population demographics to quantum
optics.

Population processes are traditionally described

through a rate equation of the form [1]

d/ðtÞ
dt

¼ ki þ ðkb � kdÞ/ðtÞ ð1Þ

which describes the temporal evolution of the
‘‘concentration’’ /ðtÞ, a macroscopic quantity. In

Eq. (1), the parameters ki represent the rate

constants of dimension ½ki� ¼ sec�1 for immigra-

tion, birth and death where the latter two are

assumed to be proportional to /ðtÞ. For a

chemical process Ø�X, where Ø acts as a bath

for molecules of the species X, /ðtÞ is the con-

centration of the substance X in the corre-
sponding reaction volume (e.g., the beaker), ki is
the synthesis rate of X and kd the decay rate,

and kb corresponds to an autocatalytic reaction.

For a nanophysical system, Eq. (1) could de-

scribe the number of electrons or other charge

carriers in a certain volume; and for a biological

population, it would just literally describe the

biological processes of immigration, birth, and
death.

It is obvious that Eq. (1) contains only very

limited information on the system under consid-

eration. Especially, it does not permit the study of

concentration fluctuations. To do so, one needs a

more fundamental equation, usually this is the

master equation [2]

oP ðn; tÞ
ot

¼ ðE�1 � 1ÞGðnÞPðn; tÞ

þ ðE� 1ÞRðnÞP ðn; tÞ; ð2aÞ

where E�P ðn; tÞ 	 P ðn� 1; tÞ. G and R refer to the

Generation and Removal of particles the number

of which is measured by n [3]. Thus, one can re-

write Eq. (2a) in the alternative form

oP ðn; tÞ
ot

¼ Gðn� 1ÞP ðn� 1; tÞ þ Rðnþ 1ÞP ðnþ 1; tÞ

� ðGðnÞ þ RðnÞÞP ðn; tÞ: ð2bÞ

The master equation, mathematically, involves a

differential in the continuous time variable, and it
is discrete in the number n. It is therefore some-

times called a difference-differential equation. For

the specific model described through Eq. (1), we

have

GðnÞ ¼ ki þ kbn ð2cÞ
and

RðnÞ ¼ kdn: ð2dÞ

Physically, the master equation (2a)–(2d) could
be referred to as a mesoscopic description of the

system in so far as it contains the probability

density function P ðn; tÞ to find n particles at a given

time t, i.e., a quantity which is obtained through

some average over the number field nðx; tÞ, but it
still gives the image of the microscopic process of

creation and annihilation. In an abstract sense, the

set of equations (2a)–(2d) define a random walk in
the n-space.

As it involves the probability density function

P ðn; tÞ, the master equation (2a), or (2b), contains
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considerably more information than the rate

equation (1). In what follows, we discuss the rele-

vance of this additional information to systems in

which the mean number of particles is small. We

discuss the analytical properties of the closed form

solution and then embark for the definition of
certain characterising system quantities by help of

which also such systems can be investigated whose

closed form solution, or even whose governing

processes, are not known. We will argue that these

newly defined quantities may also serve to deter-

mine probabilities that possibly fatal turnovers

within the system occur. Special emphasis will be

given to genetic switches and the detailed dynam-
ical patterns involved, showing that as simple a

process as the birth-immigration-death (BIDBID) dy-

namics is able to grasp some effects involved in the

in vivo system.

Before we do so and consider the BIDBID process, it

should, however, be noted that, in general, it has

to be guaranteed that n is a non-negative integer as

it counts the number of individuals of the species
under consideration. This can either be guaranteed

through appropriate boundary conditions, or

through the proportionality of the removal rate

RðnÞ to powers of n, i.e., RðnÞ ¼
P1

i¼1 rin
i: if the

population is zero, the removal ceases. Usually,

removal is considered to be proportional to n. In

both versions of the master equation, (2a) and

(2b), the change of the probability density P ðn; tÞ
in time involves the removal of the ‘‘state’’ n and

its replacement by states nþ 1 and n� 1, with

certain, assigned weights. As initial condition, we

choose the sharp initial value limt!0þ P ðn; tÞ ¼ dn;m.

Note that conservation of the normalisation im-

plies that the sum over all n of the right-hand side

of Eq. (2a) and (2b) vanishes. It should further be

mentioned that a master equation of the type (2a),
or (2b), does not necessarily fulfil the condition of

detailed balance.

2. Solution of the BIDBID process

Consider the BIDBID process, specified through

the rates ki; kb and kd. In this process, the coef-
ficients are at most linear in n, so that the

moments of the process can be extracted from

the corresponding master equation, (2a)–(2d).

The obtaining differential equation for the mean

number and the second moment, e.g., are given

by

dhnðtÞi
dt

¼ DhnðtÞi þ ki ð3aÞ

dhn2ðtÞi
dt

¼ 2Dhn2ðtÞi þ rhnðtÞi þ ki ð3bÞ

where D 	 kb � kd and r 	 kb þ kd þ 2ki. Note that

Eq. (3a) for the mean number is equivalent to the

macroscopic rate Eq. (1). The solutions for hnðtÞi
and the variance varðtÞ 	 hn2ðtÞi � hnðtÞi2 for the

initial number m of molecules read

hnðtÞi ¼ meDt þ kiðeDt � 1Þ
D

ð4aÞ

and

varfnðtÞg ¼ mðkb þ kdÞ
D

ðeDt � 1ÞeDt

þ ki
2D2

ðDðe2Dt � 1Þ

þ ðkb þ kdÞðe2Dt � 2eDt þ 1ÞÞ: ð4bÞ

Obviously, the mean number is unbounded if

D > 0; hnðtÞi ! ki=jDj for t ! 1 if D < 0, and

hnðtÞi � kit if D ¼ 0. Similarly, the variance is un-

bounded for D > 0 (i.e., the fluctuations become

extremely large), varfnðtÞg ! kikd=D
2 for t ! 1 if

D < 0, and varfnðtÞg � mðkb þ kdÞt þ kit þ ki ðkb þ
kdÞt2=2 if D ¼ 0. Note that due to their mathe-

matical structure, both expressions (4a) and (4b)
are always positive.

It should also be noted that for long times,

Dt � 1, the quotient of standard deviation

stdðtÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffi
varðtÞ

p
and mean number becomes time

independent: (i) for D > 0; stdðtÞ=hnðtÞi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
D ðkb þ kdÞ þ kikb=2

p
=ðmþ ki=DÞ. Especially, for

m ¼ 0, one obtains the relation stdðtÞ=hnðtÞi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kb=ðDkiÞ

p
, and for ki ¼ 0, stdðtÞ=hnðtÞi �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkb þ kdÞ=ðmDÞ
p

is found. As expected, for
growing m, the fluctuations die out. (ii)

Conversely, for D < 0, fluctuations can only per-

tain if immigration takes place, ki > 0. Then,

varðtÞ=hnðtÞi � kd=ðkd � kbÞ, and stdðtÞ=hnðtÞi �ffiffiffiffiffiffiffiffiffiffi
kd=ki

p
.
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The probability density P ðn; tjm; 0Þ defined

through Eq. (2b) for the initial condition

limt!0þ P ðn; tÞ ¼ dm;n is given in terms of the hy-

pergeometric function 2F1 [3–5]

Pðn; tjm; 0Þ ¼ kb
kd

� �n D
kbeDt � kd

� �ki=kb

� 1� eDt

1� kbeDt=kd

� �mþn
Cðki=kb þ nþ mÞ
n!Cðki=kb þ mÞ

� 2F1

 
� m;� n; 1� ki

kb
� m� n;

1� kdeDt=kbð Þ 1� kbeDt=kdð Þ
ð1� eDtÞ2

!
ð5Þ

for kb ? kd. The corresponding propagator (m ¼ 0)

takes on the simpler form

P ðn; tj0; 0Þ ¼ kb
kd

� �n D
kbeDt � kd

� �ki=kb

� Cðnþ ki=kbÞ
n!Cðki=kbÞ

1� eDt

1� kbeDt=kd

� �n

:

ð6Þ

Stationary solutions exist if kd > kb, irrespectively
of the magnitude of the rate of immigration ki, as
the removal is proportional to the absolute num-

ber of molecules present. In this case, the station-

ary form of the probability density P ðn; tÞ from Eq.

(5) is given by

PstðnjmÞ ¼
kb
kd

� �n

ð1� kb=kdÞki=kb

� Cðki=kb þ nþ mÞ
n!Cðki=kb þ mÞ

� Cð1� ki=kb � m� nÞCð1� ki=kbÞ
Cð1� ki=kb � mÞCð1� ki=kb � nÞ ;

ð7Þ
kb being incommensurable with ki. Note that the
stationary solution still depends on the initial

condition m. For m ¼ 0, this expression reduces to

Pstðnj0Þ ¼
kb
kd

� �n

ð1� kb=kdÞki=kb
Cðki=kb þ nÞ
n!Cðki=kbÞ

:

ð8Þ

In Fig. 1, the probability density P ðn; tjm; 0Þ is
plotted in dependence of n for successive times.

This illustration makes it clear that fluctuations in

the particle number cannot be neglected a priori.

In contrast, for the parameters assumed for the

plots, the probability density function is relatively

broad, indicating the relevance of the number

fluctuations. From the expressions above (and

below) which involve the hypergeometric and C-
functions, it is not always directly obvious how the

associated functions behave. However, their closed

form expression allows for a straightforward nu-

merical analysis with symbolic mathematical pro-

grams. Moreover, limiting formulae exist, allowing

for simplifications in certain asymptotic limits.

Fig. 1. Probability density P ðn; tjm; 0Þ for the BIDBID process as a function of the number n. The chosen parameters are: Left: fm; ki; kb;
kdg ¼ f0; 1; 0:5; 0:6g, at the times t ¼ 0:5 (full line), 2 (dashed) and 10 (dashed-dotted). Right: fm; ki; kb; kdg ¼ f6; 1; 0:5; 0:6g, at the
times t ¼ 1 (full line), 5 (dashed) and 20 (dashed-dotted). Note the broadness of the distribution for higher times, indicating the

relevance of fluctuations.
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Before dealing with the quantification of this

phenomenon, however, we first examine the bor-

der case of vanishing birth rate, kb 	 0. In this

case, the probability density is given through

P ðn; tjm; 0Þ ¼ ki
kd

� �n

exp

�
� kið1� e�kdtÞ

kd

�

� 1
�

� e�kdt
	 ki

kd
ekdt 1
��

� e�kdt
	2��m

� 1F1

�
� m; 1þ n� m;� ki

kd
ekdt

� 1
�

� e�kdt
	2� ð9aÞ

if kd > 0, and where 1F1 denotes the confluent hy-

pergeometric function. The further special case

kb ¼ kd ¼ 0 is called a Poisson process [2,6] and is
solved by Pðn; tjm; 0Þ ¼ e�kitðkitÞn�m

=ðn� mÞ!, and
P ðn; tjm; 0Þ ¼ 0 for n < m.

Another particular case which has to be con-

sidered separately, is the balanced system kb ¼ kd
in which the probability density takes on the form

P ðn; tjm; 0Þ

¼ ðkbtÞnþm

ð1þ kbtÞnþmþki=kb

Cðmþ nþ ki=kbÞ
Cðmþ ki=kbÞn!

� 2F1

�
� m;� n; 1� n� m� ki

kb
;� 1� k2bt

2

k2bt2

�
:

ð9bÞ

Closer inspection shows that in this case detailed

balance is fulfilled. For kb ¼ kd ¼ 0, we again ob-

tain the Poisson process, and for a vanishing im-

migration, ki ¼ 0, the probability density reduces to

P ðn; tjm; 0Þ

¼ 1



þ ðkbtÞ�1
��ðmþnÞ mþ n� 1

n

� �

� 2F1

�
� m;� n; 1� n� m;� 1� k2bt

2

k2bt2

�
:

ð9cÞ

3. Characterisation of the BIDBID process

The probability density P ðn; tjm; 0Þ, the solution
of the master equation (2a)–(2d) for a given initial

condition dn;m, contains the complete information

on the system under consideration, on the meso-

scopic level of the master equation (2a)–(2d). To

characterise certain properties of interest of some

system, quantities derived from P ðn; tjm; 0Þ turn

out to be more transparent. In this section, we in-
troduce some functions which characterise corre-

lations of the system, or the probability that the

system is on either side of a specified threshold.

These quantities are then a measure for the im-

portance of fluctuations in this system, and they

may also serve as a basis for investigations of sys-

tems for which the complete solution is not known.

3.1. Critical measure: the threshold function

A significant measure for many sparsely popu-

lated systems is the probability to have at least ncrit
members of the species present. This probability is

a critical threshold measure in many systems, for

instance in biological regulatory cycles. In this

section, we develop an abstract measure for this
critical probability, and we will comment on its

significance in a specific system in more detail be-

low. For a system with probability density func-

tion P ðn;mjm; 0Þ, the probability to find at least

ncrit elements of the species is given by

PrfnP ncritg 	
X1
n¼ncrit

P ðn; tjm; 0Þ

	 1�
Xncrit�1

n¼0

P ðn; tjm; 0Þ: ð10Þ

For the process defined by Eqs. (2a)–(2d), a gen-
eral closed form expression for this critical prob-

ability does not exist. In the particular case of the

propagator, i.e., m ¼ 0, one finds the expression

PrfnP ncritg ¼ D
kbeDt � kd

� �ki=kb 1� e�Dt

kd=kb � eDt

� �ncrit

� Cðncrit þ ki=kbÞ
ncrit!Cðki=kbÞ

� 2F1 1; ncrit

�
þ ki
kb

; 1þ ncrit;
1� eDt

kd=kb � eDt

�
:

ð11Þ
The critical probability for the propagator,

Eq. (11), is plotted for different parameters in Fig. 2
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versus time. It is obvious that for certain param-
eter combinations the value of this critical measure

is low, indicating that the system is sub-critical

with a relatively high probability, and thus liable

to crossover (in the sense defined below). It is also

remarkable that there exist minima for certain sets

of parameters such that the system, although as-

ymptotically completely stable, might exhibit in-

termittent domains in which the probability for
crossovers is fairly high. We also plot the loga-

rithmic derivative of the probability of not going

critical up to time t in Fig. 2. While on a linear

abscissa, the functional behaviour of the critical

probability is smooth, a parameter-specific fine

structure, i.e., the occurrence of plateaus, minima

(and maxima), can be discerned on a logarithmic

scale, as demonstrated in Fig. 3. Note that some of
this fine structure pertains to relatively long times

for the chosen parameters, and the stationary be-

haviour is approached rather slowly.

From Eq. (3a) it follows that the mean popu-

lation for kb > kd grows beyond limit, and there-

fore PrfnP ncritg ! 1. In the opposite case

kd > kb, a stationary state is reached whose pop-

ulation number is determined by the ratio ki=jDj.
Consequently, even in the absorption dominated

case kd > kb, a minimum value 0 < PfnP ncritg <
1 is reached. For ncrit ¼ 1, the stationary value

approached by the system is PfnP ncritg ¼ 1�
1þ ki=kdð Þð1� kb=kdÞki=kb . The existence of a min-

imum state is connected to the time dependence of

the mean number. If hnðtÞi is strictly monotonic,
no plateau, minimum, or maximum in PrfnP
ncritg exists, and vice versa. The existence of a

minimum is guaranteed if limt!0 dhnðtÞi=dt ¼
mD þ ki < 0, and d=dthnðtÞi > 0 at later

times.

In the balanced case kb ¼ kd, the associated

critical probability can be calculated explicitly,

however, the expressions become involved. For
ncrit ¼ 1, one finds

PrfnP 1g ¼ 1� ðkbtÞm=ð1þ kbtÞki=kbþm
; ð12aÞ

Fig. 2. Critical probability for the parameter sets: fm; ncrit; ki; kb; kdg ¼ f2; 4; 1; 4; 4:01g (full line), f4; 4; 1; 2; 1:99g (long-dashed),

f4; 2; 1; 4; 4:01g (short-dashed), and f0; 2; 1; 4; 4:01g (dash-dotted). Left: linear axes. Right: logarithmic derivative of the probability of

not going critical up to time t.

Fig. 3. Fine structure of the critical probability, revealed on

a logarithmic time scale. The parameters are the same as in

Fig. 2.
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and for ncrit ¼ 2, the expression

PrfnP 2g ¼ kbt ð1





þ kbtÞmþki=kb � ðkbtÞm
�

ð1þ kbtÞ � kitðkbtÞm
�
� mðkbtÞm

�
.
kbtð1þ kbtÞ1þmþki=kb ð12bÞ

yields. In general, one recovers the asymptotic limit

PrfnP ncritg ! 1 for ki > 0, and ! 0 ðki ¼ 0Þ.
Thus, for increasing population, the fluctuations
become less prominent and finally die out.

3.2. Dependence on initial condition

A different characterisation method of the sys-

tem dynamics defined by the master equation (2a)–

(2d) is the information on the dependence of the

initial condition in which the process is prepared.
Thus, one can compare a system with initial con-

dition m1 with a ‘‘replica’’, i.e., a system with the

identical set of parameters but different initial

condition m2. Whereas the method of replica cor-

relations is well-established in certain types of

dynamical systems [7], one can define a number of

replica functions for the set of Eqs. (2a)–(2d).

Here, we investigate a very simple replica function,
the mean ratio function

Mðt;m1;m2Þ 	
hnðtÞim1

hnðtÞim2

; ð13Þ

where the indices on the right-hand side indicate

the different initial conditions. We plot two dif-

ferent examples in Fig. 4. It becomes obvious that

already this function gives some non-trivial infor-

mation: i.e., whether the system loses its memory

of the initial condition or not.
More information on the system under investi-

gation can be obtained in a similar fashion from

higher order moments such as the ratio of the

variances for the system and a replica. The system–

replica pair can be defined for different parameters,

as well. Also, properly normalised differences of

such quantities could be investigated, or replica

correlation functions proper could be employed. It
should always be kept in mind that some fine

structure might be discernible on a logarithmic

time scale.

4. Kramers–Moyal expansion and Fokker–Planck

approximation

The shift operator E�f ðnÞ 	 f ðn� 1Þ has the

representation E� 	 e�o=on, the latter expression

being defined via its series expansion. Accordingly,

the master equation (2a) is equivalent to the

Kramers–Moyal expansion

oPðn; tÞ
ot

¼
X1
j¼1

�
� o

on

�j GðnÞ þ ð�1ÞjRðnÞ
j!

P ðn; tÞ;

ð14Þ
whose ‘‘diffusion coefficients’’ are defined through

1=j!ðGðnÞ þ ð�1ÞjRðnÞÞ. A truncation after the

Fig. 4. Left: ratio function of the means of a given system and its replica, for the initial conditions m1 ¼ 1, m2 ¼ 4 (lower line) and

m1 ¼ 8, m2 ¼ 4 (upper line), with the parameters fki; kb; kdg ¼ f1; 0:1; 0:11g. Both cases converge. Right: same as above, but for the

parameters fki; kb; kdg ¼ f1; 0:11; 0:1g. Now, the stationary values of both functions differ.
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second order leads to the Fokker–Planck approx-

imation

oP ðn; tÞ
ot

¼
�
� o

on
GðnÞð � RðnÞÞ þ o2

on2
GðnÞ þ RðnÞ

2

�
� P ðn; tÞ ð15Þ

of the master equation (2a). The first coefficient,

GðnÞ � RðnÞ, represents the difference of genera-

tion and removal rates and can thus be viewed as

an analogue to the drift coefficient in number

space, classifying the response of the first moment

to the external field defined through the rates G

and R. The second coefficient, 1=2ðGðnÞ þ RðnÞÞ, is
the algebraic mean of both rates and accounts for

the ‘‘diffusive’’ entity of changes caused by the

rates G and R. In a loose sense, the first two

Kramers–Moyal coefficients stand for the ener-

getic (drift) and the entropic contributions to the

system dynamics.

An interesting discussion of the convergence of

higher order truncations of the Kramers–Moyal
expansion for the Poisson process can be found in

Risken’s book [6].

4.1. Comparison to the master equation

The Fokker–Planck equation which corre-

sponds to the concrete model underlying the

master equation (2b) reads

oPðn; tÞ
ot

¼
�
� o

on
ðki þ DnÞ þ o2

on2
ki þ ðkb þ kdÞn

2

�
� P ðn; tÞ: ð16Þ

As the Kramers–Moyal expansion (14) was trun-

cated after the second term to obtain the Fokker–

Planck approximation, the results for the mean

and the variance obtained from Eq. (16) exactly

match Eqs. (3a) and (4b) derived from Eq. (2b).

However, all higher order moments differ. For
instance, consider the third moment whose exact

differential equation

d

dt
hn3ðtÞi ¼ 3Dhn3ðtÞi þ 3ðki þ kb þ kdÞhn2ðtÞi

þ ð3ki þ DÞhnðtÞi þ ki ð17Þ

which follows from Eq. (2b), contrasts

d

dt
hn3ðtÞi ¼ 3Dhn3ðtÞi þ 3ðki þ kb þ kdÞ

� hn2ðtÞi þ 3hnðtÞi ð18Þ
corresponding to the Fokker–Planck approxima-

tion (16). The missing terms in Eq. (18) in respect

to Eq. (17) would enter from the third order
�o3=6on3 of the Kramers–Moyal expansion. For

larger and larger systems, the relative difference of

both moments, and of higher order moments, be-

comes less and less pronounced. A better way to

establish the continuum limit of the discrete master

Eqs. (2a)–(2d) is the following 1=X expansion due

to van Kampen.

4.2. The role of fluctuations and van Kampen’s 1=X
expansion

If the system size increases, the relative differ-

ence between the discrete steps n ! n� 1 becomes

smaller. Consequently, higher order Kramers–

Moyal coefficients become lesser pronounced, and

the Fokker–Planck approximation to the master
equation (2a) becomes better. At the same time,

the fluctuations (deviations from the mean) are

expected to be less important.

A straightforward way to investigate the direct

impact of the system size is van Kampen’s 1=X
expansion [2]. Let us recall that the differential

equation for the mean number, dhnðtÞi=dt ¼
ki þ DhnðtÞi which follows from the master equa-
tion (2b), is equivalent to the chemical kinetics

equation _//ðtÞ ¼ ki þ D/ðtÞ for the concentration

/ðtÞ. On the macroscopic level, the relation be-

tween concentration and mean number is given via

the system size X so that we can rewrite the

chemical kinetics equation as

dhnðtÞi
dt

¼ Xki þ Dn: ð19Þ

On the level of the master equation, this corre-

sponds to

oP ðn; tÞ
ot

¼ Xki E
�1

�
� 1
	
P ðn; tÞ þ kbðE�1 � 1ÞnPðn; tÞ

þ kdðE� 1ÞnPðn; tÞ: ð20Þ

This trick allows therefore for the system size to

enter the master equation, its meaning being that

476 R. Metzler, P.G. Wolynes / Chemical Physics 284 (2002) 469–479



Eq. (20) is the variable system size version of Eq.

(2b). On the ‘‘mesoscopic level’’, the number n will

be sharply peaked around the macroscopic value,

and fluctuations will enter as the square root of the

system size,

n 	 X/ðtÞ þ X1=2n; ð21Þ
where n measures the deviations from the macro-
scopic value, i.e., it denotes the fluctuations. Note

that the relative importance of the fluctuations de-

creases with increasing system size X, in the inverse

square root fashion n=hni ¼ 1þ n=
ffiffiffiffi
X

p
. Con-

versely, for a given system size X, the 1=X formal-

ism unequivocally demonstrates the intuitively

sensible notion that the influence of fluctuations is

in direct competition with the concentration of
molecules, / ¼ n=X: the higher the concentration,

the less dominant are the fluctuations. Accordingly,

we are now seeking the differential equation which

defines the evolution of Pðn; tÞ, the probability

density function of the variable n. As n ! nþ 1

now corresponds to n ! n þ X�1=2, we find ex-

pressions for the shift operators E�1,

E�1 ¼ 1� X�1=2 o

on
þ 1

2
X�1 o2

on2
þ � � � ð22Þ

Finally, oP ðn; tÞ=ot has to be replaced by

o

ot
Pðn; tÞ � X1=2 _//ðtÞ o

on
Pðn; tÞ;

to include the explicit time dependence of the

macroscopic concentration, /ðtÞ [2]. We therefore

obtain the following equation for Pðn; tÞ,
oP
ot

� X1=2 _//
oP
on

¼ Xki

�
� X�1=2 o

on
þ 1

2
X�1 o2

on2
� � � �

�
Pðn; tÞ

þ kb

�
� X�1=2 o

on
þ 1

2
X�1 o2

on2
� � � �

�
� X/
�

þ X1=2n
	
Pðn; tÞ

þ kd X�1=2 o

on

�
þ 1

2
X�1 o2

on2
� � � �

�
� X/
�

þ X1=2n
	
Pðn; tÞ: ð23Þ

Comparing orders of the parameter X, we first

encounter the terms proportional to X1=2; _//Pn ¼

kiPn þ DPn, where Pn 	 oP=on. This is but the

macroscopic chemical kinetics equation. The next

contribution comes from X0. For all other terms,

inverse powers of the system size X occur, and it

therefore becomes a small parameter so that an
appropriate method for the system expansion to-

ward the continuum limit has been found. Col-

lecting powers of order X0, we obtain the Fokker–

Planck equation

oP
ot

¼
�
� D

o

on
n þ ki þ kb þ kd

2
/ðtÞ o2

on2

�
Pðn; tÞ:

ð24Þ
This X0-order derivation is termed ‘‘linear noise

approximation’’ by van Kampen [2]. The associ-

ated solution Pðn; tÞ is normalised, and of a

Gaussian nature. The mean of the fluctuations n is

hnðtÞi ¼ eDt, the standard deviation for our BIDBID

process becomes

hn2ðtÞi ¼ /2
0e

2Dt þ ki þ kb þ kd2D
2ðkiðe2Dt � 2eDt þ 1Þ

þ 2/0Dðe2Dt � eDtÞÞ: ð25Þ

5. Threshold model of kinetic switches

Let us examine the threshold model from the

point of view of genetic switches. Roughly speak-

ing, a genetic switch is a control unit in the middle

of two genes on the DNA strand. Triggered by the

presence of certain messenger molecules, repressor
or promoter, the switch determines either which of

the two genes is to be transcribed and its infor-

mation processed. The entire biochemistry of such

a switching process is generally rather involved. It

has been studied in detail for the k-switch [8] for

which an entire genetic circuitry model has been

developed [9].

In a recent modelling approach, the volume of
the bacterium cell in which the switch is located, it

has been argued, can be divided into an interaction

volume c and a ‘‘bath’’ C, and some of the essential

features of the switching process understood by

the consideration of the exchange of repressor and

promoter between c and the bath [10]. During the

inert state of the system, repressor is bound to the

switch and the cell keeps a constant concentration
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of repressor dimers. Whereas in the bath C the

relative magnitude of fluctuations is relatively

small, they play an essential role in the interaction

volume c. If the bound repressor dissociates and is

not replaced by another repressor molecule, the k-
switch can be flipped and the cell is brought on the
lytic track. This flipping of the switch is therefore

subject to the fluctuations of the small number of

repressor in c.
In this picture, ki corresponds to the rate at

which a repressor molecule enters the interaction

volume c from the bath, being independent of the

number of repressors in c as long as the cell is in

the lysogenic state. Thus, ki is roughly propor-
tional to the overall number of repressor dimers in

the bath and to the ratio c=C of interaction volume

and bath, and inversely proportional to the char-

acteristic exchange time dt which can be viewed as

the renewal time of the process [10]. Conversely,

the rate kd at which repressor leaves c is propor-

tional to C=cdt, and in the master equation

(2a)–(2d) it is proportional to the number n of
molecules in c. Finally, kb in this picture is ap-

proximately zero so that the lysogenic switch in the

stationary state is described to first approximation

through Eq. (9a).

Alternatively, in the more traditional picture of

genetic switches in which spatial fluctuations are

neglected [8], the cell can be viewed as a closed

system. As in the inert state the production of re-
pressor is determined by the chemical facilities of

the host cell, the associated rate constant is ap-

proximately constant (i.e., independent of n) and

can be represented by ki; kb vanishes (i.e., there is

no direct feedback), kd corresponds to the degra-

dation of repressor molecules.

Whereas this (over)simplified picture of the ge-

netic switch cannot attempt to substitute the ex-
isting detailed modelling of the k-switch and

similar biochemical processes [11–13], it can pro-

vide some fundamental insights into the origin and

relevance of fluctuations, and it can help to find

appropriate tools to quantify and interpret data

from in vivo and in vitro experiments and com-

puter simulations. By similar considerations, it is

apparent that even the simple linear master equa-
tion process (2a)–(2d) can reveal interesting in-

formation for a diverse range of systems.

6. Conclusions

We have presented a variation on the old theme

of the BIDBID process. We chose the master equation

approach for this simple, linear population model,
as a paradigm for systems in which small popu-

lations prevail and therefore fluctuations become

relevant. On this basis, we could establish some

relevant and useful functions to quantify the pro-

cess under consideration. Moreover, some hitherto

unknown special cases were derived in closed

form.

The analytical and numerical treatment of this
master equation with its three parameters ki; kb
and kd revealed an a priori unexpected richness in

the dynamical behaviour, such as plateaus, minima

and maxima in the related critical measures. Some

of the fine structure of this temporal behaviour is

only discernible on a logarithmic scale; but it could

nevertheless contain relevant information on the

system. In particular, it has been found that for
certain sets of parameters the system can exhibit

relatively long-ranging domains of intermittency.

It has become apparent that the system actually

delicately depends on the parameters, and the

initial conditions. We believe that these results for

our toy model demonstrate the necessity for ana-

lytical modelling of sparsely populated systems or

a detailed study of the robustness of the numerical
results in respect to variations in the system pa-

rameters and initial conditions, in order to make

sure about the dependence of the system on the

variation of the parameter set. For more compli-

cated models, such an investigation might just be

numerically, but it will nevertheless help to un-

derstand the underlying system, particularly

manifestations of intermittency effects.
For the applications we have in mind, we es-

tablished a threshold model according to which

there exists a critical probability to find at least a

population ncrit of the species of interest. If this

threshold is crossed, a crossover in the system

occurs. This threshold could be the number of

repressor molecules in the interaction volume in

the case of the k-switch, or a veritable animal
population etc. Another class of system-cha-

racterising functions compares the difference or

ratio between a system with a certain initial con-
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dition, and the same (‘‘replica’’) system with dif-

ferent initial condition, revealing whether the long

time behaviour of the system is uniquely deter-

mined or not, and so on. In an analogous way,

definitions for system for which a maximum

population should not be exceeded or to compare
two systems with different parameters could be

established.

Throughout, the provided analytical forms can

be used to derive related quantities such as the first

passage time for a single, or a coupled threshold

process.

The role of fluctuations was further assessed in

terms of van Kampen’s 1=X expansion which al-
lows to decide whether a system can be formulated

in terms of a differential equation, i.e., in terms of

a continuum approach rather than via the differ-

ence-differential master equation. An important

outcome of this analysis is the Fokker–Planck

equation for the fluctuations n and the information

on the decreasing relevance of fluctuations with

increasing system size. From this approach, the
expected influence of naturally occurring fluctua-

tions can be determined or, if only an approximate

dynamical description is available, estimated.

The investigated master equation brings a va-

riety of systems together, applications ranging

from biological physics with population dynamics,

genetic switching, or bioinformatics as fields of

application, to quantum computing counting the
number of set ‘‘pins’’ for storing a certain infor-

mation, or quantum optics where master equa-

tions of the investigated type describe the

population of certain modes. The main concern

for such a modelling therefore comes from typical

nanoscale systems, but also from numerous bio-

logical systems like cells or habitats of macro-

scopic organisms like mammals.
The master equation which we employed for

this study contains a first order derivative in time

which is local. Some systems might rather exhibit

long-range correlations in time manifested as

memory. A typical form for such slowly decaying

memory effects are power-laws. In that case, the

master equation can be rephrased as a fractional

equation, and its result can be obtained by a
transformation of the corresponding Markoffian

probability distribution [14].
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