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Abstract

We present a generalisation of the classical exponential relaxation based on the fractional Fokker–Planck equation

framework. We show how fractional dynamics modifies the Brownian dynamics underlying standard relaxation pro-

cesses, and gives rise to the Mittag–Leffler relaxation of modes and moments. The latter is characterised through a

turnover from an initial stretched exponential to a final inverse power-law pattern and the associated complex sus-

ceptibility corresponds to the Cole–Cole pattern. � 2002 Published by Elsevier Science B.V.

PACS: 05.40.Fb; 05.60.Cd; 02.50.Ey

Classically, relaxation processes are described
in terms of the exponential function

/ðtÞ ¼ e�t=s; tP 0; ð1Þ
which is often referred to as Maxwell–Debye re-
laxation [1]. In Eq. (1), the relaxation function /ðtÞ
possesses the characteristic time scale s, and the
normalised initial condition /ð0Þ ¼ 1. The expo-
nential function (1) fulfills the relaxation equation

d

dt
/ðtÞ ¼ �s�1/ðtÞ; /ð0Þ ¼ 1: ð2Þ

The Maxwell–Debye relaxation is fully character-
ised through the relaxation time scale s, and in this
sense it is universal. In many systems, however, the
dynamical behaviour shows pronounced devia-
tions from the ideal exponential pattern. Experi-
mental results in the time domain are often
described in terms of the Kohlrausch–Williams–
Watts (KWW) or stretched exponential function
[2]

/ðtÞ ¼ e�ðt=sÞb ; 0 < b < 1; ð3Þ

or through asymptotic power-laws

/ðtÞ ¼ 1

1þ ðt=sÞd
; d > 0; ð4Þ

which show the long-time inverse power-law be-
haviour /ðtÞ � ðt=sÞ�d

, the Nutting law [3].
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Experimentally, systems are often probed in
frequency space under an harmonic external driv-
ing, yielding the complex susceptibility vðxÞ ¼
v0ðxÞ � iv00ðxÞ as a function of the driving fre-
quency x. By definition, vðxÞ is connected to
the temporal relaxation function through the re-
lation

vðxÞ �
Z 1

0

e�ixt dð�/ðtÞÞ: ð5Þ

Due to this definition, the complex susceptibility
(5) is dimensionless. Mathematically, we note
that the transformation (5) is equivalent to
the Laplace transformation ~//ðpÞ � Lf/ðtÞg ¼R1
0

ð�d/ðtÞ=dtÞe�pt dt of the negative time deriva-
tive of the relaxation function /ðtÞ followed by the
rotation p ! ix. Due to the differentiation theo-
rem Lfd/ðtÞ=dtg ¼ p ~//ðpÞ � 1, we can rephrase the
definition for the complex susceptibility in the
more convenient form

vðxÞ ¼ 1
h

� p ~//ðpÞ
i
p¼ix

: ð6Þ

Following Eq. (6), the spectral distribution corre-
sponding to the exponential function (1) is given
through the behaviour

vðxÞ ¼ 1

1þ ixs
: ð7Þ

Note that the initial amplitude /ð0Þ ¼ 1 (normal-
isation) can be recovered in the low frequency limit
x ! 0. Moreover, the associated power spectrum
is given in terms of the Lorentzian (Cauchy dis-
tribution)

vðxÞj j2 ¼ 1

ð1þ x2s2Þ : ð8Þ

While Eqs. (3) and (4) introduce generalisations to
the Maxwell–Debye pattern (1) in the time do-
main, in frequency space the Cole–Cole pattern [4]

vðxÞ ¼ 1

1þ ðixsÞa ð9Þ

with 0 < a6 1 has been widely used to modify Eq.
(7) in order to phenomenologically fit experimental
data for the complex susceptibility.

We note that in the limits a ¼ b ¼ 1, both the
KWW form (3) and the Cole–Cole pattern (9) re-
duce to the corresponding classical results (1) and
(7). In contrast, the power-law form (4) stands out
in that it does not contain the exponential relax-
ation function as a limiting case.
In what follows, we report a dynamic frame-

work which leads to relaxation functions of the
Mittag–Leffler type. These interpolate between an
initial stretched exponential behaviour with KWW
index a ð0 < a6 1Þ and a terminal inverse power-
law pattern �ðs=tÞa, and the corresponding
complex susceptibility is exactly given by the Cole–
Cole form (9) with Cole–Cole index a [5]. The
generalised dynamical equation fulfilled by the
Mittag–Leffler function is the fractional relaxation
equation which reduces to Eq. (2) in the limit
a ¼ 1. It will also be argued that a combination of
Mittag–Leffler processes with different time scales
reproduces numerically more complicated behav-
iours such as the Havriliak–Negami (HN) behav-
iour of the complex susceptibility [6].
We start off by generalising the classical

Markoffian diffusion-relaxation models to cases
with scale-invariant memory with infinite mo-
ments and replace the dynamical equations by
fractional ones [7]. After discussing some basic
properties of the fractional framework, we proceed
by deriving the Mittag–Leffler relaxation pattern
and argue that it fulfills the Kramers–Kronig re-
lation.
In a rather general perspective, relaxation the-

ory can be based on the diffusion of defects in the
system under consideration. Originally introduced
by Zener [8] to explain the relaxation of the strain
field in a linear solid by considering the interplay
between strain and thermodynamical heat field,
the model was generalised by Glarum [9] assuming
that vacancies such as microscopic cavities, or the
random orientation of crystallites diffuse within
the system, and when they meet an initially pre-
pared excited state (microscopic dipole, stress,
etc.), the latter is allowed to relax. This formalism
was generalised by Shlesinger [10] and Blumen
et al. [11], who introduced the target model to
processes with anomalous statistics. On the basis
of the latter, Gl€oockle and Nonnenmacher [12] de-
rived fractional relaxation processes.
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Similarly, we want to consider the relaxation of
an excitation undergoing diffusion in the presence
of an external potential. In this procedure, the
temporal mode relaxation or its frequency space
analogue can be measured. Consider first the
standard Markoffian model, in which it is assumed
that the spatial spreading of the walkers (defects,
excitations etc.) follows the diffusion equation

oP
ot

¼ K
o

ox2
Pðx; tÞ; ð10Þ

where K is the diffusion constant. In Eq. (10), the
probability density function (pdf) P ðx; tÞ to find a
given excitation at position x at time t is given in
terms of the Gaussian P ðx; tÞ ¼ ð4pKtÞ�1=2 �
expð�x2=ð4KtÞÞ. Consequently, a relaxation func-
tion /ðtÞ can be defined which is connected to the
temporal decay of a given mode k, through

/ðtÞ � P �ðk; tÞ ¼ e�Kk2t; ð11Þ
where P � is the Fourier transform

R1
�1 e

ikxP ðx; tÞdx
of P. As experimental techniques probe the be-
haviour of the system for a given mode, Eq. (11)
gives the temporal relaxation of a macroscopic
excitation.
Let us now discuss generalisations of Eqs. (10)

and (11) for systems which exhibit some form of
disorder which gives rise to slowly decaying, scale-
free memory effects in the dynamical behaviour
which are manifest in diffusion and relaxation
processes in these materials. In particular, we con-
sider the case that the system is not homogeneous
but assume that the diffusing excitations are
subject to some external force field [13], like an
external electric field. Self-similar dynamical evo-
lutions of the power-law type are widely known in
a broad range of systems [14]. A dynamical
framework which accounts for such patterns has
recently been introduced: fractional dynamics
[7,15]. The central equation of fractional dynamics
is the fractional Fokker–Planck equation [16]: 1

oP
ot

¼ 0D1�a
t

o

ox
V 0ðxÞ
mca

�
þ Ka

o2

ox2

�
P ðx; tÞ; ð12Þ

which governs the temporal evolution of the pdf
Pðx; tÞ in the presence of the external potential
V ðxÞ. The basic ingredient of Eq. (12) is the frac-
tional Riemann–Liouville operator 0D1�a

t � ðd=
dtð0D�a

t ÞÞ defined through the convolution [17]

0D�a
t P ðx; tÞ � 1

CðaÞ

Z t

0

dt0
P ðx; t0Þ

ðt � t0Þ1�a ; ð13Þ

which possesses the important propertyZ 1

0
0D�a

t P ðx; tÞe�pt dt ¼ p�a ~PPðx; pÞ ð14Þ

under Laplace transformation. Mathematically,
the definition (13) represents a convolution of the
pdf P with a power-law memory kernel. The latter
decays slowly in the course of time and therefore
gives rise to the deviations from the exponential
mode relaxation which is characteristic for the
Markoffian case. In Eq. (12), Ka is the generalised
diffusion constant of dimension ½Ka� ¼ cm2/sa. As
the fractional Fokker–Planck equation describes
systems close to thermal equilibrium, it obeys a
generalised Einstein–Stokes relation, Ka ¼ kBT=
ðmcaÞ, with the generalised friction constant ca of
dimension ½ca� ¼ sa�2 [7,16,18], and therefore the
fractional Fokker–Planck equation is a natural
generalisation of the standard case.
In the force-free case, the fractional Fokker–

Planck Eq. (12) describes subdiffusion,

hx2ðtÞi ¼ 2Ka
ta

Cð1þ aÞ ; ð15Þ

i.e., the random walker spreads less efficiently than
a Brownian random walker whose mean squared
displacement grows linearly in time. The fractional
Fokker–Planck equation can be derived from a
continuous time random walk scheme [19], and it
can be shown to be connected to a multiple trap-
ping process whose waiting times are broadly dis-
tributed [18]. The fractional Fokker–Planck
equation is equivalent to the generalised master
equation with power-law memory and therefore
corresponds to a well-defined stochastic process
[20].

1 Here and in the following, we restrict the discussion to the

one-dimensional case.
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Eq. (12) can be solved by the method of sepa-
ration of variables. By help of the separation
ansatz P ðx; tÞ ¼ T ðtÞuðxÞ [16], the fractional
Fokker–Planck Eq. (12) can be decoupled. The
spatial eigenequation is the same as for the clas-
sical Fokker–Planck equation; however, for the
temporal eigenequation for the eigenvalue kn, the
fractional relaxation equation [12,21],

dTnðtÞ
dt

¼ �kn 0D1�a
t TnðtÞ; ð16Þ

obtains. In the limit a ¼ 1, the fractional operator
reduces to the identity operator, and Eq. (16) is
but the standard relaxation equation (2). Eq. (16)
can be solved via Laplace transformation, making
use of the property (14), or through a power series
ansatz. In Laplace space, Eq. (16) is algebraic, and
its solution is

~TTnðpÞ ¼ p�1=ð1þ ðpsÞ�aÞ ð17Þ

with Tnð0Þ ¼ 1 and s�a � kn. Via inverse Laplace
transformation, the solution

TnðtÞ ¼ Eað�ðt=sÞaÞ ð18Þ
is recovered. Here, Ea denotes the Mittag–Leffler
function [22] whose series expansion reads

Eað�zÞ ¼
X1
n¼0

ð�zÞn

Cð1þ anÞ : ð19Þ

For 0 < a6 1, the Mittag–Leffler function is pos-
itive and strictly monotonically decreasing [22].
The series expansion (19) shows the proximity
between the Mittag–Leffler function and the ex-
ponential function, and it is obvious that in the
limit a ¼ 1, it reduces to the the exponential
function. For a ¼ 1=2, the Mittag–Leffler function
can be expressed in terms of the complementary
error function, E1=2ð�ðt=sÞ1=2Þ ¼ et=s erfcððt=sÞ1=2Þ.
In Fig. 1, we compare the Mittag–Leffler relax-
ation for a ¼ 1=2 with the KWW relaxation of
index 1/2 and the asymptotic inverse power-law
ðt=sÞ�1=2. In general, Eað�ðt=sÞaÞ exhibits the lim-
iting behaviours

Eað�ðt=sÞaÞ � 1� ta=Cð1þ aÞ; t � s;
ðCð1� aÞðt=sÞaÞ�1; t � s:

�

ð20Þ

Thus, the Mittag–Leffler function interpolates be-
tween an initial stretched exponential (KWW)
pattern and a terminal inverse power-law decay,
both of index a. This interpolating behaviour is
well known from rheological modelling, see, for
instance, Ref. [23]. We note that by Tauberian
theorems, the power-law asymptote ðt=sÞ�a

for
t � s corresponds to the p � s�1 behaviour of the
Laplace transform (17).
The Mittag–Leffler pattern dominates the mode

relaxation, and the relaxation of moments in sys-
tems with a restoring force of the fractional Fok-
ker–Planck equation (12). The multiple trapping
model underlying Eq. (12) states that a diffusing
particle can get occasionally trapped at a given
space point, and only be released after a given
waiting time t. After release, the particle diffuses
until it gets trapped again, and so forth. Thereby,
the duration of individual waiting periods, t, is a
random variable distributed according to the
waiting time pdf wðtÞ � Aat

�1�a [18]. The slow re-
laxation manifested in the Mittag–Leffler decay
(18) is thus directly related to the waiting times
whose characteristic scale T ¼

R1
0

wðtÞtdt di-
verges, and therefore also the Mittag–Leffler pat-
tern is scale-free, i.e., it possesses a diverging T.
Due to the dynamic origin of the scale-free

memory which gives rise to the fractional equa-
tions, the Mittag–Leffler relaxation might also be
connected to the crossing of an activation barrier
in the generalisation of the Kramers model if the

Fig. 1. Mittag–Leffler relaxation in log10–log10 representation.

The full line represents the Mittag–Leffler function for index 1/

2. The dashed lines depict the initial stretched exponential be-

haviour and the final inverse power-law pattern, demonstrating

the interpolating character between both limiting forms.
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low diffusivity limit applies, as was demonstrated
in Ref. [24].
The complex susceptibility corresponding to the

Mittag–Leffler pattern (18) is obtained from Eq.
(17) by virtue of relation (6), the result being ex-
actly the Cole–Cole function (9), as obtained ear-
lier by Weron and Kotulski [5] in a similar context.
As mentioned above, the Mittag–Leffler func-

tion is a strictly monotonically decreasing function
[22], so that all poles of the complex susceptibility
vðxÞ must necessarily lie in the upper half of the
complex plane. Therefore, the real part

v0ðxÞ ¼ 1þ ðxsÞa cosðpa=2Þ
1þ 2ðxsÞa cosðpa=2Þ þ ðxsÞ2a

ð21Þ

and the imaginary part

v00ðxÞ ¼ ðxsÞa sinðpa=2Þ
1þ 2ðxsÞa cosðpa=2Þ þ ðxsÞ2a

ð22Þ

are connected through the Kramers–Kronig rela-
tion [25]

v00ðxÞ ¼ � 1
p

P

Z 1

�1

v0ðmÞ
m � x

dm; ð23Þ

where P
R
denotes the Cauchy principal value.

In Fig. 2, we use the Cole–Cole plot which re-
lates the behaviour of the real and imaginary parts
of the complex susceptibility (9) for different val-
ues of the fractional order a. Accordingly, the
semicircle which corresponds to the exponential

relaxation pattern is increasingly compressed ver-
tically for decreasing values of a. However, the
property that the parametric plot increases strictly
monotonically up to 1/2 and then decays strictly
monotonically is preserved.
For not too low frequencies, both the real part

(21) and the imaginary part (22) scale like
v0ðxÞ � v00ðxÞ � x�a, and their ratio is given
through

v00ðxÞ
v0ðxÞ � tan pa

2

	 

; ð24Þ

i.e., it is independent of x, in contrast to the Debye
relaxation where the same ratio is �xs. Relation
(24) corresponds to the universality advocated by
Jonscher [26], and it is a direct consequence of the
Kramers–Kronig relation (23).
The Cole–Cole behaviour (9) and the corre-

sponding Mittag–Leffler relaxation function are
the characteristic response patterns which stem
from anomalous diffusion related to the waiting
time pdf wðtÞ � Aat

�1�a within the continuous time
random walk scheme. In the system under con-
sideration, there might be combinations of diffu-
sion processes which have a different value for this
internal time scale, and they might also be affected
differently by the disorder in the system, i.e., ex-
hibit a different a. The combined relaxation pro-
cess might therefore be composed of two or more
individual Mittag–Leffler patterns, giving rise to
more elaborate relaxation forms.
A more general a priori form used to fit ex-

perimental data is the HN pattern [6]

vðxÞ ¼ 1

½1þ ðixsÞa�c ; ð25Þ

which has become a widely used formula to de-
scribe experimental data. Usually, one restricts the
parameters to a > 0 and ac6 1. A special case of
the HN pattern (25) for c ¼ 1 is therefore the
Cole–Cole function (9). The HN parameters a and
c determine the slopes of v00ðxÞ in the double-
logarithmic plot, these being a on the low fre-
quency side and �ac on the high frequency side of
the peak. It can be shown that a combination of
two fractional processes with different internal
time scales can reproduce this behaviour but has
the advantage that all related functions are known

Fig. 2. Cole–Cole plot of the real and imaginary parts (21) and

(22) of the susceptibility vðxÞ associated with the Mittag–Leffler
relaxation, in comparison to the semicircular shape corre-

sponding to the exponential relaxation pattern, a ¼ 1 (- - -). The
values for a are, from the bottom curve, 1/4, 1/2, 3/4.
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analytically [27]. The HN law (25) can be ex-
pressed in terms of Fox H-functions in terms of
which an exact, closed form analytical represen-
tation of (25) in the time domain can be obtained,
as is shown in the paper of Hilfer in the same
volume [28].
We note that systems which exhibit long-tailed

memory kernels feature an inverse power-law be-
haviour for modes and moments, for long times.
Consequently, no characteristic time scale for the
relaxation process /ðtÞ exists. In such cases, typical
materials parameters have to be defined in a more
general way. Such a generalisation has recently
been introduced for the Deborah number used in
rheology [13]. A similar procedure is possible for
any materials numbers involving the characteristic
relaxation time in the corresponding classical, ex-
ponential case.
At this point, we comment on some common

bottlenecks encountered in the phenomenological
description of dielectric relaxation processes and
their spectral analogues. As remarked, e.g., in Ref.
[29], the two commonly used fit functions, KWW
and HN in time and frequency domain, respec-
tively, are not a Fourier transform pair. This is
obvious just from the fact that the former contains
only one free parameter whereas the latter includes
two; however, there exist exact, analytical Fourier
transforms of each function [12,28]. Thus, occa-
sionally there arise problems in the (numerical)
Fourier transformation of either a fitted KWW to
an HN, or vice versa. By using the Mittag–Leffler
function which possesses series expansions for
both large and small arguments, relatively simple
special representations for rational orders, and an
algebraic spectral representations, such difficulties
can be avoided; a similar reasoning holds for the
combination of two fractional processes which
nearly approximate the HN form [27]. The nu-
merical advantage of having exact analytical ex-
pressions for all transform pairs including
relaxation/retardation time spectra was demon-
strated in Ref. [21].
Concluding, we have introduced a connection

between relaxation processes and fractional dy-
namics, giving rise to the ubiquitous Mittag–Lef-
fler behaviour which interpolates between an
initial KWW and a final inverse power-law decay.

Fractional dynamics occurs in systems which are
characterised through multiple trapping events
which issue a long-tailed waiting time distribution.
Mittag–Leffler patterns are therefore expected to
prevail in a wide range of systems. To account for
more complex dynamical patterns due to different
trap types or different classes of diffusing defects,
combinations of fractional processes with different
a might arise, and account for the often complex
patterns observed in experiments.
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