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Force-extension relations for polymers with sliding links
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Topological entanglements in polymers are mimicked by sliding rings~slip links! that enforce pair contacts
between monomers. We study the force-extension curve for linear polymers in which slip links create addi-
tional loops of variable sizes. For a single loop in a phantom chain, we obtain exact expressions for the average
end-to-end separation. The linear response to a small force is related to the properties of the unstressed chain,
while for a large force the polymer backbone can be treated as a sequence of Pincus–de Gennes blobs, the
constraint effecting only a single blob. Generalizing this picture, scaling arguments are used to include self-
avoiding effects.
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Entanglements play an important role in the behavior
macromolecules. For instance, mechanical links~e.g., in ca-
tenanes! and knots naturally appear in long polymers@1#. In
biological systems, specific proteins act upon topologi
states: the degree of entanglement of chromosomes du
cell division @2# or knotted states in bacterial DNA, whic
may arise during random ring closure@3#, can be modified by
topological enzymes@4#. Synthetic RNA trefoil knots have
been used to prove the existence of a similar, previou
unknown, topology-changing enzyme@5#. Tight molecular
knots have even been found deep inside the native sta
proteins@6#. Experimental advances now make it possible
manipulate single molecules by optical tweezers. Thus, t
knots could be tied into single actin filaments or DN
strands@7#. Mechanical properties, and forces in the p
range relevant to biopolymeric processes, can be meas
by atomic force microscopy or more direct micromechani
methods@8#. It is therefore possible to record the forc
extension~FE! curve of single polymers with a fixed topo
ogy, from which valuable information about the properties
a molecule can be obtained and compared to theoretical
dictions.

While there has been extensive progress in the statis
mechanics of polymers in the last decades@9,10#, the analy-
sis of topological constraints is hampered by the difficulty
treating the resulting division of phase space into access
and inaccessible regions. Since the mathematical method
knot detection using topological invariants@11# cannot be
conveniently incorporated into a statistical-mechanical f
mulation, one may try to use geometrical constrictions
mimic knots. Consider a polymer threaded through a sm
ring as depicted in Fig. 1, and not allowed to withdraw fro
it, although the ring may freely slide along the polymer a
the loop size can change. Constrictions of this type@called
slip links ~SLs!# were introduced about 20 years ago@12# to
investigate the elasticity of rubber, where they were used
represent entanglements between different polymers.
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cently, a detailed study of the size distribution of loops in
structures was performed@13#. In this work we consider FE
curves of such polymers, with or without self-avoidance. W
show that the knowledge of the statistics in the absence
the force, combined with the Pincus–de Gennes@14# blob
picture, suffices to understand many features of the
curves. We first discuss the statistical effects of the slip l
for non-self-avoiding chains~phantom polymers!. Consider
an N-step chain with mean-squared step sizea2 in
d-dimensional space. In theN@1 limit, the probability den-
sity function for the end-to-end distance~EED! r is

pN~r !5S d

2pNa2D d/2

expS 2
dr2

2Na2D . ~1!

This expression also describes anN-step random walk on a
~hyper!cubic lattice with lattice constanta. The number of
closedN-step loops on such a lattice is (2d)N@d/(2pN)#d/2.
Now consider the case where a SL forces a closed loop
sizen. Since the loop can be located on any ofN2n posi-
tions on theN-step chain, the number of possible configur
tions of the combined system of the polymer and the SL
(N2n)(2d)N2n(2d)n@d/(2pn)#d/2. Thus, forn@1 and (N
2n)@1, the probability for a givenn is

gN~n!5N~N2n!n2d/2, ~2!

whereN is a normalization factor. Ford.2, N depends on
the short-distance cutoff, i.e., on the microscopic details

FIG. 1. Polymer threaded through a slip link~ring! forms a loop
and two dangling ends. It is not allowed to withdraw from the s
link.
©2002 The American Physical Society02-1
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the walk@15#. The presence of the SL also modifies the pro
ability density of the EED,p(r ), by reducing the length o
the backbone to (N2n).

When the end points of a polymer are stretched by a fo
f, its properties can be derived from the partition function

Z~ f !5E ddr p~r ! ef•r /T, ~3!

where f 5ufu, and the temperatureT is in energy units, i.e.,
kB51. In the presence of the force, the vectorr is on average
parallel tof, and from Eq.~3! its mean projection alongf is
given by

^r & f5T
] ln Z

] f
. ~4!

In particular, forp(r )5pN(r ) in Eq. ~1!, the partition func-
tion isZ5exp@Na2f2/(2dT2)#, while the mean EED is a linea
function of f, ^r & f5 f Na2/(dT) for any arbitrary value of the
force. Since the mean-squared EEDR2 of an unstrained
~zero-force! phantom chain isNa2, the FE relation can be
rewritten as

^r & f5
R2

dT
f . ~5!

More complicated forms ofp(r ) do not lead to a simple
linear relation, and in many cases the relation between^r & f
and an arbitraryf cannot be calculated exactly. However, f
sufficiently smallf, linear response theory provides a simp
universal answer. By expanding the exponent in Eq.~3! in
powers off and by omitting powers higher than 2, we s
that Eq.~5! is valid for arbitrary spherically symmetricp(r ),
provided thatR2 is the mean-squared EED calculated at z
force. The force can be considered small when^r & f!R, i.e.,
for f !T/R.

The probability density of the EED of a phantom cha
with a simple SL~Fig. 1! is given by

p~r !5pN2n~r !gN~n! ~6!

@see Eqs.~1! and ~2!#. Here,N2n is the number of mono-
mers in theforce-carrying backboneof the polymer. Thus,
R2 can be found by integratingr 2 with the above statistica
weight, over all possibler andn, leading to

R25a2~N2^n&0!, ~7a!

where

^n&055
cd for d.4,

c4ln N for d54,

cdN22d/2 for 2,d,4,

1

2

N

ln N
for d52,

22d

62d
N for d,2.

~7b!
02210
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Here,cd are short length scale cutoff-dependent constants
this expression,̂n&0 is simply the mean number of mono
mers inside the constricted loop, andR2 is obtained by re-
placingN in the expression forR2 of a simple phantom chain
by N2^n&0. We note that ford.2, ^n&0 has a sublinear
dependence onN, and asd increases, the correction create
by the SL depends more weakly onN @16#. Ford.4 random
walks do not form long loops and̂n&0 becomes independen
of N.

The expression forR2 of a phantom chain with a SL ca
now be substituted in Eq.~5! to obtain the FE relation̂r & f
5 f (a2/dT)(N2^n&0) for small f. For largef, this expression
is no longer valid. However, by direct inspection of the r
quired average we find that Eqs.~3!, ~4!, and~6! lead to

^r & f5T
]

] f
ln E dn gN~n! expF f 2a2~N2n!

2dT2 G
5

a2

dT
~N2^n& f ! f , ~8!

where^n& f is the mean loop size in the presence of the for
equal to

^n& f5

E
n0

N

dn n gN~n!exp@2 f 2a2n/~2dT2!#

E
n0

N

dn gN~n!exp@2 f 2a2n/~2dT2!#

. ~9!

The lower limit of n0 in the above integrals is the minima
loop size allowed by the specific model. The FE relation
no longer linear even for a phantom polymer with one S
although the deviation disappears rapidly with increasingf.
For the simple SL with the weight in Eq.~2!, the nonlinearity
is barely detectable even for the relatively small value ofN
5100, as indicated by the top line in Fig. 2. In more com
plicated topologies of many SLs, we frequently encoun
the behaviorgN(n);n2a @13#, wheren is the total number
of monomers that do not belong to the direct path betw
the ends of the polymer, whileN appears in the prefactor o
other nonsingular parts of the probability density. In su
cases, the nonlinearities become more pronounced asa de-
creases. Let us specifically consider the ‘‘toy example’’ o
SL in which m additional rings slide around the loop, a
depicted in Fig. 3. The number of ways of placing the
sliding rings leads togN(N)5N(N2n)nm2d/2 @17#. De-
pending on the values ofm andd, three different behaviors
can be distinguished:

~i! For m.d/221, the integrals in Eq.~9! are dominated
by largen. We can thus set the lower limit of the integrals
0, and introduce the new variablex5n/N, to get

^r & f

aAN
5

f aAN

TA2dF 12

E
0

1

dx xm112d/2e2x f2a2N/(2dT2)

E
0

1

dx xm2d/2e2x f2a2N/(2dT2) G .

~10!
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This FE curve now satisfies a scaling form̂r & f /R
5F( f R/@A2dT#), where the scaling function has the limi

F~z!;H z/~11m2d/2!, z→0,

z2c/z, z→`.
~11!

The initial slope is reduced for largerm, as depicted in Fig.
2, while the asymptotic form at largef is reached with a
correction that falls off as 1/f . The physical origin of the
nonlinearity is the tightening of the initially large loop in th
intermediate regime.

~ii ! For d/222.m.d/221, the mean loop size grows a
N21m2d/2, playing the role of an additional~subleading!
length scale. Consequently, the FE curve no longer ha
simple scaling form, and behaves as

^r & f

R
5

f R

A2dT
F12N21m2d/2fS f R

T D G . ~12!

FIG. 2. Force-extension curves for a 100-monomer polym
with a slip link in d53 with its loop threaded through additiona
~from top to bottom! m50, 1, 2, 3, and 4, rings.

FIG. 3. A slip link whose loop is threaded through addition
m53 rings that are restricted to stay on the loop.
02210
a

This case may be most similar to that of knots in three
mensions, and indeed such corrections to scaling were u
in Ref. @18# to extract the size of the knot.

~iii ! For m,d/222, both integrals in Eq.~9! are domi-
nated by the short-distance cutoff, resulting in^n& f'n0, in-
dependent off. The FE curve is thus linear in this regim
with finite size corrections that disappear as 1/N.

While the above results are easily obtained for a phan
polymer with a SL, it is convenient to restate them in a fo
that is more generally valid, and in particular, applicable
interacting polymers. This will be done using the Pincus–
Gennes picture@14#, according to which a stretched polyme
~without a SL! at short scales does not feel the influence
the external force, and correlations remain as in the unfor
polymer, while at longer distances it is essentially a line
object aligned to the force. The polymer can then be visu
ized as a linear chain ofblobs, as depicted in Fig. 4. The
number of monomersNb inside a blob is determined by th
condition f Rb'T, whereRb is the EED ofNb monomers. In
the case of a phantom polymer (Rb5aNb

1/2), this leads to
Nb'(T/ f a)2, while in the more general case withRb

5aNb
n , we getNb'(T/ f a)1/n. Consequently, for large force

the EED of a whole polymer is the size of a single blob tim
the number of blobs, i.e.,

^r & f5~N/Nb!Rb5aNNb
n215aN~ f a/T!(1/n)21. ~13!

For phantom polymers the FE curve remains linear even
large f, while for a self-avoiding polymer ind53 ~with n
'0.58) the relation is highly nonlinear. We now note thatNb
is the scale over which the exponential factor in Eq.~9!
decays, and consequently the mean size of the SL loop
f @T/(aAN) can be estimated as

^n& f'

E
n0

Nb
dn n gN~n!

E
n0

Nb
dn gN~n!

. ~14!

However, this expression is exactly the size of the link in
polymer consisting ofNb monomersin the absence of an
external force, i.e.,

^n& f ,N'^n&0,Nb
. ~15!

The first subscript in this equation denotes the size of
force, while the second index indicates the total number
monomers. We can, therefore, view the SL loop as be
confined to a single blob. Since within a blob the extern

r

l

FIG. 4. In the Pincus–de Gennes scenario, the stretched p
mer is viewed as a linear sequence of ‘‘blobs’’~circumscribed by
circles!. Within each blob the polymer is unstressed; the size a
number of blobs depends on the stretching force.
2-3
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force is not felt, its size is determined by regarding the en
polymer length asNb , as depicted qualitatively in Fig. 5.

While the leading term in the expression for the EED o
strongly stretched polymer with a SL will still have a for
given by Eq.~13!, subleading corrections depend on the
fluence that the presence of SL has on the EED of the
stretched polymer. For a phantom chain there is a clear s
ration between the segment that creates the link and
remainder of the chain, and consequently, in the absenc
an external force, the reduction inR2 can be simply related
to the reduction ofN by Eq. ~7!. This is not necessarily the
case in the presence of interactions, and each case mu
considered separately. In the presence of self-avoiding in
actions~for d,4), it can be shown@13# that for n!N the
statistical weight of ann-monomer loop is given bygN(n)

FIG. 5. Qualitative representation of a stretched polymer wit
SL. The loop created by the SL is contained within a single bl
and its size is determined only by the number of the monomer
the blob.
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;n2c, wherec.2. Consequently,̂n&0 is independent ofN,
and will cause no detectable modification in the FE curve
a self-avoiding polymer. This picture can be easily gene
ized to a sequence of~noninterpenetrating! SLs. At zero
force, the loops will compete for the available length, ea
acquiring a fraction of the overall length, as described in R
@13#. At strong force, in the blob regime, each slip link
most likely confined to its own blob.

Viewing the stretched polymer as a sequence of blo
with only individual blobs affected by the presence of t
constraints such as SLs, creates a convenient framework
evaluation of FE relations. This picture may possibly be e
tended to knotted polymers. If the size of each prime k
factor depends on the number of monomersN as a power law
Nt, then the application of a strong stretching force will co
fine the knot to a blob and will reduce its size toNb

t . Such a
scenario~at small forces! was explored in a recent Mont
Carlo study@18#.
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