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Abstract

We study normal and anomalous di1usion processes with initial conditions of the broad L�evy
type, i.e., with such initial conditions which, per se, exhibit a diverging variance. In the force-free
case, the behaviour of the associated probability density function features distinct shoulders which
can be related to the probability current 5owing away from the origin. In the presence of an
external potential which eventually leads to the emergence of a non-trivial, normalisable equi-
librium probability density function, the initially diverging variance becomes 6nite. In particular,
the e1ects of strange initial conditions for the harmonic Ornstein–Uhlenbeck potential are
explored to some detail. Methods to quantify the dynamics related to such kinds of processes
are investigated. c© 2001 Elsevier Science B.V. All rights reserved.
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Anomalous transport studies, generically, are concerned with dynamic stochastic pro-
cesses in systems which are inherently disordered in some sense and which give rise to
long-range spatial or temporal correlations [1–3]. Characteristically, anomalous trans-
port processes no longer fall into the basin of attraction of the central limit theorem
which gives rise to the Gaussian character of normal di1usion processes [4,5], but they
are often associated with L�evy stable laws which govern either the jump lengths or the
waiting times of the process. Anomalous transport processes of this type are therefore
connected with the generalised central limit theorem which in turn leads to the exis-
tence of a well-de6ned and unique probability density function (pdf) W (x; t) [1,6,7].
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Two extreme limits can be distinguished. On the one hand, there are processes whose
internal clock measures the so-called “fractal time” giving rise to temporal correlations
expressed through a system memory which controls the particular temporal approach
to thermal equilibrium. On the other hand, L�evy 5ights are distinguished by the
occurrence of long jumps permitted with a comparably high probability following from
L�evy stable jump length distributions. In the latter case, one observes the divergence
of the mean squared displacement, 〈x2(t)〉= ∫∞

−∞ x2W (x; t) dx [1,4,5]. In other words,
in a L�evy 5ight the possibility of extremely long jumps causes the pdf to fall o1 in the
power-law fashion W (x; t) ∼ t=|x|1+� with 0¡�¡ 2 such that 〈x2(t)〉 → ∞ [8–11].

Here, we study the complementary problem, namely a transport process whose prop-
agator, i.e., the pdf for �-initial condition, possesses converging spatial moments of any
order, and supplement it with an initial condition which has long tails such that the
variance of this initial distribution diverges. Such situations may occur when a system
initially performs a L�evy 5ight for a certain time, and subsequently turns over to a
Brownian or subdi1usive regime due to some change in the external parameters. In
such a case, the initial condition for the secondary process whose clock starts at time
T will be a L�evy stable distribution, i.e., the solution of the fractional di1usion equa-
tion for L�evy 5ights for a given time T . This strange initial condition scenario might
be relevant to certain situations in groundwater contaminant spreading where initially
pollutants are broadly distributed and then they penetrate through the soil. In this latter
case, the associated horizontal stochastic process is to be considered force-free if the
soil is homogeneous, or funnelled towards some main out5ow channel in the aquifer
geometry [12]. Similar constellations might be encountered in single molecule experi-
ments [13] where such a turnover could be triggered in the energy di1usion. One could
possibly speculate whether it might also occur in bacterial motion [14] or the famed
albatross 5ight [15,16] when a sparse food distribution is replaced by ample prey.

To be more speci6c, we investigate solutions of the fractional Fokker–Planck equa-
tion [17–21]
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with 0¡�6 1, for the L�evy type initial condition

W0(x)=L�(x=‘) ; (2)

which is characterised by the asymptotic power-law behaviour

W0(x) ∼ ‘�

|x|1+� : (3)

We de6ne W0(x) ≡ limt→0+ W (x; t). Eq. (1) describes anomalous di1usion in the
external force 6eld F(x)= − V ′(x) which relaxes towards the classical Boltzmann
equilibrium Wst(x)=N exp(−V (x)=[kBT ]) [17–21]. This relaxation is dominated by
the Mittag–Le5er pattern which issues a turnover from an initial stretched exponential
decay to a 6nal inverse power-law pattern [17]. In the limiting case �=1, Eq. (1) is the
traditional Fokker–Planck–Smoluchowski equation with exponential mode relaxation.
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In Eq. (2), L� denotes the symmetric L�evy stable law de6ned in terms of the charac-
teristic function [7]

’(k) ≡
∫ ∞

−∞
eikx L�(x=‘)= e−(‘|k|)� (4)

from which one easily infers that the variance or mean squared displacement diverges
and that the initial condition is normalised, ’(0)= 1. The parameter ‘ de6nes an
internal length scale such that for |x|�‘, the power-law dependence (3) holds.

In the force-free limit and for the sharp initial condition W0(x)= �(x), the anomalous
character displayed by Eq. (1) leads to the non-linear form

〈x2(t)〉=2K�t�=�(1 + �) (5)

of the mean squared displacement [2]. In this force-free limit, the fractional
Fokker–Planck equation describes subdi1usion (0¡�¡ 1) [17–21]. The fractional
Riemann–Liouville operator 0D1−�

t ≡ (d=dt)0D−�
t in Eq. (1) is de6ned in terms of the

convolution [15]

0D−�
t f(t) ≡ 1

�(�)

∫ t

0

f(t′)
(t − t′)1−� (6)

so that one obtains the convenient relation L{0D−�
t f(t)}= u−�f(u) for the Laplace

transformation of 0D−�
t . Note that due to de6nition (6), the fractional Riemann–

Liouville operator describes systems which are prepared at time t=0, and thus it
explicitly considers initial values [22]. Note also that the generalised friction and di1u-
sion constants appearing in Eq. (1) are of dimensions [��] = s�−2 and [K�] = cm2 s−�,
and they are connected through the generalised Einstein–Stokes relation K� = kBT=(m��)
[17,18,23–25]. In the following, we use the normalised variables such that K� =1;
�� =1, and ‘=1.

Suppose that the Green’s function for the fractional Fokker–Planck equation (1), i.e.,
the solution for the initial condition W0(x)= �(x− x0) is G(x; x0; t). Then, the solution
for any initial condition W0(x) is given via the integral

W (x; t)=
∫ ∞

−∞
G(x; x0; t)W0(x0) dx0 : (7)

With the Green’s function G, we investigate Eq. (1) with the strange initial condition
(2) for the force-free di1usion case, and for the Ornstein–Uhlenbeck process. If the
external potential 6eld is constant, i.e., V ′(x)= 0 vanishes, the propagator is homoge-
neous in x and can be written as G(x; x0; t)=G(x−x0; t). In this case of free di1usion,
the Fourier transform of the pdf W (x; t) splits up into the product

W (k; t)=G(k; t)W0(k) (8)

and consequently, we 6nd 〈x2(t)〉→∞ for all times t. That is, for t ¡∞, the
divergence is due to the in5uence of the strange initial condition, and for t=∞ the
trivial Boltzmann equilibrium, i.e., the equidistribution, is reached. Conversely, if V (x)
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Fig. 1. Force-free di1usion with strange initial condition of the Cauchy type, log10–log10 scale: (left)
Brownian case; (right) subdi1usive case with �= 1

2 . For increasing time, a distinct shoulder propagates
towards increasing x and thereby eats up the power law. Dimensionless times: t=0:1; 1; 10; 100; 1000 (left);
0:1; 10; 1000; 105 (right).

is con6ning such that eventually the system relaxes towards the Gibbs–Boltzmann equi-
librium Wst(x) ≡ limt→∞W (x; t)=N exp(−V (x)=(kBT )), the Green’s function loses
its memory of the initial condition, limt→∞G(x; x0; t)=Gst(x). Thus,

Wst(x) =
∫ ∞

−∞
Gst(x)W0(x) dx0

=Gst(x)=Ne−V (x)=(kBT ) (9)

by means of the normalisation
∫∞
−∞ W0(x) dx=1. In this case, the mean squared dis-

placement 6nally reaches the stationary, thermal value xth ≡ ∫∞
−∞ x2Wst(x) dx, and is

7nite, also see below. Let us now investigate the behaviour of the pdf for the strange
initial condition (2) in more detail. As in most of what follows we are limited to
numerical calculations, we choose the particular Cauchy (Lorentz) distribution

W0(x)=
1
�

1
1 + x2

!’(k)= exp(−|k|) (10)

as a prototype strange initial condition which allows to evaluate the associated integrals
within the memory range.

For a constant external potential, the initial condition enters through convolution
fashion, leading to the product form (8). In this case, one 6nds the analytic expression
for the Cauchy case (10)

W (x; t)=
e−(x+i)2=(4t)

4
√
�t

{
1 + eix=t erfc

(
1 + ix
2
√
t

)
+ i er6

(
x + i
2
√
t

)}
; (11)

which is real valued, as it should.
In Fig. 1, we show the pdf W (x; t), Eq. (11), for successive times. Accordingly, the

large |x| behaviour
W (x; t) ∼ t|x|−2 (12)

is found. Clearly, the direction of the net 5ow is away from the symmetry centre
x=0, and distinct shoulders successively eat up the power-law tail reminiscent of the
initial Cauchy distribution. Thus, for any 6nite time t, there exists a leftover region
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Fig. 2. Force-free di1usion with strange initial condition of the Cauchy type, t=10. Probability current (full
line) and pdf (dashed) in log10–log10 scale. Inset: linear plot of the 5ux J .

still exhibiting the strange initial condition. Let us quantify the probability spread in
the course of time in terms of the probability current (5ux) of the Green’s function G:

—(x; t) ≡ −@G(x; x0; t)
@x

; (13)

which in the force-free case is given through the uneven expression —(x; x0; t)=
(4
√
�t3=2)−1(x − x0) exp(−(x − x0)2=(4t)) so that the overall 5ux corresponding to the

strange initial condition W0(x) is found to be

J (x; t)=
∫ ∞

−∞
dx0 W0(x0)—(x; x0; t) : (14)

The result is plotted in Fig. 2 and illustrates that the probability current in the presence
of the strange initial condition is still peaked o1-centre, and the maximum current is
close to the location of the shoulders in the pdf W (x; t).

In the parabolic Ornstein–Uhlenbeck potential V (x)= x2=2, the pdf initially exhibits
stable character, as well; close to the symmetry centre x=0, the behaviour is similar
to the spreading shoulders in the force-free case, see Figs. 3 and 4. However, for
increasing time, the pdf becomes more con6ned (dashed line in Fig. 3) until it reaches
the Gaussian–Boltzmann form. In particular, the stable character becomes also eaten
up from its tails where the restoring force exerted through the parabolic potential
increasingly pushes the random walker back towards the origin. This is displayed in
Figs. 3 and 4 for both the Brownian and the anomalous case.

The initially broadly spread probability becomes increasingly concentrated around the
origin. This can be quanti6ed through the 6nite interval mean squared displacement

〈x2(t)〉a ≡
∫ a

−a
W (x; t)x2 dx : (15)

For the Ornstein–Uhlenbeck potential, and for any other con6ning external 6eld, we
expect the 6nite interval mean squared displacement to exhibit a decrease from t=0
to the stationary state. This is, of course, due to the restoring force which leads to the
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Fig. 3. Pdf W (x; t) for the Ornstein–Uhlenbeck case, and for �=1. Note that for increasing time, the
maximum grows, corresponding to the net in5ux of probability from the shrinking tails: (left) Brownian
case for dimensionless times t=0:1 (full line), 1 (dashed), 10 (dotted); (right) fractional case, t=0:1. In
the linear plot scale, no di1erence to the Brownian case is perceptible. In Fig. 4, the Brownian case is
plotted on a log–log scale, for comparison.

Fig. 4. log10–log10 representation corresponding to Fig. 3: (left) dimensionless times t=0:1 (full line, right-
most for long times), 1 (dotted), 2 (light-dotted), and 10 (full line, leftmost for long times). The latest time
already matches the stationary Gibbs–Boltzmann form, within the plot range; (right) 6nite interval mean
squared displacement (15) with a=10 for the Ornstein–Uhlenbeck process with strange initial conditions,
showing the decrease towards the stationary value (in our units, log〈x2(t)〉 → 0, for t → ∞).

con6nement of the broad initial distribution. In Fig. 4, we demonstrate this behaviour
for the Brownian Ornstein–Uhlenbeck case; compare the sharp initial value scenario
discussed in Ref. [17].

To conclude, we have considered the case when an initial condition with in6nite
variance is assumed for a dynamical process which itself possesses a propagator with
converging moments of any order. When L9evy meets Boltzmann, it is the latter which
eventually wins out and leads to the con6nement of the pdf, i.e., its relaxation to-
wards thermodynamic equilibrium. As generally observed for non-sharp initial condi-
tions or in the presence of boundaries, the pdf for the Brownian and the fractional cases
look similar, it is only the temporal approach towards this stationary solution which
signi6cantly di1ers.
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