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VI. Conclusions 

I. INTRODUCTION 

Brownian motion [ 11 denotes the erroneous motion of a massive particle in a 
bath of molecules whose ongoing bombardments are the cause for the parti- 
cle’s random walk, which is displayed in Fig. 1. The compelling story of the 
experimental investigation of Brownian motion [ 1, 21, with its theoretical 
description [3-91 being worked out hand in glove with each other, added 
much to the halcyon development of physics at the end of the nineteenth 
and in the first half of the twentieth centuries. The importance of the under- 
standing of Brownian motion was honored by the Nobel Prize for Jean Perrin 
in 1926 for his investigations leading to the determination of Avogadro’s 
number in terms of microscopic quantities, according to Einstein’s theory. 
Today, Brownian motion is well understood, with its continuum description 
drawing on the central limit theorem according to which the probability den- 
sity function (pdf) to find the particle at a certain position x at a given time t is 
a universal Gaussian whose second moment, the mean squared displacement 
(x*(t)) = 2dKt, grows linearly in time, in any dimension [7-161. 

Figure 1. Recorded random walk trajectories by Jean Baptiste Perrin [2]. Upper panel: 
Three designs obtained by tracing a small grain of putty (mastic, used for varnish) at intervals 
of 30 s. One of the patterns contains SO single points. Lower panel: The starting point of each 
motion event is shifted to the origin. The figure illustrates the pdf of the traveled distance r to 
be in the interval (r. r + dr), according to (2n<*)-’e~p(-?/[2(~])2nrdr, in two dimensions, 
with the length variance 5’. These figures constitute part of the measurement of Perrin, 
Dabrowski, and Chaudesaigues, leading to the determination of the Avogadro number. The 
result given by Pemn is 70.5 lo2’. The remarkable ceuvre of Pemn discusses all possibilities 
of obtaining Avogadro’s number known at that time. Concerning the trajectories displayed in 
the upper part of this figure, Penin makes an interesting statement: “Si, en effet, on faisait des 
pointts de seconde en seconde, chacun de ces segments rectilignes se trouverait remplack par 
un contour polygonal de 30 c6tCs relativement aussi compliquC que le dessin ici reproduit, et 
ainsi de suite.” [If, veritably, one took the position from second to second, each of these 
rectilinear segments would be replaced by a polygonal contour of 30 edges, each itself being 
as complicated as the reproduced design, and so forth.] This already anticipates LCvy’s 
cognizance of the self-similar nature [l 11, as well as of the nondifferentiability recognized by 
N. Wiener [7] .  
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Brownian transport processes and the related relaxation dynamics in the 
presence and absence of an external potential are most conveniently de- 
scribed in terms of partial differential equations of the Fokker-Planck (Smo- 
luchowski) [13, 14, 17-19], Rayleigh [13, 201, and Klein-Kramers [13, 14, 
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21,221 types. These equations are closely connected to the exponential equi- 
libration of the system and the exponential decay of the survival probability 
in the Kramers escape problem that is in turn connected to chemical reaction 
kinetics. Due to its universal character, the Brownian transport theory was 
believed to prevail in any nonpathological system. 

Toward the end of the 1960s, however, surprising data were obtained for 
the charge carrier transport in amorphous semiconductors, then an important 
issue in the development of photocopiers and solar cells. Apparently, these 
data could not be satisfactorily accounted for by the traditional Brownian 
description of random walks that the charge carriers were a priori supposed 
to perform. It was Scher, then staff researcher at the Xerox company, who 
saw himself confronted with this conundrum. Eventually, in collaboration 
with Montroll, Lax, and Shlesinger, it had been realized that these puzzling 
data could be understood by the invocation of a random walk description in 
which each step of the walker occurs at a random time which is chosen from a 
random distribution w ( t )  so broad that it is actually scale-free; that is, it does 
not possess a characteristic time scale. Coming up with the assumption of a 
power-law form for this distribution, w ( t )  N A N f / f l + ‘  [23], the breakthrough 
was achieved. The resulting continuous-time random walk model with this 
“fractal time” waiting time distribution has been put on a solid mathematical 
and physical foundation and has been a successfully applied theory [24]. 

Amorphous semiconductors have been the testing ground for the new the- 
oretical concepts for which the detailed physical mechanisms developed 
could be impressively corroborated by experiments [24-261. In the course 
of time, more and more systems appeared to exhibit “strange kinetics,” 
with a sublinearly growing mean squared displacement and with nonexpo- 
nential relaxation patterns. Slow diffusion was observed for the tracer disper- 
sion in Rayleigh-BCnard convection systems [27], for polymer dynamics and 
for a bead immersed in a polymeric fluid [28,29], and for diffusion in porous 
media [30, 311. Strange kinetics is related to the growth of a submonolayer 
film on a solid surface in the presence of repulsive impurities: The latter are 
supposed to give rise to anomalous diffusion of the atoms which are depos- 
ited on the surface, a process that finally leads to a typical scaling of the is- 
land density of the emerging growth pattern [32]. Recently, there has been 
growing interest in such slow transport in the investigation of tracer disper- 
sion in groundwater systems which might render important new insight 
into the ecological impact of deposited chemicals or radioactive waste 
[33], and the cognisance of strange kinetics has been taken in protein 
dynamics [34, 351. Another boost for the continuous-time random walk 
theory came from its applications to chaotic systems where broadly dis- 
tributed waiting times arise for the sticking of a trajectory in deterministic 
maps, or close to stable islands [36]. Strange kinetics even stretches far 
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into the nanoscale reign, being related to the power-law blinking kinetics of 
quantum dots [37] or to the broad distribution of waiting times in subrecoil 
laser cooling [38]. It is common to these complex systems that some kind of 
disorder-that is, the presence of spatial or temporal constraints-reduces 
the spatiodynamical degrees of freedom of the random motion of the particle 
under consideration. This presence of constraints leads to the temporally non- 
local behavior, to the slowly decaying memory expressed in the transport and 
relaxation dynamics of such systems, and consequently to the observation of 
strange kinetics. 

Here, we present an approach for the description of such anomalous trans- 
port processes that is based on the continuous-time random walk theory for a 
power-law waiting time distribution w ( t )  but which can be used to find the 
probability density function of the random walker in the presence of an ex- 
ternal force jield, or in phase space. This framework is fractional dynamics, 
and we show how the traditional kinetic equations can be generalized and 
solved within this approach. 

The anomalous transport processes on which we focus and which corre- 
spond to the above examples are, in the force-free limit, characterized by the 
power-law form [15, 16, 39-42] 

(?( t ) )  - K : t " ,  a # 1 

of the mean squared displacement which leads to a spectrum of diffusion pro- 
cesses, depending on the anomalous exponent m. In Eq. (l) ,  KG is a general- 
ized diffusion constant of dimension cm2/s' which will be specified below. 
For the power-law form of the waiting time distribution, w ( t )  - A,z"/t'+' 
with tl ranging in the interval a E (0, l) ,  one observes slow difusion, or sub- 
difusion. Thus, a becomes an essential characteristic quantity of the under- 
lying kinetic process. In that sense, anomalous transport processes are 
nonuniversal. However, these processes are subject to a superordinate limit 
theorem that is connected with Lkvy (stable) distributions [41, 431 and that 
guarantees the existence of a limit distribution for the anomalous process in 
the same way as the central limit theorem enforces the Gaussian limit distri- 
bution of the Brownian process. In fact, the central limit theorem is a special 
case located on the verge of the basin of attraction of this more general 
theorem. The anomalous exponent a characterizes the special system under 
consideration, and therefore it has to be determined independently. It 
may depend on thermodynamic parameters like temperature, pressure, and 
so on. 

Among the most striking changes brought about by fractional dynamics is 
the substitution of the traditionally obtained exponential system equilibration 
of time-dependent system quantities by the Mittag-Leffler pattern [4446] 
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that interpolates between an initial stretched exponential and a final inverse 
power-law pattern, 

In what follows, we present a generalized stochastics framework for the 
description of slow (0 < CI < 1) transport in position and phase space, on 
the basis of fractional dynamics. Accordingly, complex systems close to ther- 
modynamic equilibrium which exhibit a self-similar memory are governed 
by the fractional Fokker-Planck, Rayleigh, and Klein-Kramers equations. 
We demonstrate that fractional dynamics may arise for multiple trapping sys- 
tems with broadly distributed trapping times. More generally, it is equivalent 
to a generalized master equation with a power-law memory kernel that can be 
connected to a continuous-time random walk approach. 

The advantage of the fractional formulation in comparison to other ap- 
proaches lies in its proximity to the classical partial differential equations 
and their methods of solution. 

Note that throughout the presentation, we concentrate on the one-dimen- 
sional case. 

11. THE RISE OF FRACTIONAL DYNAMICS 

A. The Master Equation 

The discrete Markovian master equation [ 13-16] 

W, (t + At) = A ; , ; / W  ( t )  
.i’ # j  

( 3 )  

describes the evolution of the pdf Wj(t) during the time step At as determined 
by the transfer matrix Aj,;r. Wj(t) denotes the probability to find the random 
walker at s i t e j  at the given time t. The continuum limit with respect to the 
position coordinatej relies on a Taylor expansion in the step length Ax of the 
corresponding transfer function A ( x ) .  If this expansion converges and Ax can 
be regarded a small parameter, one recovers the Fokker-Planck (Smolu- 
chowski) equation [13-19, 471 
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for the pdf W ( x , t )  in the time-independent external force field F ( x )  = 
- $ (a(x). Here, m is the mass of the particle, q the friction constant quantify- 
ing the effective interaction with the environment, and K is the diffusion con- 
stant. The latter two are connected via the Einstein-Stokes relation K = ksT/ 
(mq), where kBT is the Boltzmann temperature [ 5 ] .  The coefficients in Eq. (4) 
are given by 

Ax F ( x )  - 
- lim - ( A + ( x )  - A - ( x ) ) ,  K = lim ~ mq ax-o.At+O At Ax-0.At-0 2 A t  ' 

where the continuum version A*(x) of the transfer matrix AJ.J1 denotes the 
probability of coming from the left or right of the position x. For taking these 
limits, the normalization condition A +  ( x )  + A- (x) = 1 was imposed, and we 
assumed that the system is close to thermal Gibbs-Boltzmann equilibrium; 
that is, A + ( x  - h) - (1 - 2fl&F(x))A-(x) ,  where f l  = (ksT)-'  is the 
Boltzmann factor. 

B. Long-Tailed Waiting Times Processes and 
the Generalized Master Equation 

The emergence of slow kinetics with its typical slowly decaying memory 
effects is tightly connected to a scale-free waiting time pdf; that is, the tem- 
poral occurrence of the motion events performed by the random walking par- 
ticle is broadly distributed such that no characteristic waiting time exists. It 
has been demonstrated that it is the assumption of the power-law form for the 
waiting time pdf which leads to the explanation of the kinetics of a broad 
diversity of systems such as the examples quoted above. 

Systems that display strange kinetics no longer fall into the basin of attrac- 
tion of the central limit theorem, as can be anticipated from the anomalous 
form (1) of the mean squared displacement. Instead, they are connected with 
the Levy-Gnedenko generalized central limit theorem, and consequently 
with Levy distributions [43]. The latter feature asymptotic power-law beha- 
viors, and thus the asymptotic power-law form of the waiting time pdf, 
w ( t )  - A g Y / t l + ' ,  may belong to the family of completely asymmetric or 
one-sided Ltvy distributions L:, that is, 

5' 
(6) 44 = L ; ( t / z )  - A ,  tl+r 7 O < C r < l ,  

see the compilation in Appendix A. Due to its long-tailed nature, the waiting 
time pdf (6) fulfills the criterion that it possesses no characteristic time scale: 

'We choose the representation in terms of a Ltvy distribution for convenience because it  
includes the Brownian limit. Indeed, any waiting time pdf w(t) with the asymptotic power-law 
trend following Eq. (6) leads to the same results as obtained in the following for 0 < LY < 1. 
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w T = so w(t ) td t  + cq manifesting the self-similar nature of this waiting 
process that has also prompted the coinage of “fractal time” processes [48]. 
Note that in the limit c( --+ 1, this waiting time pdf reduces to the singular 
form Lt(t/z) = d(t  - z) with finite T = z that leads back to the temporally 
local Markovian formulation of classical Brownian transport. In fact, for 
any waiting time pdf with a finite characteristic time T ,  one recovers the 
Brownian picture, such as for the Poissonian form w ( t )  = z-’ePtlT. 

In the continuous-time random walk model, a random walker is pictured to 
execute jumps at time steps chosen from the waiting time pdf w(t ) .  In the 
isotropic and homogeneous (that is, force-free) case, the distance covered 
in a single jump event can be drawn from the jump length pdf A(x). Then, 
the probability q ( x ,  t )  of just having arrived at position x is given through [49] 

where the initial condition is d(x). Consequently, the pdf W ( x ,  t )  of being in x 
at time t is given by 

W ( x ,  t )  = dtq(x,  t’)Q(t - t ’ ) ,  SI 
in terms of the convoluted pdf q ( x ,  t )  of just having arrived in x at time t’, and 
not having moved since. The latter is defined by the cumulative probability 

Q(t )  = 1 - dt’w(t’) SI (9) 

assigned to the probability of no jump event during the time interval (0, t) .  
Converting Eq. (9) to Fourier-Laplace space which is defined through 

the transformed pdf W ( x ,  t )  obeys the algebraic relation 
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where Wo(k) denotes the Fourier transform of the initial condition 
WO(X)  = lim,,O+ W ( x ,  t ) .  If now the jump length pdf is such that it possesses 
a finite variance, its Fourier transform is accordingly given through 
A(k)  N 1 - Ck2 for small wavenumber k. Conversely, the small u expansion 
of our waiting time pdf w ( t )  = L:(t/z) follows: 

w(u)  - 1 - (UZ)". (12) 

If the two pdfs I I  and w are plugged into Eq. (1 l), the short wavenumber and 
short Laplace frequency limit ( k ,  u )  + (0,O) reveals 

(13) 
1 C 

W ( k , u )  -- = -uP--k2W(k,u) ,  
U zx 

for W O ( X )  = 6(x) .  The Laplace inversion of Eq. (13) involves the term 
UP W ( k ,  u) .  With the definition of the Riemann-Liouville fractional operator 
[Eq. (2 1) below], this expression corresponds to the Riemann-Liouville frac- 
tional integral OD;' W ( x ,  t )  in ( x ,  t )  space. Consequently, one recovers by 
Fourier-Laplace inversion of Eq. ( 13) the fractional diffusion equation 
[50-54] 

d 2  
8x2 

W ( x ,  t )  - Wo(x) = oD,,K, - W ( x ,  t )  

in the integral formulation. Equation (14) was first discussed and solved by 
Schneider and Wyss [50]. Note that we identified K ,  = C/za  [49, 53, 541. 
Alternatively, Eq. (14) can be rephrased in the differential form 

by operation of the ordinary differential d / d t .  The fractional diffusion equa- 
tion (15) for the initial condition Wo(.n) = 6(x)  can be solved in closed form, 
invoking Fox's H-functions HL;;" [55, 561, to obtain 

which is equivalent to the result found by Schneider and Wyss in terms 
of H;,': [50]. Through the Fox function formulation one finds the series 
representation 
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and the asymptotic expansion 

- ( 1 -E)/ ( 2 - 8 )  

(18) 

valid for 1x1 >> m. The functional form of the result (18) has prompted 
the coinage of stretched Gaussian form, and it is equivalent to the continu- 
ous-time random walk findings reported by Zumofen and Klafter [57]. 

If an external force field acts on the random walker, it has been shown [58,  
591 that in the diffusion limit, this broad waiting time process is governed by 
the fractional Fokker-Planck equation (FFPE) [60] 

which is discussed in detail in the next section. Equations (15) and (19) fea- 
ture the Riemann-Liouville operator 

whose definition is given in terms of the convolution [61] 

It is interesting to note that the notion of noninteger order differentials goes 
back to one of the founders of classical calculus, Leibniz, who mentions the 
problem as an interesting topic in a letter to de l’H6spital in 1695. Numerous 
famous mathematicians have worked on the field which eventually was to 
become fractional calculus. Of the several different definitions in use, the 
Riemann-Liouville version defined through Eq. (2 1) corresponds to physical 
problems with a defined initial condition at t = 0. The (Riemann-Liouville) 
fractional integral (21) generalizes the Cauchy multiple integral to a “real- 
value folded” integration. Fractional differentiation is defined as a fractional 
integration, followed by an ordinary differentiation: 

d“ 
(22) 
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The fractional differentiation of a power 

is analogous to the standard case; however, note that the fractional differen- 
tiation of a constant does not vanish: 

Expression (24) reduces to the standard 5 1 = 0 for q + n, due to the diver- 
gence of the gamma function V(z)  for nonpositive integers. The fractional 
Riemann-Liouville integral operator 0DFq fulfills the generalized integration 
theorem of the Laplace transformation: 

In the limit a + 1, the Riemann-Liouville fractional inte ral OD;‘ re- 
duces to an ordinary integration so that lima+, oDf-‘ = $j,dt’ becomes 
the identity operator; that is, Eqs. (1 5 )  and (19) simplify to the standard dif- 
fusion and Fokker-Planck equations, respectively. 

According to Eq. (21), the FFPE (19) involves a slowly decaying, self- 
similar memory so that the present state W ( x ,  t )  of the system depends strongly 
on its history W ( x ,  t’), t‘ < t ,  in contrast to its Brownian counterpart which is 
local in time. In the force-free case, F ( x )  = 0, the FFPE (19) reduces to the 
fractional diffusion equation (15). 

It has been shown that the FFPE (1 9) is equivalent to the generalized mas- 
ter equation [%] 

P 

with the kernel 

A ( x , x ’ )  - 6(x) 
K ( x , x / ;  u )  = uw(u)  

1 - W ( U )  

given in Laplace space. Here, the transfer function A(x,x’) generalizes the 
homogeneous jump length pdf A(x - x’) of the standard continuous-time ran- 
dom walk model, and thus it quantifies the local anisotropy and gives rise to 
the drift and diffusion terms [58] .  A may be defined through A(x,x’) z 
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l ( x  - x’)(A(x’)O(x - x ’ )  + B(x’)O(x’ - x ) )  in terms of the probabilities to 
jump left or right, as introduced through the Heaviside functions O(x)  [58]. 

For systems that exhibit slow anomalous transport, the incorporation of 
external fields is in complete analogy to the existing Brownian framework 
which itself is included in the fractional formulation for the limit a ---f 1: 
The FFPE (19) combines the linear competition of drift and diffusion of 
the classical Fokker-Planck equation with the prevalence of a new relaxation 
pattern. As we are going to show, also the solution methods for fractional 
equations are similar to the known methods from standard partial differential 
equations. However, the temporal behavior of systems ruled by fractional dy- 
namics mirrors the self-similar nature of its nonlocal formulation, manifested 
in the Mittag-Leffler pattern dominating the system equilibration. 

C. Boundary Value Problems for the Fractional Diffusion Equation 

Exemplifying the convenience of the fractional approach, we address the 
imposition of boundary value problems on the fractional diffusion equation 
which was demonstrated in Ref. 62. In this force-free case for which the 
kernel, Eq. (27), takes on the homogeneous form K(x ,x ’ ;  u )  = U W ( U )  

(A(x - x ’ )  - 6 ( x ) ) / (  1 - w ( u ) ) ,  one can apply the method of images in order 
to construct the solution [12]. 

Let us address the example of subdiffusion modelled through Eq. (15) in a 
box with absorbing boundary conditions, located at x = f a ,  and the sym- 
metric initial condition WO(X)  = 6 ( x ) ;  that is, the corresponding pdf Q(x ,  t )  
has to fulfill Q ( h ,  t )  = 0 and Qo(x) = 6 ( x ) .  The solution to this boundary 
value problem is obtained in the same way as for the classical case [12], re- 
sulting in [62] 

00 

Q(x,  t )  = ( W ( x  + 4ma, t )  - W(4ma - x + 2a, t)) ,  (28) 
m=-m 

where the image function Q(x,  t )  fulfills the boundary condition. The sum 
(28) can be transformed to the more convenient representation [62] 

which can be evaluated numerically. Equation (29) involves the Mittag- 
Leffler function E, ( z )  instead of the classical exponential functions. We will 
comment on the Mittag-Leffler function in Appendix B. The result for 
CY = 1/2 is displayed in Fig. 2, in comparison to the Brownian result. The 
subdiffusive solution features distinct humps in the center, close to the 
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Figure 2. Probability density function Q ( x ,  t )  for absorbing boundaries in x = f l .  Top: 
The subdiffusive case, CI = 1 / 2 .  Bottom: The Brownian case, CI = 1. The curves are drawn for 
the times r = 0.005, 0.1, 10 on the top and for r = 0.05, 0.1, 10 on the bottom. Note the 
distinct cusp-like shape of the subdiffusive solution in comparison to the smooth Brownian 
counterpart. For the longest time, the Brownian solution has almost completely decayed. 

initial condition that persists on that point, in contrast to the fast smoothening 
in the Brownian case. The temporal decay of the survival probability (i.e., 
the overall probability of not having been absorbed), is given through the 
integral 

which for Eq. (29) becomes 
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I 
0.2 0.4 0.6 0.8 i t  

Figure 3. Survival probability for absorbing boundary conditions positioned at x = f 1, 
plotted for the subdiffusive case c1 = 1/2 and the Brownian case c1 = 1 (dashed curve). For 
longer times, the faster (exponential) decay of the Brownian solution, in comparison to the 
power-law asymptotic of the Mittag-Leffler behavior, is obvious. 

This function has the long-time behavior p , ( t )  N C,tP, where C, is a con- 
stant. The survival probability for the subdiffusive case is plotted in Fig. 3 and 
compared with the Brownian survival. Clearly, for long times, the survival 
probability in the subdiffusive system decays in a much slower fashion. 

A recent work has demonstrated that the formulation of reaction-diffusion 
problems in systems that display slow diffusion within a continuous-time ran- 
dom walk model with a broad waiting time pdf of the form (6) leads to a frac- 
tional reaction-diffusion equation that includes a source or sink term in the 
same additive way as in the Brownian limit [63]. With the fractional formu- 
lation for single-species slow reaction-diffusion obtained by the authors still 
being linear, no pattern formation due to Turing instabilities can arise. This is 
due to the fact that fractional systems of the type (15) are close to Gibbs- 
Boltzmann thermodynamic equilibrium as shown in the next section. 

111. THE FRACTIONAL FOKKER-PLANCK EQUATION 

A. The Classical Fokker-Planck Equation 

The formulation of the Fokker-Planck equation is due to Fokker's and 
Planck's independent works on the description of the Brownian motion of 
particles [17, 181. Commonly, an N variables equation of the type 
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where the drift vector DI') and the diffusion tensor L$) may depend on the 
position x = ( ~ 1 ~ x 2 , .  . . , x ~ } ,  is called Fokker-Planck equation [14]. In the 
following, we deal with the monovariate ( N  = 1) and bivariate ( N  = 2) 
cases, and we assume a constant, purely diagonal diffusion tensor. 

The monovariate Fokker-Planck equation with a position dependent dif- 
fusion coefficient d2) (x), 

can be transformed in general onto the so-called normalized Fokker-Planck 
equation (4) with the diffusion constant K [14]. In the latter formulation, we 
have chosen the coefficients according to the Smoluchowski model in which 
the drift caused by the external force field F ( x )  is moderated through the 
friction constant q. In Eq. (4), the pdf W approaches the Gibbs-Boltzmann 
equilibrium 

Wst(x)  = lim W ( x , t )  = N exp(-P@(x)), 
r+m (34) 

where P = (kBT)-'  is the Boltzmann factor, and the normalization constant 
N explicitly depends on the potential @(x) that is defined through @(x) = - 
J* dx'F(x'). The diffusion and friction constants are related through the Ein- 
stein-Stokes relation K = kBT/my ,  fulfilling the fluctuation-dissipation con- 
dition. 

A one-dimensional Fokker-Planck equation was used by Smoluchowski 
[19], and the bivariate Fokker-Planck equation in phase space was investi- 
gated by Klein [21] and Kramers [22]. Note that, in essence, the Rayleigh 
equation [23] is a monovariate Fokker-Planck equation in velocity space. 
Physically, the Fokker-Planck equation describes the temporal change of 
the pdf of a particle subjected to diffusive motion and an external drift, man- 
ifest in the second- and first-order spatial derivatives, respectively. Mathema- 
tically, it is a linear second-order parabolic partial differential equation, and it 
is also referred to as a forward Kolmogorov equation. The most comprehen- 
sive reference for Fokker-Planck equations is probably Risken's monograph 

B. Basic Properties 

Before discussing the FFPE (19) in detail, we note that the fractional appro- 
ach meets the following requirements: (i) In the absence of an external force 
field, Eq. (1) is satisfied; (ii) in the presence of an external nonlinear and time- 
independent field the stationary solution is the Boltzmann distribution; (iii) 

1141. 
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generalized Einstein relations are satisfied; and (iv) in the limit a --f 1, the 
standard FPE is recovered. While other approaches like fractional Brownian 
motion [64], the continuous time random walk [23, 25, 651, modified diffu- 
sion equations [66], generalized Langevin equations [67], fractional equa- 
tions for Lkvy flights in external fields [68-711, local fractional equations 
[72], or generalized thermostatistics [73] fulfill part of these requirements, 
we know of no other simple approach that meets all of these physical 
demands. Together with the straightforward mathematical tractability of frac- 
tional equations, these are the major criteria why we regard the fractional 
approach as especially suited. 

The FFPE (19) contains the generalized friction constant q, and the gen- 
eralized diffusion constant K,, of dimensions [q,] = szp2 and [K,] = cm2 spa. 
The physical origin of these fractional dimensions will be explained in the 
next section. In what follows, we assume natural boundary conditions, that 
is, limlXI+M W(x, t )  = 0. The FFPE (19) describes a physical problem, where 
the system is prepared at to = 0 in the state W ( x ,  0). 

The right-hand side of the FFPE (19) is equivalent to the fractional 
expression 

where 

is the probability current. If a stationary state is reached, S must be constant. 
Thus, if S = 0 for any x, it vanishes for all x [ 141, and the stationary solution is 
defined by -F(x)W,,/[mq,] + K,Wkt = 0. Comparing the resulting expres- 
sion Wst(x) oc exp(-@(x)/[K,rnq,]) to the required Boltzmann distribution 
Wst 0; exp(-@(x)/[k~T]), we find a generalization of the Einstein-Stokes 
relation, also referred to as the Stokes-Einstein-Smoluchowski relation [ 161, 

for the generalized coefficients K, and q,  [60]. Thus, processes described by 
Eq. (19) fulfill the linear relation between generalized friction and diffusion 
coefficients, reflecting the fluctuation4issipation theorem. In the presence of 
a uniform force field, given by @(x) = -Fx, a net drift occurs. Calculating 
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the first moment 5 (x(t))F = dxxg W via the FFPE (19), we obtain 

The mean squared displacement for the FFPE (19) in the absence of a force 
can be calculated similarly: 

Note 
field. 

the subscripts F and 0 to indicate presence and absence of the force 
Using Eq. (37), we recover the relation [60] 

connecting the first moment in the presence of the uniform force field with 
the second moment in absence of the force. Relation (40) is the second 
Einstein relation discussed in Refs. 41 and 74. It can be derived from first 
principles, using a Hamiltonian description of the system, within the linear 
response rCgime. Recent experimental results corroborate the validity of 
Eq. (37) in polymeric systems in the subdiffusive domain (see Ref. 29). 
The investigation of charge carrier transport in semiconductors in Ref. 26 
showed that, up to a prefactor 2 that could not be determined exactly, 
Eq. (40) is valid. 

The temporal evolution of the pdf W ( x ,  t) in Eq. (19), in the presence of the 
arbitrary external force field F ( x ) ,  is formally given in terms of the operator 
expression [601 

which is the Mittag-Leffler generalization of the traditional exponential rela- 
tion W ( x ,  t )  = exp(L(x)t). The Mittag-Leffler function E, [44-46] that 
appears in Eq. (41) is defined in Appendix B, and it includes the exponential 
in the Brownian limit CI 4 1. We note that the FFPE (19) was derived from a 
generalized master equation that was based upon a nonhomogeneous contin- 
uous-time random walk model in Ref. 58, as well as from a continuous-time 
master equation in Ref. 59. It was obtained as the diffusion limit of a frac- 
tional Klein-Kramers equation from a multiple trapping model in Ref. 75, 
as reviewed below. 
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C. Methods of Solution and the Nonexponential 
Mode Relaxation 

For a specified form of the Fokker-Planck operator L(x) ,  one can find an 
explicit solution W ( x ,  t )  of the FFPE (1 9) through separation of variables. 
Indeed, inserting the separation ansatz 

where n labels a certain eigenvalue of the Fokker-Planck operator L(x) ,  into 
the FFPE (1 9) yields the factorized equation 

The complete solution W ( x ,  t )  is then expressed through the sum over the par- 
ticular solutions Wn(x, t ) ,  over the set of eigenvalues { a } .  After the separation 
of Eq. (43) through division by (oD:-"T,)cpn, one arrives at the two eigen- 
equations 

for the eigenvalue The latter are related to their Brownian counterparts 
for the same external potential field @ ( x )  by the dimensional prefactor 

),,,, = ( y / q X ) A n , ~ .  The temporal eigensolution to Eq. (44a) is given in terms 
of the Mittag-Leffler function 

The complete solution of the FFPE (19) is thus composed by the sum 

over the set of eigenvalues, {n} ,  for an initial distribution concentrated in x'. 
In Eq. (46), the functions $ , (x )  = e'(")/'cp,(x) are related to the eigenfunc- 
tions of the Fokker-Planck operator L(x) ,  cp,(x), via the scaled potential 
6(x )  = @ ( x ) / ( k ~ T ) .  Note that the $n are eigenfunctions to the Hermitian 
operator L = e-'L(x)e', where t ( x )  and L(x)  have the same eigenvalues 

[14]. For a nonpathological case, the set of eigenvalues, { n } ,  is discrete 
and the eigenvalues are nonnegative. Thus, on arranging the eigenvalues in 
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increasing order, (i.e., 0 I 1qe < A I , ~  < 
iff there exists a stationary solution fulfilling the condition 

< . . .), the first eigenvalue is zero 

This stationary solution is then necessarily given through 

in full accordance with the Brownian case x = 1: It is the Gibbs-Boltzmann 
distribution. In contrast to this equivalence, it should be emphasized, the 
relaxation of a single mode n is subexponential, decaying slowly in the 
Mittag-Leffler fashion. This new relaxation pattern is distinguished by its 
interpolation between an initial stretched exponential (Kohlrausch) function 
and a final inverse power-law behavior (compare Appendix B). 

An important property of the FFPE (19) is the functional scaling relation 
160, 761 

in Laplace space, connecting the fractional solution Wu(x,  t )  determined by 
the FFPE (19), with its Brownian analogue Wl (x, t) .  In order for Eq. (49) to 
hold, the initial conditions Wa(x, 0) and W1 (x, 0) must, of course, be identi- 
cal. That means that the fractional solution Wa(x, t )  exists iff the Brownian 
solution Wl (x) exists. In Laplace space, WZ(x ,  u )  is the same distribution on x 
as W1 (x, (qu/q)ue)  for the scaled Laplace variable (qu/q)u' ,  only rescaled by 
the factor (qJy)u"- ' .  As suggested by Barkai and Silbey [77], relation (49) 
can be reformulated in terms of the transformation 

roo 

WZ(2/, t )  = J E(s ,  t )  WI (v, s) ds. 
0 

The kernel E(s ,  t )  is given through [78] 
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involving the one-sided LCvy distribution L:; that is, E(s ,  t )  has the charac- 
teristic function 

whose Laplace inversion leads to the representation [78] 

in terms of the Fox function Hi:: [SS, 561, with the series expansion 

The transformation defined through Eq. ( S O )  is a convenient tool for the 
numerical evaluation of the solution of the FFPE (19), once the Brownian 
solution is known. The scaling connection (49) and the transformation ( S O )  
guarantee the positivity of the fractional solution if only the corresponding 
Brownian solution is a proper pdf. 

D. A Word on the Mittag-Leffler Function 

Let us briefly examine the importance of the Mittag-Leffler function in relaxa- 
tion modelling. The mathematical properties of the Mittag-Leffler function 
are compiled in Appendix B. Besides via the series representation, the 
Mittag-Leffler function is defined through its Laplace transform 

. 2 { E " ( - ( t / T ) ' ) }  = (u  + T - " U l - " ) - I ,  (55 )  

or through the fractional relaxation equation [79] 

In Refs. 80 and 81 it is shown that the Mittag-Leffler function is the exact 
relaxation function for an underlying fractal time random walk process, and 
that this function directly leads to the Cole-Cole behavior [82] for the com- 
plex susceptibility, which is broadly used to describe experimental results. 
Furthermore, the Mittag-Leffler function can be decomposed into single 
Debye processes, the relaxation time distribution of which is given by a mod- 
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ified, completely asymmetric L&y distribution [43,8 I]. This last observation 
is related to the formulation of Mittag-Leffler relaxation described in Ref. 80. 
In Refs. 83 and 84, the significance of the Mittag-Leffler function was shown, 
where its Laplace transform was obtained as a general result for a collision 
model in the Rayleigh limit. 

The Mittag-Leffler function, or combinations thereof, has been obtained 
from fractional rheological models, and it convincingly describes the beha- 
vior of a number of rubbery and nonrubbery polymeric substances [79, 851. 
The numerical behavior of the Mittag-Leffler function is equivalent to 
asymptotic power-law patterns that are often used to fit experimental data, 
see the comparative discussion of data from early events in peptide folding 
in Ref. 86, where the asymptotic power-law was confronted with the 
stretched exponential fit function. 

E. The Fractional Ornstein-Uhlenbeck Process 

As an application of the method of the separation of variables, we consider 
the nonstationary behavior in the generalized, fractional version of the 
Brownian harmonic oscillator with the parabolic potential 

(57) 
1 2 2  Q ( x )  = -mo x , 
2 

which leads to the FFPE 

aW (:;I ksT "> 
_ _  x + - -  W ( x , t ) .  

a t  mu, 8x2 

Equation (58) is equivalent to the fractional Rayleigh equation [75, 771, and 
therefore we refer to Eq. (58) as the fractional Ornstein-Uhlenbeck process. 
For the sharp initial condition Wg(x) = S(x - xg), the solution to this process 
is, according to Eq. (46), given by 

employing the reduced variables tl= t / T  and i  = x d m ,  as well as 
z-" = 02 /q1 .  H,, denotes the Hermite polynomials, and the eigenvalues are 

= no2/q, .  The stationary solution corresponding to the lowest eigenva- 
lue n = 0, is constant and independent of z. The remaining terms decay in the 
course of time. Thus, for all a, the stationary solution is the Gibbs-Boltzmann 
distribution, as anticipated by the stationarity condition. The fractional solu- 
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tion (59) is displayed in Fig. 4, where we compare between the convergence 
of the series representation (59), and the numerical evaluation using the 
transformation (50). 

The first moment of the fractional Omstein-Uhlenbeck process can be cal- 
culated from Eq. (58). It evolves in time like 

reducing to the usual exponential relaxation behavior for a + 1. The second 
moment is given through 

Accordingly, the thermal equilibrium value ( x ~ ) , ~  = k ~ T / [ m o ~ ]  is reached 
for t + 00. The Mittag-Leffler function Eg(-2( t / z )" )  behaves like 
1 - 2( t / z )" /  r( 1 + a)  for short times and like ( t / z ) - " / [ 2 r (  1 - a) ] -  
( t / ~ ) - ~ " / [ 4 r ( l  - 2a)l for long times. Thus, for xo = 0 the short-time beha- 
vior of Eq. (61) follows Eq. (1) exactly and is independent of o. For long 
times, the thermal equilibrium value (x2)>, is approached slowly, in power- 
law form. This is illustrated in Fig. 5. 

IV. THE FRACTIONAL KRAMERS ESCAPE PROBLEM 

A. The Classical Kramers Escape Problem 

An interesting application of fractional dynamics is the modeling of the Kra- 
mers escape rate in complex systems where fractional dynamics prevails. 
Traditionally, such reaction rate problems [87]  are formulated through the 
Smoluchowski [19, 881 and Onsager [89] models in terms of diffusion in 
the presence of absorbing bodies, or in terms of the famed Kramers model 
dating back to his seminal paper of 1940 [22]. Kramers considered a point 
particle in phase space diffusing in the potential V ( x ) .  Being initially caught 
in a potential well, the particle can only escape over a potential barrier. 
Kramers promoted this model for the study of the dependence of the escape 
rate on temperature and viscosity. Alternative approaches for calculating rate 
reactions include the consideration of Markovian first passage time problems 
by Pontryagin, Andronow, and Witt [90], as well as first passage time pro- 
blems for the master equation considered by Landau and Teller [91], 
Montroll and Shuler [92], Weiss [93], and, more recently, Bar-Haim and 
Klafter [94], Benichou et al. [95], and Abe et al. [96]. 

Extensions of the Kramers model are considered necessary [92-94, 97- 
991 although there are refined versions of the original formulation [loo, 
10 I]. Such non-Markovian dynamics has been taken into consideration 
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Figure 4. (a) Pdf W ( x ,  t ) ,  Eq. (59), of the fractional Omstein-Uhlenbeck process, for the 
anomalous diffusion exponent 2 = 1/2. The initial value is chosen to be Wo(x) = S ( x  - 1). 
The maximum clearly slides toward the origin, acquiring an inversion symmetric shape. The 
curves are drawn for the times t = 0.02, 0.2, and 20, employing the integral relation with the 
Brownian solution. Note the distinct cusps around the initial position. (b) Comparison of the 
numerical behavior of the summation representation (dashed) with 15 1 summation terms and 
the integral representation (A transform). The latter is obtained by Mathemat i c a  
employing the numerical integration command N I n t e g r a t e .  The cusp which is a typical 
feature for subdiffusive processes is much more pronounced in the curve obtained through the 
integral transformation. The computation time for the latter is even shorter than for the 
calculation of the truncated sum so that this representation is preferrable for numerical 
purposes. 



246 RALF METZLER AND JOSEPH KLAFTER 

loglo t l r  

-1.75 

-2 

Figure 5. Mean squared displacement for the fractional (z = 1/2, full line) and normal 
(dashed) Ornstein-Uhlenbeck process. The Brownian process shows the typical proportion- 
ality to t for small times: it approaches the saturation value much faster than its subdiffusive 
analogue, which starts off with the t’/* behavior and approaches the thermal equilibrium value 
by a power law, compare Eq. (61) 

through generalized Langevin equations in the well-known models by 
Grote and Hynes [97] and by Hanggi et al. [98]. On the level of the Kramers 
equation, these generalized models lead to a formulation that is local in 
time and contains time-dependent coefficients. Consequently the associated 
Kramers survival probability still decays exponentially, but with a frequency- 
dependent rate [67, 97, 981. This contrasts the dynamic descriptions related 
to the generalized master equation that are nonlocal in time, and exhibit 
memory on the macroscopic level of the pdf [102]. In systems where 
this memory decays in the long-tailed, self-similar power-law fashion, frac- 
tional dynamics leads to the Mittag-Leffler survival pattern, as we are going 
to discuss in this section. 

In the standard overdamped version of the Kramers problem, the escape 
of a particle subject to a Gaussian white noise over a potential bamer is 
considered in the limit of low diffusivity-that is, where the bamer height 
AV is large in comparison to the diffusion constant K [14] (compare Fig.6). 
Then, the probability current over the potential barrier top near x,,, is small, 
and the time change of the pdf is equally small. In this quasi-stationary situa- 
tion, the probability current is approximately position independent. The tem- 
poral decay of the probability to find the particle within the potential well is 
then given by the exponential function [14, 221 

p ( t )  = PKr, (62a) 
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Figure 6. Potential well in the Kramers rate model. Initially the particle is assumed to be 
caught in the potential hole of depth AV = V(x,, ,)  - V(xmin). The x-axis corresponds to a 
reaction coordinate. 

where the Kramers rate is defined through [14, 221 

with AV = V(xmax) - V(xmin). In Eq. (62b), the exponential function con- 
tains the Boltzmann factor = (ksT)-’  so that the inverse Kramers rate 
follows the Arrhenius activation [lo31 r;’ cx eE*IT with E* = AV/ks .  
Similarly, the Kramers rate in the low viscosity limit is given through [22] 

r K  = qpAVexp(-/?AV). (62c) 

According to Kramers’ treatment, the proportionality of the Kramers rate to y~ 
in the low viscosity limit turns over to the inverse proportionality in the high 
viscosity. The interpolating behavior for arbitrary q was studied by Mel’nikov 
and Meshkov [104]. 

B. The Fractional Generalization of the Kramers Escape Problem: 
Mittag-Leffler Decay of the Survival Probability 

Let us now derive the fractional counterpart to the exponential decay pattern 
(62a). To this end, we note that the solution W, of the fractional Klein- 
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Kramers and Fokker-Planck equations can be expressed in terms of its 
Brownian analogue, W1, according to Eq. (49). Application of relation (49) 
to the Laplace transform p (  u )  = (rK + u)-' of the exponential survival prob- 
ability, Eq. (62a), produces 

By comparison with Eq. (55),  the Laplace inversion of Eq. (63) leads to the 
Mittag-Leffler shape [ 1051 

of the survival probability which includes the fractional Kramers rate 

Y 
Yc! 

r t '  = - rK. 

The fraction q /q l  = 19 is thus the rescaling of the classical Kramers rate 
according to the parameters classifying the multiple trapping system with 
broadly distributed waiting times. Similarly, in the underdamped case, one 
finds the fractional Kramers rate 

where y* = 29y replaces the classical friction q. According to Eqs. (64b) and 
(64c), our fractional Kramers model leads to the turnover in the friction 

turnover can be reconciled with the standard picture. Indeed, on combining 
the elementary constant 19 with the other constants in expressions (64b) and 
(64c), the traditional turnover ri("' IX q to r t '  ix l / q  is recovered for the 
fractional Kramers rate. This latter observation is due to the linearity of 
the fractional operator. As a consequence we note that the Arrhenius activa- 
tion nature of the Kramers rate is preserved in systems controlled by frac- 
tional dynamics. 

Often, one defines nonexponential relaxations in terms of a time-depen- 
dent rate coefficient k ( t )  through p ( t )  = exp(-k(t)t). For the fractional 
Kramers model one therefore obtains the rate coefficient k ( t )  = 
I In Ec!( -r t )P) l / t  which leads to two limiting cases, the short-time self-simi- 

dependence from r g )  ( ix Y* to ri("' ix 1/vE. This seemingly more complicated 
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lar behavior 

and the long-time logarithmic pattern 

It is interesting to note that the latter, up to some constants, is given by 
k ( t )  - lnt/t which is in this sense universal: that is, the functional form is 
independent of the waiting time index 2. 

C. An Example from Protein Dynamics 

Let us discuss a possible application of this fractional Kramers model to pro- 
tein dynamics. It was noted before [106-1091 that the dynamic process in 
proteins, like the rebinding process of carbon monoxide CO to myoglobin 
Mb , 

Mb + CO + MbCO, (66) 

after photodissociation is highly nonexponential and can be fitted by either a 
stretched exponential or an asymptotic power law, the latter being numeri- 
cally equivalent to the Mittag-Leffler behavior. Glockle and Nonnenmacher 
[ 1 101 have investigated the data within a fractional relaxation model; that is, 
they applied a Mittag-Leffler fit, as reproduced in Fig. 7. Interestingly, they 
observed an Arrhenius dependence of the rate of the process. In more detail, 
these authors assume that the fractional parameter a features a linear tem- 
perature dependence, a ( T )  = 0.41T/120K which might take the change of 
the protein-solvent system into account. From the data analysis they find a 
remarkable agreement with the Mittag-Leffler behavior, and the Arrhenius 
activation is given by T = z,eEr/T for the characteristic time which is related 
to the fractional Kramers rate through 7;) = z-‘. Conversely, the associated 
fractional Kramers rate is temperature-independent for this a ( T )  c( T model! 
The activation energy obtained from the data analysis according to the Mit- 
tag-LeffledArrhenius model, E,, complies well with the generally accepted 
values [ 1 lo]. Thus, selecting out the temperature dependence of a, one 
exactly finds the Arrhenius dependence as predicted by the fractional Fok- 
ker-Planck model. The insert in Fig. 7 shows this Arrhenius activation of T 
as found in Ref. 110. 

It has been claimed that reactions in proteins can, as an approximation, be 
formulated within the Kramers reaction theory of barrier crossing [ 1061. The 
highly nonexponential relaxation pattern can now be explained by our model, 

( 
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10-2 

Figure 7. Mittag-Lxffler model for the rebinding of CO to Mb, after a photodissociation. 
Data from Austin et al. [108]. The temperature dependence of TO follows the Arrhenius law 
shown in the insert, with the parameters T , ~  = 3.4 x lO-'Os and Er = 1470K. 

bearing in mind that the dynamic topology caused by the protein strand is 
basically equivalent to the polymer chains leading to the observation of sub- 
diffusion in the experiment of Amblard et al. [29]. Consequently, both the 
fractional relaxation (Mittag-Leffler) behavior and the Arrhenius dependence 
found by Glockle and Nonnenmacher can now be understood from our frac- 
tional dynamics model. 

In addition to the Kramers escape approach to ligand rebinding, a stochas- 
tic model was developed by Zwanzig [ 11 11 and by Eizenberg and Klafter 
[ 1121, who assumed a fluctuating bottleneck through which the ligand passes, 
the process leading to an exponential survival for a white Gaussian noise. We 
have generalized this model in Ref. 62 within fractional dynamics, recover- 
ing the Mittag-Leffler behavior found above. 

V. THE FRACTIONAL KLEIN-KRAMERS EQUATION: 
FRACTIONAL DYNAMICS IN PHASE SPACE 

A. The Multiple Trapping Model 

We now turn toward the phase space description of a test particle performing 
fractional dynamics, drawing upon Langevin's treatment of the Brownian 
motion of a scalar test particle in a bath of smaller atoms or molecules exert- 
ing random collisions upon that particle. In that course, Langevin [6] 
amended Newton's law of motion with a fluctuating force rnr(t). From this 
Langevin equation, it follows that the fluctuation-averaged phase space 
dynamics is governed by the Klein-Kramers equation [9, 13, 14, 211, the 
solution of which, the pdf W ( x ,  v, t )  to find the test particle at the position 
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x ,  . . . , x  + dx with the velocity v, . . . , v + dv, at time t ,  describes the macro- 
scopic dynamics of the system. Thus, we can distinguish the two limiting 
cases of (a) the Rayleigh equation controlling the velocity distribution 
W(v, t )  in the force-free limit and (b) the Fokker-Planck-Smoluchowski 
equation. 

Indeed, a similar theory can be developed for systems displaying frac- 
tional dynamics. Starting off from the classical Langevin equation with 
&correlated Gaussian noise, fractional dynamics emerges from the competi- 
tion of subsequent Langevin dominated motion events of average duration T*, 
interrupted through trapping events whose duration is broadly distributed. 
This multiple trapping scenario is of a quite general nature, and it offers phy- 
sical insight into fractional dynamics as described by the fractional Fokker- 
Planck equation. 

During the Langevin sections of the particle motion, the dynamics is con- 
trolled by the Langevin equation in the external force field F ( x )  = -(a'(x), 

d2x dx 
'u = - 

dt2 dt ' m- = -mqv + F ( x )  + m r ( t ) ,  

which describes the ongoing erroneous bombardment through small sur- 
rounding atoms or molecules via the fluctuating, &correlated Gaussian noise 
r ( t ) .  The velocity-proportional damping caused by effective interactions 
with the environment is characterized by the friction constant q. Averaging 
out the fluctuations, one finds the moments of the mean velocity increments 
~91, 

(Av) = ( q u  - _>n,, F ( x )  ( ( A u ) ~ )  = @ A t  + O([AtI2), (68) m 

from the Langevin equation (67) which are both proportional to the mean 
jump time At. Note that the noise-akeraged Eq. (67), m ~ ( 2 ) ~  = - r n q ( z ~ ) ~ +  
F ( x ) ,  corresponds to Newton's law of' motion. 

In the usual derivations of the Klein-Kramers equation, the moments of 
the velocity increments, Eq. (68), are taken as expansion coefficients in the 
Chapman-Kolmogorov equation [9]. Generalizations of this procedure start 
off with the assumption of a memory integral in the Langevin equation to 
finally produce a Fokker-Planck equation with time-dependent coefficients 
[67]. We are now going to describe an alternative approach based on the 
Langevin equation (67) which leads to a fractional Klein-Kramers equa- 
tion- that is, a temporally nonlocal behavior. 

Let us define the (multiple) trapping events. As mentioned before, trapping 
describes the occasional immobilization of the random walking test particle 
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for a waiting time which rules the time span elapsing between the immobi- 
lization and the subsequent release of the test particle. This waiting time is 
drawn from the waiting time pdf w(t). Such trapping has been recognized as 
the mechanism underlying the dispersive charge carrier transport in amor- 
phous semiconductors [23, 25, 261 and the motion of excess electrons in li- 
quids [113], and it occurs in the phase space dynamics of chaotic 
Hamiltonian systems [36]. 

In addition to trapping, it is supposed that the kmetic energy of a particle 
during a trapping-detrapping event is conserved, and that each trapping per- 
iod is followed by a motion event during which the particle moves in the bath 
of surrounding smaller particles in which it undergoes the same collisions as 
underlie the standard Brownian counterpart. Each of these motion events fol- 
lowing release from the trap is supposed to endure for the mean time z*. This 
means that while not being trapped, the test particle features a Markov beha- 
vior described by the Langevin equation (67). The immobilizing-release- 
walking scenario therefore combines trapping periods and Langevin 
dynamics in a sequential manner. The overall process is, in essence, the phase 
space extension of the multiple trapping model conceived in Ref. 23. In our 
model, the length x* = vthz*, where vth f ~l imr tW(v2( t ) )  is the thermal 
velocity, is the average distance between adjacent traps visited. 

B. The Fractional Klein-Kramers Equation 
and the Related Equations 

Fractional dynamics emerges as the macroscopic limit of the combination of 
the Langevin and the trapping processes. After straightforward calculations 
based on the continuous-time version of the Chapman-Kolmogorov equation 
[75, 1141 which are valid in the long-time limit t >> max{z, z*}, one obtains 
the fractional Klein-Kramers equation 

- aw =oD;-l ( -v*-+- a a ( q * u-- ':I) 
a t  ax dv 

Here, the Klein-Kramers operator has the same structure as in the Brownian 
case, except for the occurrence of the asterisked quantities that are defined 
through v* G v6, q* E q6, and F*(x) = F ( x ) 6  whereby the factor 6 is the 
ratio 

z* 6 E -  
z" 

of the intertrapping time scale z* and the internal waiting time scale z from 
Eq. (6). The stationary solution of the fractional Klein-Kramers equation 
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[Eq. (69)], W,,(x, v )  = limt-x W ( x ,  u, t )  is given by the Gibbs-Boltzmann 
equilibrium distribution Wst(x, u) = N exp{-bE} where E = imv2 + a((.), 
and N is the appropriate normalization constant. In the Brownian limit 
1im1+l, Eq. (69) reduces to the standard Klein-Kramers equation, as expected. 

Integration of Eq. (69) over velocity, and of u times Eq. (69) over velocity, 
results in two equations whose combination leads to the fractional equation 
[75, 1151 

Equation (7 1) reduces to the telegrapher’s-type equation found in the Brow- 
nian limit a = 1 [115]. In the usual high-friction or long-time limit, one 
recovers the fractional Fokker-Planck equation ( 19). The generalized friction 
and diffusion coefficients in Eq. (19) are defined by [75] 

- v ]  
Y 1  = 8 

and 

and are thus to be understood as a rescaled version of the well-defined phy- 
sical quantities v] and K .  Moreover, the generalized Einstein-Stokes relation 
(37) has now been obtained as a direct consequence of the interplay between 
the Langevin diffusion with the long-tailed trapping process. 

The integration of the fractional Klein-Kramers equation (69) over the 
position coordinate leads in, the force-free limit, to the fractional Rayleigh 
equation 

which is an example of the fractional Ornstein-Uhlenbeck process discussed 
in the preceding section. The solution of Eq. (73), the pdf W ( v ,  t ) ,  describes 
the equilibration of the velocity distribution toward the Maxwell distribution 
W,,(v) = & exp(-pyv2) with the thermal velocity u:h = ksT/m. 

This model for subdiffusion in the external force field F(x)  = -a’(.) 
provides a basis for fractional evolution equations, starting from Langevin 
dynamics that is combined with long-tailed trapping events possessing a 
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diverging characteristic waiting time T .  The first stage hosts the microscopic 
Brownian process, characterized by the mean stepping time z* that is basi- 
cally equivalent to a multiple of the mean jump time At in Eq. (68). If the 
characteristic waiting time is finite, T < 00, the trapping mechanism also pos- 
sesses its characteristic time scale. Therefore, the second stage brings two 
Poissonian processes together, and the macroscopic process defined as the 
long-time limit with respect to max{z*, T }  is Markovian, being determined 
by the standard Brownian Klein-Kramers equation. Conversely, if T --+ 00 
diverges, the time scales of the microscopic Brownian motion, z*, separates 
from the combined trapping-detrapping process. The latter occasionally fea- 
tures very long waiting times so that individual trapping events do not have a 
typical time scale and cannot be distinguished from the sampling of many 
trapping events on the macroscopic level, a situation that is typical for 
self-similar processes. The overall dynamics becomes fractional. 

The combined process is governed by the long-tailed forrn of the waiting 
time pdf, manifested in the fractional nature of the associated Eq. (69). 
Physically, this causes the rescaling of the fundamental quantity q by the scal- 
ing factor $ to result in the generalized friction constant qn = q/$ .  It is 
interesting to note that the kinematics level, force-free multiple trapping 
process from Ref. 113 in (x, t)-coordinates reveals the subdiffusive mean 
square displacement (x2(t)) cx t‘. 

The Langevin picture rules the Markov motion parts in between succes- 
sive trapping states. On this stage the test particle consequently obeys 
Newton’s law, in the noise-averaged sense defined above. Conversely, aver- 
aging the fractional Klein-Kramers equation (69) over velocity and position 
coordinates, one recovers the memory relation $ ( ( ~ ( t ) ) )  = ‘LYgDi-’((u(t))) 
between the mean position ( ( ~ ( t ) ) )  and the mean velocity ( ( u ( t ) ) ) .  This 
“violation” is only due to the additional waiting time averaging that camou- 
flages the Langevin-dominated motion events. 

VI. CONCLUSIONS 

Anomalous transport features have been reported for an increasing number of 
(complex) systems. Many of these systems underlie some sort of a general- 
ized limit theorem that is connected with LCvy statistics and thus with self- 
similar evolution patterns. This fact is mirrored in the long-time prevalence 
of power-law time behaviors of the related physical quantities. 

Fractional dynamics is a made-to-measure approach to the description 
of temporally nonlocal systems, the kinetics of which is governed by a self- 
similar memory. Fractional kinetic equations are operator equations that are 
mathematically close to the well-studied, analogous Brownian evolution 
equations of the Klein-Kramers, Rayleigh, or Fokker-Planck types. Conse- 
quently, methods such as the separation of variables can be applied. More- 



STOCHASTIC PROCESSES IN FRACTIONAL DYNAMICS FRAMEWORK 255 

over, the fractional solution exists if only the corresponding Brownian solu- 
tion exists. 

The characteristic changes brought about by fractional dynamics in com- 
parison to the Brownian case include the temporal nonlocality of the ap- 
proach manifest in the convolution character of the fractional Riemann- 
Liouville operator. Initial conditions relax slowly, and thus they influence 
the evolution of the system even for long times [62, 1161; furthermore, 
the Mittag-Leffler behavior replaces the exponential relaxation patterns of 
Brownian systems. Still, the associated fractional equations are linear and 
thus extensive, and the limit solution equilibrates toward the classical 
Gibbs-Boltzmann and Maxwell distributions, and thus the processes are 
close to equilibrium, in contrast to the LCvy flight or generalised thermo- 
statistics models under discussion. 

The physical foundation of fractional dynamics has been developed. Mul- 
tiple trapping featuring a competition between Langevin-dominated motion 
events possessing a characteristic time scale and broadly distributed trapping 
events has been shown to give rise to fractional dynamics in the long-time 
limit. Consequently, the coming into existence of the generalized diffusion 
and friction constants can be understood as a rescaling resulting from this 
competition between Langevin and trapping regimes in which finally the gen- 
eralized central limit theorem guarantees the dominance of the broad waiting 
time pdf. 

In our presentation, we concentrated on the modeling of subdiffusive phe- 
nomena-that is, modeling of processes whose mean squared displacement 
in the force-free limit follows the power-law dependence (."(t)) oc t K  for 
0 < K < 1. The extension of fractional dynamics to systems where the trans- 
port is subballistic but superdiffusive, 1 < K < 2, is presently under discus- 
sion [77, 781, (compare also Ref. 117). 

We finally note that a more mathematically oriented account of fractional 
equations in the description of anomalous kinetic processes has recently been 
published [ 1181. 
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APPENDIX A: A PRIMER ON LEVY DISTRIBUTIONS 

Historically, the central limit theorem, which guarantees the existence of the 
all important Gaussian limit distribution for processes with a finite variance, 
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had grown out of the inequality of Bienaym6, the theorems of Bernoulli and 
de Moivre-Laplace, and the law of large numbers. The central limit theorem 
has received a central role in the exact sciences and beyond, over centuries. 
Toward the turn of the twentieth century, mathematicians became interested 
in the possibility of a limit theorem for processes without a finite variance, 
ideas whose fundamentals actually go back to Cauchy. Such a generalized 
framework was conceived by Paul L6vy (after which the generalized normal 
distributions are named), A. Ya. Khintchine, W. Feller, A. M. Kolmogorov, 
and B. V. Gnedenko, among others. 

According to LCvy [43], a distribution F is stable iff for the two positive 
constants c1 and c2 there exists a positive constant c such that the random 
variable X given by 

C , X ]  + czx2 = c x  (Al l  

is a random variable following the same distribution F as the independent, 
identically distributed (iid) random variables X I  and X2. Alternatively, if 

a: 
y(z> = (eixz) = J' e'XzdF(X) ('42) 

-m . 
denotes the characteristic function of the distribution F ,  then F is stable iff 

Y(CIZ)(P(C2Z) = d4. (A3) 

A more general definition is given by Feller [ 121. We denote a LCvy stable pdf 
d F ( x )  as L,(x) and call a the Levy (stable) index. It can be shown that a 
stable law has a characteristic function of the form 

where a, p, y ,  c are constants ( y  is any real number, 0 < a 5 2, -I  < p < 1, 
and c > 0), and 

From Eq. (A4) it follows that the limiting case a = 2 corresponds to the 
Gaussian normal distribution governed by the central limit theorem. For 
p = 0, the distribution is symmetric. 1' translates the distribution, and c is a 
scaling factor for X .  Thus, y and c are not essential parameters; if we disre- 
gard them, the characteristic function fulfills 

~ q ( z ) l  = e-lzl', a # 1. (A61 
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Thus, one can write 

$ ( z )  = -1zl'exp (.:. z-sign(z) ) ('47) 

with the new centering constant p that is restricted in the following region: 

The pdff,,p(x) is the Fourier transform of cp(z),  defined by Eq. (A7): 

so that 
f r , ,  b) = fr .0  (-4 

is symmetric in x. 

power-law 
The asymptotic behavior of a LCvy stable distribution follows the inverse 

consequently, for all Levy stable laws with 0 < p < 2, the variance diverges: 

(x2)  + 93. ('413) 

Special cases include the Cauchy or Lorenz distribution 

for a = 1 and p = 0, as well as the one-sided or completely asymmetric dis- 
tribution L:(x) -- f K , - ? ( x )  if 0 < a < 1 and p = -a. For instance, the one- 
sided stable density for a = 1/2 and p = - 1 /2 is given by 

1 .-3/2,-1/4x L+ (x) = __ 
112 2 4 7  
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To obtain the characteristic function of a one-sided stable law, one calculates 
the Laplace transform. 

Let us examine the one-sided LCvy distribution dF(X)  = L;(t/z) with the 
characteristic function 

in more detail. Identification with the corresponding Fox function [55 ,  561, 

allows for the direct Laplace inversion, resulting in [56, 841 

with the corresponding series expansion 

from which we find the asymptotic behavior 

with A, = l//I'-ct)/, for 0 < ct < 1. For short times 1 << T ,  the one-sided 
LCvy distribution L: ( t / z )  becomes exponentially small (compare the discus- 
sion of nonexponential relaxation in Ref. 86). 

APPENDIX B: THE UBIQUITOUS 
MITTAG-LEFFLER FUNCTION 

The Mittag-Leffler function [44-461 can be viewed as a natural generaliza- 
tion of the exponential function. Within fractional dynamics, it replaces the 
traditional exponential relaxation patterns of moments, modes, or of the 
Kramers survival. It is an entire function that decays completely monotoni- 
cally for 0 < c( < 1. It is the exact relaxation function for the underlying mul- 
tiscale process, and it leads to the Cole-Cole behavior for the complex 
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susceptibility, which is broadly used to describe experimental results. It can 
be decomposed into single Debye processes, the relaxation time distribution 
of which is given by a one-sided L6vy distribution [80]. 

The Mittag-Leffler function is defined through the inverse Laplace 
transform 

from which the series expansion 

can be deduced. The asymptotic behavior is 

for t >> t, 0 < a < 1. Special cases of the Mittag-Leffler function are the 
exponential function 

and the product of the exponential and the complementary error function 

We note in passing that the Mittag-Leffler function is the solution of the frac- 
tional relaxation equation [84] 

The Mittag-Leffler function interpolates between the initial stretched expo- 
nential form 

and the long-time inverse power-law behavior (B3). For a > 1, the Mittag- 
Leffler function shows oscillations [44-46]. 
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