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We consider advection processes following anomalous statistics on an effective transport level, within the
framework of fractional kinetic equations. We discuss different realistic situations such as Galilei variant and
invariant advection, as well as dispersive sedimentation processes. Exact analytical solutions for the plume
and the moments characterizing these transport processes are calculated. We introduce an estimation for the
breakthrough of the tracer in the dispersive processes.

I. Introduction

Advection in a Brownian system can either be modeled
through the diffusion-advection equation1-3

if the advective drift (V)∂W/∂x is brought about by an external
velocity field V, or in terms of the monovariate Fokker-Planck
equation3,4

if the drift is caused by an external, constant forceF, e.g., by
gravitation. Equation 2 is often referred to as Smoluchowski
equation. Both eqs 1 and 2 are of the same structure, describing
the motion of a scalar test (tracer) particle under the influence
of a constant drift, and therefore we refer to both as diffusion-
advection equations. Thereby,K is the diffusion coefficient,m
denotes the mass of the tracer particle, andη is the friction
constant, a measure for the effective interaction between the
diffusing particle and its environment. Both types of diffusion-
advection equations define a problem which is Galilei invariant,
and the solution is given by

wherea* ) V or a* ) F/(mη), andP(x,t) is the solution of the
diffusion equation

This is, P is given by the wellsknown Gaussian probability
density function (pdf)

for the sharp initial valueP0(x) ≡ limtf0+P(x,t) ) δ(x). Note
that here and in the following, we consider the one-dimensional
case.

Typical realizations of such ideal advection systems, where
V or F are constants, are encountered in the center section of a
Hagen-Poiseuille flow, or in a constant gravity or electric field,
two examples highlighting the importance of such models for
the spreading of a scalar tracer, e.g., a pollutant, in a groundwater
flow system, and its sedimentation therein.5-9

In what follows, we consider modifications of eqs 1 and 2
which we believe to be a fair effective description in systems
where the existence of porous structures or similar ramified,
restricted geometries, leads to an anomalous transport behaviour.

The Brownian nature underlying both eqs 1 and 2 is manifest
in the mean-square displacement

which increases linearly in time. This is actually an outcome
of the central limit theorem.1,10-12 In the following, we
concentrate on such kinds of systems where the existence of
broad transport statistics leads to a mean-square displacement
of the form12-14

which may comprise subdiffusion (0< R < 1) and superdif-
fusion (R > 1). Processes called Le´vy flights (see below) are
even characterized by a diverging mean-square displacement,
〈(∆x)2〉 f ∞ as they occasionally exhibit extremely long
displacements in a single jump event.

In what follows, we introduce our concept of modeling
anomalous diffusion in terms of fractional equations. The
explicit derivation of such equations is briefly reviewed and
the concept of fractional models for anomalous diffusion in an
external velocity or force field is established. The main emphasis
will be put on subdiffusive phenomena.
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II. Continuous Time Random Walks and Fractional
Dynamics: From Amorphous Semiconductors to the
Flight of an Albatross

In their studies of charge carrier transport in a constant electric
field in amorphous semiconductors, during the advent years of
the photocopying process, Harvey Scher, Elliott Montroll, and
collaborators discovered a certain universality in the experi-
mental data obtained for the time dependence of the electrical
current which was inconsistent with a Brown/Gaussian descrip-
tion of the charge carrier motion: some sort of anomalous
transport process had to be assumed. Their ideas crystallized
in the modified random walk picture in which it was assumed
that due to the amorphous nature of the semiconductor material,
trapping processes occur in which the moving charge carriers
get immobilized for a certain time span, the so-called waiting
time which is supposed to be drawn from the waiting time pdf.
The assumption of a waiting time pdf with a diverging first
moment turned out to lead to a remarkably accurate description
of all experimentally accessible quantities, including their
parametric dependence.15-17 These studies on the footing of the
Montroll-Weiss model18 led to the success of what is now
known as the continuous time random walk (CTRW) model.

Brownian, as well as non-Brownian motion, is described by
two pdfs in this CTRW picture, namely the waiting time pdf
w(t) which governs the pausing time spans elapsing between
any two jump events, and the jump length distributionl (x) from
which the magnitude of the jumps is drawn. Accordingly, the
probability of just havingarriVedat a certain positionx at time
t, p(x,t) obeys the convolution integral equation19

by which this quantityp(x,t) is related to the pdf of just having
arrived in x′ at an earlier timet′. Note the assumption of
instantaneous jumps and the explicit occurrence of the initial
value p0(x) ≡ limtf0+ p(x,t) stating that initially the tracer
particles arrive simultaneously at their starting points. The pdf
to be at positionx at some timet, P(x,t), is then related to the
cumulative sticking probability (the probability that the particle
waits in its site for longer thant),

in the following way:

i.e., a particle is atx at time t if it arrived there in a previous
time t′ and has not moved since. In Fourier-Laplace space,
the relations 8-10 can be recast into the convenient algebraic
form19

wherek denotes the wave number andu the Laplace variable.
Three basic classes of diffusion within this multiplicative CTRW
picture can be distinguished, according to the finiteness or
divergence of the characteristic waiting time

and the jump length variance

(i) If both Σ2 and T are finite, the process belongs to the
domain of attraction of the central limit theorem, and the
resulting transport process corresponds to Brownian motion. A
possible realization is the choice of a Poissonian waiting time
pdf and a Gaussian jump length pdf according to

by means of which, in the long time and long distance limit
w(u) ∼ 1 - uτ, l(k) ∼ 1 - σ2k2, one can by virtue of eq 11
immediately recover the standard diffusion eq 4.

(ii) If Σ2 is kept finite but a waiting time pdf of Le´vy stable
type is introduced which features the asymptotic long-tail
behavior

the associated dynamical process leaves the basin of attraction
of the central limit theorem asT f ∞ diverges, and the pdf of
this random walk is no longer given by the Gaussian pdf (eq
5). Inserting the Laplace transform of such a waiting time pdf,
w(u) ∼ 1 - (uτ)R, into relation 11 and inverting into the
position-time domain, one recovers the fractional diffusion
equation (FDE)14,20-23

by means of the generalized integration theorem
L{0Dt

-RP(x,t)} ) u-RP(x,u) of the Laplace transformation.24

Equation 16 is written in the integral form. A standard
differentiation leads to the differential form of the FDE,

Here, the fractional Riemann-Liouville operator
0Dt

-R ≡ d/dt 0Dt
-R is defined by the convolution24

From equation 18 it becomes clear that the FDE (eq 17)
describes a non-Markovian process with a slowly decaying
memory. The generalized diffusion constantKR is given through
KR ≡ σ2/τR and has therefore the fractional dimension [KR] ≡
cm2 s-R. Note that the dynamical origin of this generalized
diffusion constant has recently been discovered for a trapping
system as a time-rescaled version of its Brownian counterpart,
K,25,26 see also below.

In terms of Fox’sH-function the exact analytical solution14,20

for the pdfP(x,t) can be found for eqs 16 and 17 which exhibits
the asymptotic stretched Gaussian behavior
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This asymptotic result has the same structure as the solution
reported in ref 27 for the continuous time random walk model.

(iii) The third case is related to a finite characteristic waiting
time T in combination with an infinite jump length varianceΣ2

f ∞ which comes about via a Le´vy stable pdf forl(x), issuing
the long-tail asymptotics50

Following along the same steps as for item (ii), one recovers
the FDE

with Kµ ≡ σµ/τ for this process, where the fractional Weyl or
Riesz51 operator-∞Dx

µ is defined through52

From eq 23 follows the convenient relation

which generalizes the differentiation theorem of the Fourier
transformation. The FDE (eq 22) describes Le´vy flights.22 The
latter have a fractal trajectory where local rambling is followed
by long sojourns. This taking place on all length scales one
encounters the typical clustering shown in Figure 1 where the
Lévy flight trajectory is compared to the coillike trajectory
determined by anl(x) with finite Σ2 which is typical for
Brownian and subdiffusive phenomena, items (i) and (ii).

Note that in the case of Le´vy flights, the mean-square
displacement diverges,〈x2〉 f ∞; often, the broadening of the
pdf P(x,t) of the Lévy flight random walk in the course of time
is quantified in terms of pseudo mean square displacements.14

It is worth while mentioning that such Le´vy trajecotries are
assumed to describe qualitatively the search for food of certain
living systems such as bacteriae,28,29butterflies, or an albatross.30

The basic idea is that the space is screened much more
efficiently for food in the case of a Le´vy flight. The efficiency
of Lévy flights in spatial screening also explains why they can
model the gaze shifts that occur during the visual exploration
of an image.31

III. Breaking the Spatial Isotropy: Fractional
Diffusion-Advection Equations

The above presented CTRW modeling and the fractional
equations derived therefrom correspond to random walk pro-
cesses where each jump has equal directional probability to go
left or right. In those cases where external fields destroy this
isotropy, or even the homogeneity of the problem, the concept
has to be generalized. For anomalous processes such a general-
ized concept in terms of fractional equations has been developed
for transport in external velocity fields23,32-36 and in external
force fields.23,25,26,37-42 This straightfoward extension demon-

strates the advantage of the fractional kinetic equation approach.
In what follows, two fractional diffusion-advection equations
are presented which are Galilei invariant and variant, respec-
tively. Fractional sedimentation processes are considered in the
next section.

A. Galilei Invariant Fractional Diffusion -Advection Model.
Galilei invariant processes occur in uniform flow fields such
as underground water arteries and denote a stationary state which
is described by the Galilei-shifted propagator

The belonging fractional diffusion-advection equation (FDAE)
is obtained by observing that the jump statistics in the moving
frame are still the same as dealt with in the preceding section,
and are given by the jump pdfψ(x,t) ) l(x)w(t). In the laboratory
frame, the corresponding quantity is thus given by the pdfπ(x,t)
) ψ(x - Vt,t) (i.e., after waiting a timet the jump length
distribution is no longer centered around where the tracer landed
but around where it has been dragged to by the fluid), equivalent
to the relationπ(k,u) ) ψ(k,u + ikV) in Fourier-Laplace space.
One readily recovers the FDAE23

for the subdiffusive case, and the FDAE23

for Lévy flights. In both cases, the Galilei invariance is reflected
by the occurrence of the drift term (V)∂W/∂x in eqs 26 and 27.
This simple behavior is also manifest in the first moment valid
for both cases,

and in the mean-square displacement for the subdiffusive case,
〈(∆x)2〉 ) 2KRtR/Γ(1 + R) which is of the same form as the
free contribution, eq 7. Note that the existence of the first
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Figure 1. Comparison of the trajectories of a Brownian or subdiffusive
random walk (left) and a Le´vy walk with indexµ ) 1.5 (right). Whereas
both trajectories are statistically self-similar, the Lévy walk trajectory
possesses a fractal dimension, characterizing the island structure of
clusters of smaller steps, connected by a long sojourn. Both walks are
drawn for the same number of steps (approximately 7000).
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moment in the Le´vy flight case, and therefore a proper velocity,
is due to our assumption 1< µ < 2 in eq 21.

In Figure 2 we plotted the subdiffusive solutionW(x,t) from
eqs 25 and 19 for successive times. Note the distinct cusp of
the fractional solution, in comparison to the Brownian analogue
graphed in Figure 3 for the same sequence of times. For plotting
the fractional solution we made use of the properties of the Fox
function as listed in the Appendix.

Galilei invariant subdiffusion should occur in the random
motion of a small bead immersed in a flowing polymer solution
where the dynamic obstacles formed by the polymer chain lead
to the slow dispersion of the bead. Similar situations might occur
when tracer substances disperse in certain formations of morain
or other sediment-enriched flows.

However, the case where the same tracer particles diffuse in
a nonuniform velocity field and under the influence of boundary
conditions is not as trivial. One instance of this is the situation
where the particles diffuse in a Poiseuille-like flow between
parallel plates. In ref 33 this situation is looked at making use
of eq 17 for the transversal direction and of a Langevin equation
for the longitudinal direction. The results show that the leading
term in the dispersion of the tracers at long times is a coupling
effect of convection and transversal diffusion, thus deserving
the name of generalized Taylor dispersion:

where l is the distance between the plates andV2 is typically
the square of the mean velocity, assumed nonuniform (for the
uniform case the term in eq 29 vanishes and only eq 7 remains,
as expected).33

B. Galilei Variant Fractional Diffusion -Advection Equa-
tion for Trapped Particles and “Partial Sticking”. An
interesting variation of the Galilei invariant model developed
above arises for such cases where so-called “partial sticking”
occurs. In such systems the tracer particle gets trapped in the
pores or similar obstacles of the substrate off the velocity
backbone, but when it eventually jumps, it jumps forward to
catch up with the moving fluid, i.e., the average jump length of
the particles that were trapped for a timeτ is Vτ. A possible
realization of partial sticking might occur if the tracer particle
leaves the velocity backbone which winds through the substrate,
and this particle finds a shortcut along an offstream connection
in order to rejoin the backbone somewhere downstream. Such
situations might be relevant in ramified aquifers where fine
channels exist alongside the main flow. The measured velocity
of the partial sticking model,RV, which is obtained from the
first moment and which is related to the backbone only, is
consequently smaller than the actual drag velocity,V. In such a
scenario, the Galilei invariance is broken during the waiting
times (the pdf for the jumps is actually a Galilei transformation
of the pdf in the static case,π(x,t) ) ψ(x - Vt,t), while the
cumulative sticking probability is not transformed23), and the
governing FDAE becomes23

In comparison to eq 26, an additional term occurs which is
proportional to the square of the drag velocity,V2, and which
vanishes in the Brownian limitR ) 1. The difference to the
Galilei invariant model is best observed in the temporal
evolution of the moments:

It is interesting to note that the drift grows still linearly with
time, but that the effective velocityV* ≡ RV, is the drag velocity
rescaled by the anomalous diffusion exponentR ∈ (0,1]. In the
mean-square displacement, a ballistic contribution adds to the
free diffusion contribution so that a turnover from the∝tR region
to the ballistic behavior∝t2 can be observed. This very efficient
dispersion can be understood imagining that a trapped particle
is much more efficiently separated from an other particle which
gets dragged along with velocityV. We may thus also expect
to see enhanced dispersion in other kinds of trapping mecha-
nisms as shown in the next subsection.

C. Galilei Variant Fractional Diffusion -Advection Equa-
tion for Trapped Tracers with Mean Flight-Time. In this
model it is assumed that the tracer particles are trapped in the
pores of the substrate in which the transport process takes place
during the waiting times but their subsequent jumps are
independent of the preceding waiting time. Instead, the jumps

Figure 2. Galilei invariant subdiffusive model. The propagator is
shown for the dimensionless timest ) 0.02, 0.2, and 2. The propagator
is symmetric with respect to its maximum which is translated with
velocity V ) 1. The cusps marking the initial condition are distinct in
comparison to the Brownian result shown in Figure 3.

Figure 3. Galilei invariant Brownian model. The propagator is shown
for the dimensionless timest ) 0.02, 0.2, and 2. The propagator is
symmetric with respect to its maximum which is translated with velocity
V ) 1. The fast decay of the initial condition is mirrored in the smooth
peak of the distribution, compare to the subdiffusive result shown in
Figure 2.
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depend on the velocity at their starting points and on an average
time-of-flight τa, which is eventually taken to vanish to be
consistent with the instantaneous jump assumption. This model
was originally conceived for stationary but space-dependent
velocity fieldsV(x).32,34 In this scheme, the jump pdf is now

determining the shape of the laboratory frame jump pdfπ(x,t;x0).
Relation 34 expresses the dilation experienced by the dragged
particle in terms of the velocity at prior positionx0 where the
motion event started, during the average dilation timeτa. Then,
a cleverly introduced limitτ f 0, τa f 0, andσ2 f 0 leads to
the fractional diffusion-advection equation32,34,35

AR being an advection parameter arising from this derivation
and, as argued below, formally related to the advection velocity.
Note that eq 35 has the same structure as the fractional Fokker-
Planck equation.40-42 In fact, eq 35 can be thought of as a
Brownian process, interrupted by energy conserving trapping
events.25,26 In this multiple trapping scenario, the particle
dynamics is governed by the Langevin equation withδ-cor-
related Gaussian noise during the free motion events. Occasion-
ally, the particle gets immobilized in traps which might be
related to impurities in a semiconductor, or to pores in a
disordered environment. If such trapping periods are governed
by a broad waiting time pdf of the form eq 15, and the mean
distance between individual traps is of finite measure, the overall
dynamics becomes fractional, being controlled by the fractional
Klein-Kramers equation whose overdamped limit is the
fractional Fokker-Planck equation.25,26 In the presented advec-
tion model this means that adsorption or geometrical trapping
in pores confines the particle successively, for self-similar time
spans without a characteristic time scale.

Let us investigate eq 35 for a constant velocity. The resulting
equation

with V* ) ARV is not Galilei invariant in the sense of the constant
velocity shift x′ f x - Vt. It can be proved that eq 36 does
neither fulfill a generalized Galilei invariance of the formx′ f
x - ctR which might be anticipated from the first moment, eq
40 below. This fact becomes obvious regarding the temporal
evolution of W(x,t) from eq 36 displayed in Figure 4. As is
known from the continuous time random walk model for broad
waiting time distributions,9,15-17 the initial distribution decays
only very slowly in the course of time so that the distribution
becomes more and more skewed. This growing asymmetry
clearly rules out any kind of generalized Galilei shift of the
pdf.

Figure 4 was obtained as follows. Note that the normalized
solution of eq 36 in Laplace space fulfils the scaling relation
WR(x,u) ) uR-1W1(x,uR) between the fractional solutionWR and
its Brownian counterpart,

for V,K ≡ 1.40 In the time domain this corresponds to the
transformation43

where the kernelA(s,t) is given through the inverse Laplace
transformation

which corresponds to a one-sided Le´vy distribution. ForR )
1/2, one findsA(s,t) ) (πt)-1/2 exp(-s2/(4t)). This representation
was used in producing Figure 4 by help of the NIntegrate script
in Mathematica.44 This method turns out to be rather fast and
robust in convergence. It is superiour to the analytical repre-
sentation in form of a series.14 Note that the transformation eq
38 guarantees the nonnegativity of the fractional solution.

The moments for the Galilei variant fractional diffusion-
advection process can be straightforwardly calculated from eq
36 through the fundamental relation0Dt

qtp ) Γ(1 + p)tp-q/
Γ(1 + p - q) of the Riemann-Liouville operator. One obtains

Consequently, the first moment is sublinear in time and thus
mirrors the spatial sticking brought about by the long-tailed
waiting time distribution. The second moment features a
turnover from an initialtR to a t2R behavior which stems from
the much more efficient separation of two particles the one of
which is trapped.

1. Application to a Stratified Random Velocity Field.A
particular interesting situation for groundwater flow research
is the question of diffusion of tracer particles in a stratified
random velocity field. Matheron and de Marsily45 were the first
to address this issue for the Brownian case. In ref 46 this same
situation is further explored in higher dimensions and compared
to trapping problems. Recently, diffusion in a stratified random
velocity field has also been studied when the tracer particles
diffuse according to the non-Galilei invariant scheme that we
present in this section.33 There, eq 31 is solved for a stationary
but nonhomogeneous two-dimensional random velocity field
given byVy ) 0 and〈Vx〉 ) 0, 〈Vx(y)Vx(y′)〉 ) σ2δ(y - y′). The
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Figure 4. Galilei variant subdiffusive model with mean flight time,R
) 1/2. The propagator is shown for the dimensionless timest ) 0.02,
0.2, and 2. The propagator is asymmetric with respect to its maximum
which stays fixed at the origin. The plume stretches more and more
into the direction of the velocity.
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squared mean displacement obtained33 is

which is slower than the typical behavior of Fickian diffusion
in this same situation:47 〈xj2〉 ∼ t3/2. The interest of this result
relies on the fact that it is an exact derivation of the dispersion
of a tracer particle in a substrate that shows two kinds of
structural complexity: random stratification of the velocity field
and trapping mechanism in diffusion. Both of these effects are
expected to play a role in tracer diffusion in porous aquifers.

D. Quantitative Analysis of Fractional Diffusion-Advec-
tion Processes and Their Measurement.1. Drift Velocity.A
convenient measure for diffusion-advection problems is the
drift velocity which can be defined through

and which quantifies the propagation of the peak of the pdf
W(x,t) in a homogeneous velocity field. For the different models
presented in this section, the results are the constant drift velocity
Vd ) V in the Galilei invariant fractional case, Section IIIA, the
constant rescaled drift velocityVd ) RV in the Galilei variant
fractional case with “partial sticking”, the monotonically
decreasing “effective” drift velocityVd ) V* tR-1/Γ(R) in the
Galilei variant fractional case with mean flight time, andVd )
t3γ/4-1 for the stratified velocity field in Section IIIC. In Table
1 we summarize the temporal behavior of the different models,
showing that the different transport mechanisms lead to
considerably different temporal evolution of the systems.

2. Flank Velocity.The propagation of the center of the
distribution (the center of mass of the diffusing tracer substance)
is not always an adequate measure. Especially when convection
is weak, a considerable contribution to the spreading of the tracer
which can be observed in breakthrough experiments come from
the spreading flanks of the pdfW(x,t) itself which is character-
ized by the square root of the mean-square displacement. In
addition to the drift velocity (eq 43), we therefore propose the
flank velocity

as a measure when a considerable portion (half of the remaining
peak concentration) of the tracer arrives at a certain position.

The advance of the flank given through the relation (x〈(∆x)2〉
+ 〈x〉) delivers an approximation for the breakthrough of the
tracer. The corresponding time needed to reach this point is an
estimation for the breakthrough time.

In the velocity advection schemes developed in this section,
the flank velocity is given through

for the Galilei invariant fractional model from Section IIIA,
through

in the long time limit for the Galilei variant model (eq 30) with
“partial sticking”, and through

for the Galilei variant model (eq 36) with mean flight time where
we used

Note that now the long time result has a different prefactor than
the corresponding result forVd.

Accordingly, only the model with mean flight-time shows
an ever-decreasing drift or flank velocity whereas the other
fractional advection models tend toward a constant value. This
corresponds to the scale-free waiting time process involved, i.e.,
the particle is successively immobilized for comparably long
waiting time spans.

IV. Dispersive Sedimentation Processes

Subdiffusion in an external force field has recently been
formulated in terms of a fractional Fokker-Planck equation
(FFPE)40 which has been derived from random walk prin-
ciples41,42and from a dynamics approach based on a Langevin
equation coupled with trapping.25,26The FFPE for subdiffusion
in the external force fieldF(x) ) -Φ′(x) reads14,25,26,40-42

and is thus very similar to the fractional diffusion-advection
eq 35. In eq 49,m is the mass of the tracer particle,ηR the
generalized friction constant, andKR denotes the generalized
diffusion constant. It has been shown that the generalized
Einstein-Stokes relationKR ) kBT/[mηR] and the second
Einstein relation〈x〉F ) 1/2F〈x2〉/kBT between the first moment
in the presence of the constant forceF and the force free second
moment are fulfilled. Moreover, the generalized coefficientsKR
and ηR have been derived as time-rescaled versions of their
Brownian analogues. The stationary solutionWst(x) ≡ limtf∞
W(x,t) defined through∂W/∂t ) 0 is given through the Gibbs-
Boltzmann formWst(x) ) N exp (-Φ(x)/[kBT]), hence the FFPE
(eq 49) is close to thermal equilibrium.40-42

For the investigation of the fractional sedimenation process,
we assume the gravity fieldF(x) ) -mg so that the corre-
sponding fractional Fokker-Planck equation reads

TABLE 1. Growth of the Drift in the Various
Diffusion-Advection Modelsa

t d1(t) d2(t) d3(t) d4(t) d5(t)

1 s 10 cm 5 cm 10 cm 10 cm 10 cm
1 min 6 m 3 m 77 cm 2.2 m 46 cm
1 h 360 m 180 m 600 cm 46 m 2.2 m
1 day 8.6 km 4.3 km 30 m 0.5 km 7.1 m
1 week 60 km 30 km 78 m 2.2 km 15 m
1 year 3200 km 1600 km 561 m 42 km 65 m

a The chosen drag velocity isV ) 10 cm/s and the anomalous
diffusion exponent isR ) 1/2. Here, d1 ) Vt, eq 28, is the Galilei
invariant drag withVd ) V; d2 ) RVt is the Galilei variant drag with
“partial sticking” (eq 31) whereVd ) RV; d3 ) V* t1/2/Γ(3/2) for the Galilei

variant model, eq 40, withV*/Γ(3/2) ) 10 cm/s1/2; d4(t) ) xA* t3/2 for
the Matheron/de Marsily case, eq 42 withR ) 1, for A* ) 100 cm2/

s3/2; d5(t) ) xA* t3/4 for the fractional Matheron/de Marsily case, eq
42, with the deliberate choiceA* ) 100 cm2/s3/4.

〈xj2〉 ∼ A2
Rσ2

xKR

t3R/2 (42)

Vd ≡ d〈x〉
dt

(43)

Vf ≡ d
dt

(x〈(∆x)2〉 + 〈x〉) (44)

Vf ) x RKR

2Γ(R)
tR/2-1 + V ∼ V (45)

Vf ∼ (xR(1 - R)
2

+ R)V (46)

Vf ∼ (xRΓ(1 + R) + 1)
V* tR-1

Γ(R)
(47)

R )
2Γ2(1 + R) - Γ(1 + 2R)

Γ(1 + 2R)Γ2(1 + R)
(48)

∂W
∂t

) 0Dt
1-R[- ∂

∂x
F(x)
mηR

+ KR
∂

2

∂x2]W(x,t) (49)
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whereg* ≡ g/ηR. This is equivalent to eq 36 discussed before.
For the case of diffusion-advection, adequate information

on the process can be obtained from the first two moments.
Sedimentation processes are, for realistic parameters, much
slower and therefore it might be desirable to also measure higher
order moments. For the dispersive sedimentation FFPE (eq 50)
the moments are readily calculated from the Fourier-Laplace
transform

the result being

whereM ) [m/2] denotes the Landau bracket (the integer part)
of m/2.

Note that the Fourier transform ofW(x,t) is given in terms of
the Mittag-Leffler function14,26

through

which expresses the relaxation of a single Fourier modek.
An important measure for sedimentation processes is the

speed with which the major part of the tracer is setting down.
In analogy to the definitions of the drift and the flank velocities
in the case of the velocity advection, two definitions are possible
from which we mention the analogue of the drift velocity, the
conventional setting velocity which is defined through8

In the Brownian case,Vs ) -g/η. By the definition ofη, η ≡
6πaR/m, in terms of the radiusa and the massm of the tracer
particle, the friction constantη behaves proportional to the
viscosity R of the embedding fluid. Thus,Vs ) -mg/[6πaR]
equals the result from the force equilibrium of a particle whose
falling velocity equals the Stokes force:mg ) 6πaRV.

In the subdiffusive case,Vs is only an effective velocity, and
it is explicitly time dependent:

The setting process is illustrated in Table 2 with some rough
estimations for the Brownian and the subdiffusive models, the
strong difference between the temporal evolution being manifest
especially for longer times.

V. Conclusions

We have demonstrated that the extension of the classical
diffusion-advection framework to anomalous diffusion brings

about a number of different possible scenarios, these being
Galilei invariant or variant. We have collected and discussed
some existing models, in an integral presentation. For processes
with a mean flight time, we have presented novel results,
especially concerning the turnover observable in the mean
squared displacement. Moreover, we have suggested some
quantitative analysis of fractional advection processes. For the
first time, sedimentation processes have been considered, and
their proximity to the advection process with mean flight time
has been shown.

The presented fractional models are oversimplifying real
systems where the layer structure features numerous changes
in density, structure, and other parameters in dependence of the
localization. Nevertheless, even the models under discussion
show the importance of the knowledge about the very nature
of the transport process, Brownian or anomalous, and its
characteristic quantities such as the anomalous diffusion expo-
nent or the generalized friction and diffusion constants. Depend-
ing on their magnitude, the resulting transport process might
show huge deviations from a classical description in terms of
Brownian motion. We believe that our analysis may contribute
to the demanding field of the study of the groundwater dynamics
and other realizations of advection problems in complex systems.
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Appendix A: the Fox Function and its Representation in
Computable Form

The Fox function48,49 is defined through the Mellin-Barnes
type integral

with the integral density:

An H-function can be expressed as a computable series in the
form48,49

∂W
∂t

) 0Dt
1-R[ ∂

∂x
g* + KR

∂
2

∂x2]W(x,t) (50)

W(k,u) ) 1

u + ikg*u1-R + k2KRu1-R (51)

〈xm〉 ) (-1)m∑
j)0

M

m! ( m - j
j )(g*)m-2jKR

j tR(m-j)

Γ(1 + R(m - j))
(52)

ER(-z) ) ∑
n)0

∞ (-z)n

Γ(1 + Rn)
(53)

W(k,t) )
ER(-[k2KR + ikg*] tR) ∼ ([k2KR + ikg*] tRΓ(1 - R))-1 (54)

Vs ≡ d〈x〉
dt

(55)

Vs ) - gtR-1

ηRΓ(R)
(56)

TABLE 2. Temporal Growth of the Drift in the Brownian
and Subdiffusive Sedimentation Modelsa

t d1(t)/cm d1/2(t)/cm

1 s 4.7× 10-5 4.7× 10-5

1 h 0.17 0.0028
1 day 4.1 0.014
1 week 28.4 0.04
1 year 1482 0.26

a It was assumed that for very short times, here 1 s, the covered
distance is the same for each model. An experimental analysis would
start with the measurement of the anomalous diffusion exponentR and
the actual transport coefficientηR from a field measurement, and then
extrapolate the behavior. However, even the chosen fictitious numbers
demonstrate the huge difference in the sedimentation, surely a very
relevant conclusion for environmental considerations.

Hp,q
m,n[z|(a1, A1), (a2, A2), ..., (ap, Ap)

(b1, B1), (b2, B2), ..., (bq, Bq) ]) 1
2πi∫L

dsø(s)zs (A1)

ø(s) )
Π1

mΓ(bj - Bjs)Π1
nΓ(1 - aj + Ajs)

Πm+1
q Γ(1 - bj + Bjs)Πn+1

p Γ(aj - Ajs)
(A2)
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For large argument|z| f ∞, the Fox functions can be expanded
as a series over the residues

to be taken at the pointss ) (aj - 1 - ν)/Aj, for j ) 1, ...,n.
The series expansion shows a rather slow convergence in

numerical evaluations. IfR is a rational number, the Fox function
from eq 19 can be reduced to a MeijerG-function which is
implemented in Mathematica.44 For R ) 1/2, the corresponding
result reads

by twice using the duplication formula of the Gamma function
in the Mellin-Barnes type integral (A1) defining the Fox
function.48,49 The corresponding notation in Mathematica is
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Hp,q
m,n(z) ) ∑

h)1

m

∑
V)a

∞ ∏
j)1,j*h

m

Γ( bj - Bj(bh + V)/Bh)

∏
j)m+1

q

Γ(1 - bj + Bj(bh + V)/Bh)

×

∏
j)1

n

Γ(1 - aj + Aj(bh + V)/Bh)

∏
j)n+1

p

Γ(aj - Aj(bh + V)/Bh)

(-1)Vz(bh+V)/Bh

V!Bh

(A3)

Hp,q
m,n(z) ∼ ∑

V)0

∞

res(ø(s)zs) (A4)

W(x,t) ) 1

x2π2K1/2t
1/2

H0,2
2,0[ x2

8K1/2t
1/2|(0,1),(14,

1
2) ]

) 1

x8π3K1/2t
1/2

G0,3
3,0[( x2

16K1/2t
1/2)2|0,

1
4
,
1
2 ] (A5)

1

x8π3t1/2
G0,3

3,0[( x2

16t1/2)2|0,
1
4
,
1
2] ) 1/(8π3t(1/2))MeijerG[{{ },

{ }}, {{0,1/4,1/2}, { }}, x4/(162t(1/2))] (A6)
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