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From continuous time random walks to the fractional Fokker-Planck equation
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2School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

~Received 11 August 1999!

We generalize the continuous time random walk~CTRW! to include the effect of space dependent jump
probabilities. When the mean waiting time diverges we derive a fractional Fokker-Planck equation~FFPE!.
This equation describes anomalous diffusion in an external force field and close to thermal equilibrium. We
discuss the domain of validity of the fractional kinetic equation. For the force free case we compare between
the CTRW solution and that of the FFPE.

PACS number~s!: 02.50.2r, 05.40.Fb, 05.30.Pr
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I. INTRODUCTION

The linear Fokker-Planck equation

Ṗ~x,t !5K1F ]2

]x2 2
]

]x

F~x!

kBT GP~x,t ! ~1!

@1–6#, also called the Smoluchowski equation, is usually
plied to describe various types of normal Markovian diff
sive phenomena. In the absence of an external force,F(x)
50, the equation describes a Gaussian evolution as ma
anticipated based on the central limit theorem. The equa
describes an overdamped motion and hence has no ex
dependence on the velocity of the test particle. When
motion is bounded by an external potential field the stati
ary solution is the Boltzmann equilibrium defined by t
temperatureT.

Many works have focused on the domain of validity
Eq. ~1!. The derivation of this equation can be achieved
ing different approaches reviewed in the variety of te
books on the subject@1–6#. In all derivations it has been
assumed that a microscopic time scale exists, which is s
compared to the observation timet. In a random walk picture
this time is the characteristic time it takes a particle to p
form a single microscopic jump. What happens when t
characteristic time scale diverges? In this anomalous cas
certainly do not expect the Markovian Fokker-Planck eq
tion ~1! to hold. However, as we show, there exists a natu
generalization of the Fokker-Planck equation.

It is by now well established that the divergence of m
croscopic time scales in random walk schemes may lea
anomalous diffusion@6#. The continuous time random wal
~CTRW! of Montroll and Weiss@7# has been used to de
scribe such anomalous diffusion whenF(x)50 for over two
decades@6,8–15#. Here we generalize the one-dimension
CTRW on a lattice for jump probabilities that depend on t
site of jump. In this way we break the spatial invarian
usually assumed within the context of CTRW. Shugard a
Reiss@16# have already carried out a similar extension a
used it to develop a theory to calculate nucleation rates
this case the external potential field is the free energy bar
Their Montroll-Weiss waiting time distribution has been a
PRE 611063-651X/2000/61~1!/132~7!/$15.00
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sumed to follow an exponential decay which is very differe
from the power law decay we assume here.

Using the CTRW in an external field we consider a co
tinuum approximation where the lattice spacinga→0. Un-
der certain conditions we show that the dynamics are
scribed by a fractional kinetic equation

Ṗ~x,t !50Dt
12aKaF ]2

]x2 2
]

]x

F~x!

kBT GP~x,t !, ~2!

where 0Dt
12a is the the fractional Riemann-Liouville opera

tor ~see more details below!. We call Eq.~2! the fractional
Fokker-Planck equation~FFPE!. This equation has been re
cently investigated@17,18# and derived from a generalize
master equation@19#. Earlier, Balakrishnan@20# has derived
the FFPE for the caseF(x)50 based upon a generalizatio
of Brownian motion. Schneider and Wyss@21,22# have
found a solution to the force free problem in terms of F
functions. Here a detailed and different derivation of t
FFPE in an external field is presented, the starting point
ing the extensively investigated CTRW model. We discu
the scaling regime in which the FFPE is valid and its limit
tions, and compare between the CTRW solution@6,23,24#
and that of the FFPE in dimensionD51,2,3.

It is worth mentioning that fractional kinetic equation
have been suggested to model a quantum particle interac
with a chaotic bath@25#, anomalous diffusion in random en
vironments @26,27#, and for chaotic Hamiltonian system
@28#. These fractional equations have been used to desc
Lévy flights or diverging diffusion. In contrast, we describ
subdiffusive systems where the mean square displacem
@when F(x)50# behaves aŝx2&;ta and a,1. For a re-
view on anomalous diffusion see Refs.@12,14,29#.

This paper is organized as follows. In Sec. II we introdu
the CTRW model in an external field. In Sec. III we deriv
the FFPE from the CTRW model. A comparison between
CTRW solution and the FFPE solution for the caseF(x)
50 is made in Sec. IV. Finally, in Sec. V, we discuss t
domain of validity of the FFPE and some of its limitation

II. MODEL

We consider an unbounded random walk on a one dim
sional lattice with a lattice spacinga. Lattice sites are de-
132 ©2000 The American Physical Society
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PRE 61 133FROM CONTINUOUS TIME RANDOM WALKS TO THE . . .
noted by$ . . . ,21,0,1, . . . ,n, . . . %. At time t50 the par-
ticle is located at siten50.

Once the particle has arrived at siten it is trapped there
for some random time. These waiting times are given by$t i%
andi 51,2, . . . . $t i% are independent random variables ide
tically distributed according to a probability density functio
c(t). It is assumed thatc(t) is independent of the locatio
of the particlen ~i.e., it is independent of the external field!.
Different types of such probability densitiesc(t) have been
used to describe a wide variety of physical phenomena@6,8–
15#.

We assume that the particle can jump either to the lef
the right and only nearest neighbor jumps are allowed. T
probability of hopping from siten to n11 is R(n) and from
siten to siten21 is L(n), the normalization condition being
L(n)1R(n)51. R(n) andL(n) are time independent.

The random walk process is therefore described
follows. At time t50 a particle starts at siten50. It stays
there for a timet1 chosen randomly. Then with probabilit
R(0) @or 12R(0)# it jumps to siten51 @or n521#. The
process is then renewed. The jumping probabilitiesR(n) and
L(n) are independent of the duration of trapping.

III. FROM CTRW TO FFPE

The probability that a particle is trapped for a periodt
without executing a jump is

W~ t !5E
t

`

c~t!dt. ~3!

In Laplacet→u space

Ŵ~u!5
12ĉ~u!

u
, ~4!

where ĉ(u) is the Laplace transform ofc(t). Since the
waiting times are independent, identically distributed rand
variables, it is straightforward to show thatQi(t), the prob-
ability that the random walker has jumpedi times in the
interval (0,t), is in Laplace space

Q̂i~u!5
12ĉ~u!

u
ĉ i~u!. ~5!

Let the probability of finding the particle at siten at time
t be P(n,t), and letpi(n) be the probability to be on siten
after stepi. Then,

P~n,t !5(
i 50

`

pi~n!Qi~ t !. ~6!

Using Eq.~5!,

P̂~n,u!5
12ĉ~u!

u (
i 50

`

pi~n!ĉ i~u!. ~7!

The evolution ofpi(n) is determined by the discrete tim
and space equation

pi 11~n!5R~n21!pi~n21!1L~n11!pi~n11!. ~8!
-

r
e

s

In Eq. ~8! we have used the assumption that the jump
probabilitiesR(n) andL(n) are independent of the waitin
times. We now consider the continuum limit of this equati
by using the replacement

pi~n!→pi~x!,

wherepi(x)dx is the probability of finding the particle afte
the i th jump in the interval (x,x1dx). Similarly, R(n)
→R(x) and L(n)→L(x) with the normalization L(x)
1R(x)51. In addition we haveL(n11)→L(x1a) and
R(n11)→R(x1a) wherea is the lattice spacing. We now
expand Eq.~8! in a Taylor series ina, a typical term being

R~n21!pi~n21!→R~x2a!pi~x2a!

5R~x!pi~x!1
]

]x
@R~x!pi~x!#~2a!

1
]2

]x2 @R~x!pi~x!#a2/21•••, ~9!

where higher order terms proportional toa3,a4 etc. are omit-
ted. Similar expansions are used to derive Eq.~1!.

We assume that our system is close to thermal equ
rium defined with a temperatureT. For this caseR(x)
.L(x).1/2 and according to detailed balanceR(x)2L(x)
.aF(x)/(2kbT), whereF(x) is the external force field. We
show below that such a requirement onR(x) andL(x) guar-
antees that the system relaxes to the thermal Boltzmann e
librium. In this case we obtain from Eqs.~8!–~9! in the con-
tinuum limit

pi 11~x!5pi~x!1
a2

2 F ]2

]x2 pi~x!2
]

]x

F~x!

kbT
pi~x!G1•••.

~10!

We now rewrite Eq.~7! as

P̂~x,u!5
12ĉ~u!

u
p0~x!1

12ĉ~u!

u (
i 51

`

pi~x!ĉ i~u!,

~11!

where the continuum approximationP̂(n,u)→ P̂(x,u) has
been made. Inserting Eq.~10! into Eq. ~11!, and using
p0(x)5d(x), we find

P̂~x,u!5
12ĉ~u!

u
d~x!1

12ĉ~u!

u

3(
i 51

` H pi 21~x!1
a2

2

]2

]x2 pi 21~x!

2
a2

2

]

]x Fpi 21~x!
F~x!

kbT G•••J ĉ i~u!. ~12!

We notice that according to Eq.~7!

12ĉ~u!

u (
i 51

`

pi 21~x!ĉ i~u!5 P̂~x,u!ĉ~u! ~13!

and hence from Eq.~12! we obtain
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P̂~x,u!5
12ĉ~u!

u
d~x!1ĉ~u!H P̂~x,u!1

a2

2

]2

]x2P̂~x,u!

2
a2

2

]

]x F P̂~x,u!
F~x!

kbT G1•••J . ~14!

We now introduce the waiting time probability densi
function, which for larget behaves as

c~t!;
aAa

G~12a!t (11a)
, ~15!

wherea<1. In Laplaceu space the waiting time probabilit
density function behaves as

ĉ~u!512Aaua1c1~Aaua!21••• ~16!

whenu is small. Whena,1 the first moment of the waiting
times diverges. Inserting Eq.~16! into Eq. ~14! we find

P̂~x,u!5
Aaua2c1~Aaua!21•••

u
d~x!1@12Aaua

1c1~Aaua!2
•••#H P̂~x,u!1

a2

2

]2

]x2P̂~x,u!

2
a2

2 F P̂~x,u!
F~x!

kbT G1•••J . ~17!

We are now practically ready to derive the FFPE, but m
first specify the limit in which this equation is derived.

Consider the limita→0. In the standard diffusion ap
proximation such a limit is meaningful only when both th
mean waiting time and the lattice spacinga approach zero.
For those cases when the mean waiting time diverges
standard limit of the diffusion approximation breaks dow
We takea→0 andAa→0, while the ratio

lim
a2→0,Aa→0

a2

2Aa
5Ka ~18!

is kept finite. Ka is the generalized diffusion coefficien
whose units are @mt2#/@sec#a. When a51, K1
5a2/(2^t&), and^t&5A1. The latter is the finite mean wait
ing time as expected for this normal case.

Multiplying Eq. ~17! by Aa
21u2a and using the limiting

procedure defined in Eq.~18! we find that

P̂~x,u!2d~x!/u5Kau2aL f pP̂~x,u!, ~19!

where

L f p[
]2

]x2 2
]

]x

F~x!

kbT
~20!

is the well known Fokker-Planck operator. Eq.~19! can be
rewritten in t space in terms of the fractional Rieman
Liouville operator@30# as

P~x,t !2d~x!50Dt
2aL f pP~x,t !. ~21!

The fractional operator in Eq.~21! is defined by
t

he
.

0Dt
2aZ~ t !5

1

G~a!
E

0

t

dt8
Z~ t8!

~ t2t8!12a
~22!

for 0,a,1 and in Laplace space

E
0

`

e2ut@0Dt
2aZ~ t !#dt5u2aẐ~u!. ~23!

WhenF(x)50 Eq. ~21! reduces to the result in Ref.@20#.
Differentiating Eq.~21! with respect to time gives

]P~x,t !

]t
50Dt

12aL f pP~x,t !. ~24!

with the fractional derivative0Dt
12a defined by

0Dt
12aZ~ t !5

1

G~a!

]

]tE0

t

dt8
Z~ t8!

~ t2t8!12a
. ~25!

As mentioned in the Introduction Eq.~24! is the fractional
Fokker-Planck equation. It reduces to the ordinary Fokk
Planck equation~1!, whena51, while fora,1 it describes
subdiffusive processes.

Equations~21! and~24! are initial value problems. While
Eq. ~21! is defined with a single initial condition~the delta
function on its left-hand side!, in solving Eq.~24! two initial
conditions have to be specified@30#, these beingP(x,t50)
and 0Dt

2aP(x,t)u t50 @31#. When setting0Dt
2aP(x,t)u t50 to

zero the two equations are equivalent. Finally, we note t
the derivation of the FFPE in dimensions higher thanD51
follows exactly the same lines specified in this section.

IV. FFPE VS CTRW IN THE FORCE FREE CASE

In the previous section we have derived the FFPE fr
the CTRW. Generally the two approaches are not identi
One should expect, however, that the solutions of both
processes coincide in a certain scaling regime valid for la
r andt. In this section we compare between the FFPE and
CTRW for the force free case,F(x)50, in dimensionsD
51,2,3.

Schneider and Wyss@21# have found the exact solution o
the FFPE in terms of a Fox function@32,33#. Using the di-
mensionless equation

Ṗ~rW,t !50Dt
12a¹2P~rW,t ! ~26!

with the initial condition P(rW,t50)5d(rW) the solution in
(kW ,u) Fourier-Laplace space is

P~kW ,u!5
ua21

ua1k2
. ~27!

Using Eq.~27! it is straightforward to show that the mea
square displacement of the particle follows

^r 2&5
2D

G~11a!
ta. ~28!

Using the Mellin transform it can be shown that@21#
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P~r ,t !5a21p2D/2r 2DH12
20

3S 222/ar 2/at21U~1,1!

~D/2,1/a!,~1,1/a!
D , ~29!

whereH12
20 is a Fox function~for a different method of solu-

tion, see@34#!. The asymptotic expression for this Gree
function is

P~r ,t !;kar 2DjD/2(22a)exp~2l1j1/(22a)!, ~30!

wherej[r 2/ta is the scaling variable

ka5p2d/222d/(22a)~22a!21/2a [a(d11)/221]/(22a)]

~31!

and

l15~22a!aa/(22a)222/(22a). ~32!

Equation~30! is valid for j@1. The behavior ofP(r 50,t)
valid for j!1 is

P~r ,t !;5
1

G~12a/2!ta/2

1

pG~12a!ta ln~ ta/2/r !

r 21

4pG~12a!ta

UD51

D52

D53

~33!

We see that in two and three dimensions the FFPE solutio
singular on the origin. Equation~33! was derived indepen
dently by Saichev@35#. A small j expansion of theP(r ,t) is
given in the Appendix forD51.

Let us now analyze the CTRW result. We consider theD
dimensional CTRW in continuum space~the extension to
lattice walks is straightforward!. The probability density
function of jump lengths is denotedf (rW) and its Fourier
transform byf (kW ). We use an unbiased CTRW and assu
an existing variances of the jump length distribution. In this
casef (kW )512s2k2/21••• for smallk. The CTRW solution
in (rW,u) space is written as a sum of two terms

P~rW,u!5
12ĉ~u!

u
d~rW !1

12ĉ~u!

u

1

~2p!D

3E
2`

`

•••E
2`

` f ~kW !exp~2 irW•kW !

12 f ~kW !ĉ~u!
dDk. ~34!

The first term on the right-hand side~RHS! of this equation
is a result of random walks where the particle is trapped
its initial location during the time interval (0,t). No such
singular component appears in the solution of the FFPE
~29!. Since the Fokker-Planck operator contains derivati
of finite order, the CTRW singularity at the origin does n
appear in the FFPE solution.

According to Eqs.~3!, ~4!, and ~16! the inverse Laplace
transform of the first singular term in Eq.~34! is
is

e

n

q.
s

t

W~ t !d~rW !;
Aat2a

G~12a!
d~rW !. ~35!

Clearly only for timesAat2a/G(12a)!1 can we expect
the FFPE solution and the CTRW solution to coincide. Al
notice that within the FFPE framework and forD52,3,
P(r ,t) for j!1 Eq. ~33!, decays not faster than the singul
term in the CTRW solution. Therefore for on the origin an
for D.1 the two solutions behave differently even whent
→`. In contrast, for normal random walks, the singular te
decays exponentially with time and then the diffusion a
proximation works well already after an exponentially sh
time.

The CTRW singular term is especially important for pro
lems with a boundary condition@36#. This term can be used
to find a lower bound onS(t)—the probability that a particle
which at t50 was at the origin has not crossed a clos
boundary until timet; clearly

S~ t !>W~ t !;
Aat2a

G~12a!
. ~36!

Notice that this simple relation is valid for all dimensionsD
and is independent of the shape of the boundary of the
main. Such a result cannot be derived based upon the F
modeling. In the FFPE there is only a single parameter,
diffusion coefficientKa , and so based on dimensional ana
sis one can easily see that a bound like Eq.~36! cannot be
found based on this approach.

We now consider the second term on the RHS of~34!. For
largerW andt one can use the smallkW andu values to find an
approximate solution of the CTRW. For convenience a
without loss of generality we uses252 andAa51 then

P~rW,u!;
ua21

~2p!dE2`

`

•••E
2`

` exp~2 irW•kW !

ua1k2
dDkW . ~37!

As noted already by Compte@37,38# the small (kW ,u) behav-
ior of the CTRW, Eq.~37! is identical to the solution of the
FFPE Eq.~27!. The exact solution of this equation is given
Eq. ~29!. An approximate normalized solution of the integr
Eq. ~37! has been given in Refs.@6,23#

P~r ,t !.Nr2D~r D21!jD/2(22a)exp~2l1j1/(22a)! ~38!

andN is a normalization coefficient. This result@6# was de-
rived based upon the steepest descent method forj@1.

The approximate solution, Eq.~38!, derived within the
CTRW framework, is compared with the exact solution~29!
found within the framework of the FFPE. First we notice th
the stretched exponential term in Eq.~38! is identical to the
stretched exponential term in Eq.~30!. The exact FFPE resul
has a scaling form in terms of

P~r ,t !r D;G1~j! ~39!

while the CTRW approximation Eq.~38!, for DÞ1, has a
different scaling form

P~r ,t !r D~r 12D!;NG2~j!. ~40!
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In the scaling regimej→` the two functionsG1(j) and
G2(j) coincide, however, on the LHS of Eq.~40! appears a
prefactorr 12D which does not exist in Eq.~39!.

Why does the approximate solution, Eq.~38! or Eq. ~40!,
derived within the CTRW framework, deviate from scalin
The derivation in @6,23# follows two steps. First the
asymptotic largej solution of Eq.~37!, Pass(r ,t) is found
using the method of steepest descent. This method~see de-
tails in Refs.@6,23#! gives the correct scaling result. Then
normalization condition is imposed on the asymptotic res

P~r ,t !.
Pass~r ,t !

E Pass~r ,t !dDr

. ~41!

This second step leads to deviation from the scaling prop
of the solution. Imposing a normalization condition on
asymptotic expression gives ther 12D term in Eq.~40! which
does not exist in the exact FFPE solution Eq.~39!.

Finally we remind the reader of the asymptotic~nonsin-
gular in rW) behavior of the CTRW solution at the origi
@6,23,24#

P~r 50,t !;H 1/ta/2 D51,

ln~ t !/ta D52,

1/ta D53.

~42!

Comparing this solution with the FFPE modeling Eq.~33!
we see that forDÞ1 the behaviors of the Green functions
the origin are not identical.

V. DISCUSSION AND CONCLUSIONS

Let us briefly discuss some of the properties of the FF
Eq. ~24!. At t→` thermal equilibrium is reached and then

lim
t→`

P~x,t !5N expF2
V~x!

kbT G , ~43!

N being the normalization andV(x) is the potential field. For
a constant fieldF(x)5F the solution of the FFPE in (k,u)
space is

P̂~k,u!5
ua21

ua1Kak22 iK aFk/~kBT!
. ~44!

The inverse Fourier-Laplace transform of this equation
been analyzed extensively within the biased CTRW@6#. We
have recently shown@18# that the FFPE is consistent with th
generalized Einstein relation@39–41# ~i.e., linear response
theory!. The relaxation of modes of the FFPE follow
Mittag-Leffler decay@42#, with a power-law tail, which re-
places the ordinary exponential decay found in the lin
Fokker-Planck equation~1!. We have also found a solutio
for the harmonic oscillator and showed how to use te
niques@5# developed for solving the ordinary Fokker-Plan
equation to solve the FFPE.

From a physical point of view it has been shown th
some models exhibiting anomalous diffusion~including the
CTRW! are sensitive to initial conditions even in the lon
lt

ty

,

s

r

-

t

time limit @43–45#. Unlike normal transport processes, tran
port coefficients of anomalous processes can be show
depend on the way a system has been initially prepared
this work we have assumed that the CTRW process
started att50. Hence we derived the Riemann-Liouvill
operator with an integral whose lower limit ist50. One
could easily imagine other processes going on for a lo
period of time before starting the observation att50. In the
absence of a microscopic time scale such a process c
possibly lead to a different type of fractional equation fro
the one derived here.

Another assumption we have used is that the waiting ti
density c(t) does not depend on the local fieldF(x). In
principalc(t) could be site dependent due to the breaking
spatial invariance. Our assumption means that the exte
field is weak and its influence onc(t) is negligible. The
influence of an external bias on anomalous subdiffusion
been investigated for chaotic deterministic diffusion@15# and
for charge carrier transport in disordered media@40#. In these
models the dependence of the waiting time probability d
sity functionc(t) on the linear external field was calculate
A crossover from a power law behavior for short times to
exponential decay for long times has been found. The cro
over time diverges as the field becomes weak. This transi
has a rather strong influence on the dynamics which switc
to a normal Gaussian behavior when the external field
finite and for long times. Thus care must be taken wh
assuming field dependent waiting times.

As we mentioned, the CTRW solution, Eq.~34! has a
singular term which describes random walks for which
particle did not leave the origin during the observation timet.
Such a singular term does not appear in the FFPE. Su
term can be important when modeling anomalous type
diffusion especially forD52,3. In contrast, for normal ran
dom walks the diffusion approximation works very well aft
exponentially short times and then it is justified to negle
the singular term.

To conclude, expansion of the CTRW in an external for
field leads to the familiar Fokker-Planck equation when
mean waiting time is finite. When this time diverges we o
tain a fractional non-Markovian Fokker-Planck equation.
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APPENDIX

The solution of the FFPE withF(x)50, for D51 and
Ka51 in (x,u) space is

P̂~x,u!5
ua/221exp~2uxuua/2!

2
. ~A1!

The inverse Laplace transform of Eq.~A1! is
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P~x,t !5
1

a S t

uxu112/aD l a/2S t

uxu2/aD . ~A2!

l a/2(z) is a one sided Le´vy stable density whose Laplac
transform follows

l a/2~u!5E
0

`

e2uzl a/2~z!dz5exp~2ua/2!. ~A3!

For a51

l 1/2~z!5
2

Ap

1

~2z!23/2
expS 2

1

2zD ~A4!

and it can be checked thatP(uxu,t) is Gaussian. Fora
52/3,

P~x,t !532/3t21/3Ai @ uxu/~3t !1/3#, ~A5!

where Ai(x) is the Airy function. Taylor expanding the ex
ponential in Eq.~A1!, and transformingu→t, we find

P~x,t !5
1

2ta/2 (
n50

`
~21!njn/2

n!G@12a~n11!/2#
. ~A6!

The expansion is valid for smallj. In Eq. ~A6! terms with
a(n11)/2 an integer should be omitted from the seri
Hence forj!1 the Green function, fora,1, decays ac-
cording to

P~x,t !.
1

2G~12a/2!ta/2
exp~2cuxu/ta/2!, ~A7!
u

nd

s

alk
.

wherec5G(12a/2)/G(12a).
Let us now show the relation between the solution E

~A1!, expansion Eq.~A6!, and the FFPE results obtained
the literature in terms of Fox functions. The result obtain
by Schneider and Wyss in Ref.@21#, for one dimension

P~x,t !5
1

Aa2p

1

uxu
H1,2

2,0F uxu2/a

22/at U ~1,1!

S 1

2
,
1

a D ,S 1,
1

a D G ~A8!

can be shown, by simple manipulations employing the pr
erties of the Fox function@32#, to be equivalent to

P~x,t !5
1

A16pta
H1,2

2,0F uxu

2ta/2U S 12
a

2
,
a

2 D
S 0,

1

2D ,S 1

2
,
1

2D G . ~A9!

By using the duplication rule of the Gamma function, o
can show that Eq.~A9! can be simplified to

P~x,t !5
1

A4ta
H1,1

1,0F uxu

ta/2U S 12
a

2
,
a

2 D
~0,1!

G . ~A10!

Relation~A10! can also be obtained by Laplace inversion
Eq. ~A1!. The theorem for the series expansion of the F
function @32# then results in Eq.~A6!.
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