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Abstract

We investigate the connection of the Cattaneo equation and the stochastic continuous time
random walk (CTRW) theory. We show that the velocity model in a CTRW scheme is suited to
derive the standard Cattaneo equation, and allows, in principle, for a generalisation to anomalous
transport. As a result for a broad waiting time distribution with diverging mean, we �nd a strong
memory to the initial condition of the system: The ballistic behaviour subsists also for long times.
Only if a characteristic waiting time exists, a non-ballistic, enhanced motion is found in the limit
of long times. No transition to subdi�usion can be found. c© 1999 Elsevier Science B.V. All
rights reserved.

PACS: 05.60.+w; 05.40.+j; 44.30.+i; 05.70.Ln

Dedicated to Prof. Jos�e Casas-V�azquez on his 60th birthday

1. Introduction

The Cattaneo equation for the probability density function P(x; t) representing par-
ticle densities, concentrations, or heat pro�les, reads [1,2]

� �P(x; t) + Ṗ = K P′′ (1)

and is usually derived by combining the continuity equation of particle (or probability)
conservation

Ṗ(x; t) =−J ′(x; t) ; (2)
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and the Cattaneo constitutive equation [1]

J (x; t) + �J̇ =−K P′ : (3)

This last equation introduces a relaxation of the ux J with the characteristic time �,
and K denotes the di�usion coe�cient. We indicate derivatives in respect to time with
a dot, and in respect to space with a prime. As a consequence of the introduction of the
term � �P in Eq. (1), for short times one obtains a �nite velocity of propagation v=

√
K=�

for the di�usion process, corresponding to a 〈x2〉 ∼ v2t2 behaviour of the mean squared
displacement. In a particle picture, this corresponds to an initial condition where all
particles move mutually in one direction. After the characteristic time �, the e�ects of
random velocity changes become dominant. Thus, for long times t/�, one recovers the
standard Brownian di�usion behaviour characterised by Fick’s second law and a linear
time dependence of the second moment, where the propagator is given by the Gaussian
distribution. The Cattaneo equation (1) is therefore a phenomenological extension of
Fick’s second law accounting for the physical requirement of a constant velocity of
propagation. Note that the Cattaneo equation is of the telegrapher’s type, and can be
derived from the Boltzmann equation [3,4]. The solution of the Cattaneo equation (1)
can be calculated analytically [5], and it is readily veri�ed that this solution reduces
to the standard Gaussian for long times. The Cattaneo equation (1) �nds application
in a broad diversity of systems, including heat and particle transport in irreversible
thermodynamics [2], heat transfer in B�enard convection [6,7], cosmological models
[8], shock waves in rigid heat conductors [9], and the di�usion in crystalline solids
[10]. Recent reviews of the Cattaneo equation are given in Refs. [11,12].
Anomalous di�usion is characterised by the occurrence of a mean-squared displace-

ment of the power-law dependence [13–16]

〈x2〉˙ K�t� ; (4)

deviating from the normal linear dependence on time found for the Fickean description
of Brownian motion. Anomalous di�usion is encountered in a large variety of sys-
tems [13–16], and it is often intimately related to L�evy-type statistics, i.e. the validity
of the Generalised Central Limit Theorem [15,17,18]. Eq. (4) describes subdi�usion
for 0¡�¡ 1, or enhanced di�usion (superdi�usion) for �¿ 1. In Eq. (4), K� is the
anomalous di�usion coe�cient with dimension [K�] = cm2 s−�. In the following, we
will work with reduced variables, i.e. �=1 and K�=1, to simplify the notation. Among
other approaches fractional di�usion equations are often used to describe anomalous
di�usion [19–21]. The occurrence of the fractional operator within the fractional dif-
fusion equations can be connected with broad waiting time distributions in continuous
time random walk theory [22–27].
It is our goal to extend the Cattaneo picture basing on Eq. (1) in order to in-

clude anomalous transport features as de�ned in Eq. (4). To this end, we introduced in
Ref. [26] possible generalisations of the Cattaneo equation in terms of fractional deriva-
tives. In the framework of a non-local transport theory [28], the fractional expression

Ṗ(x; t) + 0D
�−1
t

�P = 0D
�−1
t P′′ ; (5)
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arises naturally from the introduction of a broad memory (0¡�¡ 1) in the constitutive
equation for the ux [26], causing a slowly decaying dependence on the previous history
of the di�usion process. The de�nitions of the fractional Riemann–Liouville operators
which appear in Eq. (5) are given in Appendix A. For Eq. (5), the asymptotic behaviour
of the mean squared displacement goes like [26]

〈x2〉 ∼



t2; t.1 ;
2

�(3− �)
t2−�; t/1 :

(6)

Note that the ballistic short-time behaviour turns over into an intermediate enhanced
di�usion for 0¡�¡ 1, which reduces to the standard Fickean behaviour for �=1. On
the other hand, using a generalised de�nition of the ux in a continuous time random
walk (CTRW) jump picture, the fractional order in the generalised Cattaneo equation
came about through a broad waiting time distribution [26], whereas the general form
of the underlying master equation remained unchanged. In this model, however, the
short-time behaviour was actually only a correction to the long-time behaviour, and
it was not ballistic. Generalised Cattaneo equations were derived in Ref. [29] from a
stochastic two-state model and the connection of the velocity–velocity correlation func-
tion of the two-state variable with a long-tailed waiting time distribution, an approach
which is closely related to the L�evy walk jump model mentioned below.
Here we discuss a generalisation of the Cattaneo picture for situations of anomalous

transport through a stochastic random walk approach, the so-called velocity model
in the CTRW framework [30]. We show that for waiting time distributions which
do not possess a �nite characteristic waiting time, i.e. a �rst moment, the ballistic
motion subsists also for long times. If the �rst moment exists, we �nd enhanced,
intermediate transport, similar to Eq. (6). Thus, we �nd a microscopic footing for
enhanced, sub-ballistic Cattaneo-type transport.
In the next section we introduce the velocity model and discuss it for three di�erent

cases of waiting time distributions, these being of Poissonian and asymptotic power-law
nature. For the power-laws, the cases of diverging and existing �rst moment are dif-
ferentiated. We are led to a schematic parametric diagram connecting the anomalous
di�usion coe�cient with the index of the waiting time distribution, when we draw
our conclusions in Section 3. The appendix de�nes some basic properties of fractional
calculus and briey introduces two models to derive the Cattaneo equation, which are
not well suited for generalisation to anomalous di�usion.

2. Random walk approach

Here we are interested in the question of how the Cattaneo equation (1) can be
connected to a statistical master equation approach, and thus be generalised towards the
description of anomalous di�usion. There are a number of ways to derive the Cattaneo
equation, but many are not well suited to generalise it for anomalous di�usion (see
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Fig. 1. Schematic diagram for (a) the jump model, and (b) the velocity model. Whereas jumps occur
instantaneously in (a), the �nite slope in (b) mirrors the �nite propagation speed in the velocity model. Both
diagrams are graphed for the same sequence of waiting times.

Appendices B and C). We report here how the velocity model in a CTRW scheme
does provide an appropriate footing for carrying out this generalisation.

2.1. The velocity model

The original CTRW was developed as a so-called jump model, featuring instanta-
neous jumps from one site to another [27]. More recently, the velocity and the two-state
model have been added [30]. As the two-state model can be mapped upon the velocity
model [30], we neglect it in the following. The jump model and the velocity model
are compared in Fig. 1. Both are drawn for a so-called coupled case including a �nite
velocity v [27]. In the jump model displayed in Fig. 1(a), the particle moves instanta-
neously to a new site, only longer jumps are less probable due to the introduced time
cost p(t|x), see below. In Fig. 1(b) the velocity model is shown, where the particle
moves at a constant velocity to the new site. The slope in the (x; t) diagram gives v.
In CTRW terms, the propagator can be calculated through the probability that the

particle arrives in x at time t

�(x; t) =
∫
dx′

∫ t

0
dt′ �(x′; t′) (x − x′; t − t′) + �(t)�(x) : (7)

The second term on the right-hand side describes the initial condition of starting in the
origin. In Eq. (7),  (x; t) dx dt denotes the jump probability distribution, from which
the waiting time t : : : t+dt elapsing from the last jump to the next, and the jump length
x : : : x+dx of the next jump is drawn. Now the propagator in the jump model is simply
given by being at a certain point x at some time t, this is, having arrived in x at t,
and not having moved since

PJ (x; t) =
∫ t

0
dt′ �(x; t′)�(t − t′) ; (8a)
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where the cumulative “sticking probability” of not moving during the time interval
0 : : : t is given by

�(t) = 1−
∫ t

0
dt′ (t) : (8b)

In Eq. (8b), the waiting time probability density function 2  (t)=
∫
dx  (x; t)=  (k=

0; t) is introduced, which de�nes the probability density that the particle jumps after a
waiting time t. On the other hand, in the velocity model, the propagator should describe
the probability to stop or pass by a location x at some time t [30]

PV (x; t) =
∫
dx′

∫ t

0
dt′ �(x′; t′)	(x − x′; t − t′) ; (8c)

where now the probability to pass a given location x at time t in a single motion event
is expressed through

	(x; t) = p(t|x)
∫ ∞

t

∫ ∞

|x|
dx′  (x′; t′) : (9)

Here, we assumed a jump probability density of the form  (x; t) = p(t|x) (t), where
the conditional probability p(t|x) determines the time cost for a jump of length x [or
the ‘permitted’ jump length x for a given waiting time t] [30].
In Fourier–Laplace space, the propagators of both models are thus given by

PJ (k; u) =
�(u)

1−  (k; u)
; (10a)

PV (k; u) =
	(k; u)

1−  (k; u)
; (10b)

respectively. We note that the exact expressions for the (k; u) space propagators can be
given in terms of an arbitrary waiting time distribution and the conditional probability
p(t|x) = 1

2�(|x| − t), i.e.  (x; t) = 1
2�(|x| − t) (t), via

PJ (k; u) =
1−  (u)

u{1− 1
2 [ (u− ik) +  (u+ ik)]} ; (11a)

PV (k; u) =
u

u2 + k2
− ik[ (u− ik)−  (u+ ik)]
(u2 + k2)[2−  (u− ik)−  (u+ ik)]

: (11b)

Therefore, the propagator is always real valued, as it should. Note that PV naturally
splits up in a purely ballistic part and a second term dominated by the actual jump
distribution.

2 In the following, we will speak loosely of the waiting time distribution, and similarly of the jump length
distribution.
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2.2. Poissonian waiting time distribution

Choosing for the waiting time distribution a Poissonian law  (t) = e−t , i.e.

 (x; t) = 1
2�(|x| − t)e−t ; (12)

we �nd for the propagators

PJ (k; u) =
(1 + u)2 + k2

(1 + u)(u+ u2 + k2)
; (13a)

PV (k; u) =
1 + u

u+ u2 + k2
: (13b)

Via multiplication by the denominator and inverting the obtained equation into the
(x; t) domain using the di�erentiation theorems of Laplace and Fourier transform [for
instance L−1{uP(x; u)−P(x; t=0)}= Ṗ(x; t) and F−1{−k2P(k; t)}=P′′], we �nd the
corresponding di�erential equations:

@3PJ
@t3

+ 2
@2PJ
@t2

+
@PJ
@t
=

@2PJ
@x2

+
@3PJ
@t@x2

; (14a)

@2PV

@t2
+

@PV

@t
=

@2PV

@x2
: (14b)

Eqs. (13a and 13b) and (14a and 14b) are valid on the whole (k; u) or, equivalently,
(x; t) domains. Eqs. (13b) and (14b) are equivalent to the Cattaneo equation in (k; u)
and (x; t) space, respectively.
Finally, calculating the mean squared displacement from the characteristic function

via the relation 〈xn〉(u) = in limk→0 dnP(k; u)=dkn, we arrive at

〈x2〉J (u) = 2
u2(1 + u)2

; (15a)

〈x2〉V (u) = 2
u2(1 + u)

: (15b)

In the case of the jump model we �nd di�usive behaviour for long times, but a
short-time behaviour 〈x2〉J (t)∼ 1

3 t
3, which is physically not meaningful, and arises from

the third-order derivatives in Eq. (14a). These are caused by the coupling p(t|x). On
the other hand, the velocity model reveals the standard Cattaneo picture, this is

〈x2〉V (t) ∼
{

t2; t.� ;
2t; t/� :

(16)

Thus, the velocity model is the natural extension of the CTRW jump model for the
description of Cattaneo-type transport. Our forthcoming considerations are therefore
based on the velocity model.
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2.3. Broad waiting time distribution with no characteristic waiting time

Let us now address the problem of introducing anomalous transport behaviour. To
this end, we consider a broad waiting time distribution with a diverging �rst moment in
the velocity model. We will see that we encounter a well-de�ned and �nite velocity of
propagation for short times, but the long-time limit does not turn over to the solution
of an anomalous walker.
Another result will be that we cannot recover an extension of the Cattaneo equation,

which is unique over the whole time range: As the standard Cattaneo equation (1)
splits up into a wave equation

�P(x; t) = P′′ ; (17a)

for short times t.1, and a di�usion equation

Ṗ(x; t) = P′′ ; (17b)

in the di�usion limit t/1, we will recover wave and fractional di�usion equations
in the corresponding limits. This is typical for a coupled model, and was already
encountered in Ref. [29]. Only in the Poissonian case, both limiting equations reduce
to the Cattaneo equation valid for all t.
Let us at �rst investigate the solution for the asymptotically fractal waiting time

distribution

 (u) =
1

1 + u ; (18)

in Laplace space, which has the asymptotic behaviours

 (u) ∼
{
1− u; u.1 ;

u−; u/1 :
(19)

For the propagator we �nd:

PV =
(u− ik)(u+ ik) + (u+ ik)(u− ik) + 2u(u− ik)(u+ ik)
(u2 + k2)[(u+ ik) + (u− ik) + 2(u+ ik)(u− ik)] ; (20)

the second moment of which can be evaluated analytically so that the mean-squared
displacement in Laplace space reads

〈x2〉V (u) = 2
u3
(1− ) + (2− )u + u2

(1 + u)2
; (21)

from which �nally the asymptotic behaviour in time space can be deduced:

〈x2〉V (t) ∼
{

t2; t.� ;
(1− )t2; t/� :

(22)

This is an a priori surprising behaviour. Whereas both PV from Eq. (20) and therefore
also 〈x2〉V (u) from Eq. (21) reduce to the usual Cattaneo behaviour for  → 1, the
subsisting ballistic behaviour for the case 0¡¡ 1 has to be understood.
This subsistence of the ballistic behaviour for the case of the waiting time distribution

(18) is also reected in the corresponding generalised quasi-Cattaneo equations. Starting
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o� from the propagator PV from Eq. (20), we �nd in the usual k → 0 approximation
the following two limiting equations: In the short-time limit t.1 the wave equation

�P(x; t) = P′′ ; (23a)

results as for the standard Cattaneo equation, see Eq. (17a), whereas in the di�usion
r�egime t/1 we �nd the equation

�P(x; t) =
(1− )
2

P′′ ; (23b)

which is just the re-scaled wave equation. Fractional corrections occurring in the limit
equations are proportional to 0D

2−
t P in Eq. (23a), similar to the non-local transport

result (5), and proportional to 0D
2+
t P in Eq. (23b). Eq. (23b) corresponds to the

asymptotic behaviour of the propagator (20) in the di�usion limit according to

PV ∼ u− 1
2 (1− )(2− )u−2k2

u2 + 1
2 (1− )k2

: (24)

To check whether the above obtained result is depending on the actual shape of the
waiting time distribution, let us introduce the following distribution:

 (t) =


(1 + t)1+ ; (25)

the Laplace transform of which can be calculated analytically [30,31]

 (u) =

{
ueu�(−; u);  6∈ N ;

1− ueuE1(u); = 1 :
(26)

Here, �(−; u) denotes the incomplete Gamma function and E1(u) the exponential
integral E1(x) = −Ei(−x) = �(0; x) [31]. The asymptotic behaviour for u.1 of (25)
in Laplace space reads [30,32]

 (u) ∼



1− �(1− )u; 0¡¡1 ;

1 + u log u; = 1 ;

1− u
− 1 − �(1− )u; 1¡¡2 :

(27)

Note that for 1¡¡ 2, this asymptotic behaviour is di�erent from the corresponding
limit given in Eq. (19) for the waiting time distribution (18). For the discussion in
the next subsection we will therefore use the functional behaviour of Eq. (25), as this
waiting time distribution was already established in Refs. [30,33,34].
Thus, with Eq. (26), the propagator becomes

PV =
2u−(u+ ik)(u− ik)�(−; u− ik)−(u− ik)(u+ ik)�(−; u+ ik)
(u2 + k2)[2−(u− ik)eu−ik�(−; u− ik)−(u+ ik)eu+ik�(−; u+ ik)]

:

(28)

The result for the mean-squared displacement reads:

〈x2〉V (u) = 2
u3
(1− )[1− ueu�(−; u)] + u1+eu�(−; u)

1− ueu�(−; u)
(29)
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Fig. 2. Decadic, double-logarithmic plot of the mean-squared displacement (29). The power-law behaviour
over the whole range of the plot is clear. The estimated slope is −3, corresponding to the ballistic behaviour
proportional to t2. The parameters were chosen as 1 = 1=5 and 2 = 2=3.

and corresponds to the limiting cases

〈x2〉V (t) ∼
{

t2; t.1 ;

(1− )t2; t/1 ;
(30)

in time, in full agreement with Eq. (22). [Correction terms and higher-order moments
are however di�erent for the waiting time distributions (18) and (25).] Fig. 2 shows
a double-logarithmic plot of the function in Eq. (29). The slight discrepancy between
the two values for  for small u in Fig. 2 does not widen up for even smaller u, as
can be checked using Mathematica. The estimated slope is −3 in the u space, which
takes over to a subsisting˙t2 behaviour in time space. Thus, also for this model, the
memory of the initial behaviour does not die out. Therefore, it is an inherent feature
of the broad L�evy walk velocity model.
In fact, this behaviour is to be expected, as was shown in Ref. [34]. For our case,

when even the �rst moment of the waiting time distribution does not exist, there will
always be a �nite number of initial motion events with a walk time as long as or longer
than the �nite observation time. Thus, the overall behaviour is dominated by the ballistic
motion, corresponding to a subsisting motion in one direction. As was seen from Eq.
(22), the prefactor of the ballistic term varies in between the two limiting cases of short
and long times. Comparing Eq. (30) with Eq. (18), both waiting time distributions
lead to the same coe�cient (1−) for the long-time ballistic behaviour, indicating that
the occurrence of new motion events reduces the overall time spent in long ballistic
movements. For = 1, the term ˙ t2 vanishes, the direction is now changed with the
�nite rate �−1 typical for the Brownian random walk, and the usual Cattaneo equation
(1) is recovered. In the following, we concentrate on the analytical form (25).
We �nally remark that in the analogous jump model, we recover the mean squared

displacement

〈x2〉J (u) = 
u3

(1− )− u
1− ueu�(−; u)

+
[2u+ u2 − (1− )]ueu�(−; u)

1− ueu�(−; u)
; (31)
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Fig. 3. Mean-squared displacement for 1 = 15=8, 2 = 9=8 and 3 = 7=8 (from bottom to top) in a decadic
double-logarithmic plot. The bend in the slope for the two cases 1, 2 is obvious. Note the slow turnover
to the small-u behaviour according to u−(4−) for the lowest curve corresponding to 1 =15=8. As expected,
for 3 = 7=8 the u−3 behaviour is present over the whole plot range.

for the waiting time distribution (25), which also leads to a ballistic behaviour for long
times

〈x2〉J (t) ∼ (1− )
2

t2; t/1 : (32)

But again, the short time behaviour is dominated by the unphysical t3-proportionality,
as seen in Eq. (15a).

2.4. Broad waiting time distribution with a �nite characteristic waiting time

In this subsection, we again use the waiting time distribution (25), but for the param-
eter range 1¡¡2. In this range, one would expect to �nd a non-ballistic long-time
behaviour, as now a characteristic waiting times exists, so that for long observation
times virtually all particles have undergone collisions. In Fig. 3 we graph the mean
squared displacement over the whole range of u. For large u, corresponding to small
times, the slope is −3, this is equivalent to ballistic motion. On the other hand,
for small u, we see a transition to another power law with a smaller slope, which
can be estimated to be −(4 − ), i.e. which corresponds to a sub-ballistic behaviour
˙ t3−.
Thus indeed, the existence of the characteristic waiting time separates a microscopic

and a macroscopic time scale.
Taking into account the asymptotic expansion for the waiting time distribution (25),

Eq. (27), we recover for the propagator (28) in the di�usion limit k → 0, u → 0

PV ∼ u2− − 1
2 (− 1)�(3− )u−1k2

u3− + 1
2(− 1)�(2− )k2

; (33)

and for the mean squared displacement the relation

〈x2〉V (u) ∼ 2(− 1)�(2− )u−4; u.1 ; (34)
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corresponding to the long-time behaviour

〈x2〉V (t) ∼ 2(− 1)
(3− )(2− )

t3−; t/1 : (35)

Thus, the analytical calculation indeed reveals the expected turnover behaviour towards
enhanced, sub-ballistic motion. This behaviour is mirrored in the fractional di�usion
equation, corresponding to the propagator (33) for long times,

0D
3−
t P(x; t) =

(− 1)
2

�(2− )P′′ : (36)

We have thus found that in the velocity model, if a characteristic waiting time exists,
a transition from the initial ballistic motion to an enhanced anomalous di�usion be-
haviour comes about. The basic behaviour thus corresponds to the non-local transport
model extended to a broad waiting time distribution in Ref. [26], only the prefactor of
the long-time motion di�ers [note that the parameter  occurring there ranges in the
interval (0; 1)!]. This coe�cient can be absorbed by a scaling of the variables. The
close connection of the CTRW velocity result and the non-local transport model is an
interesting result. Therefore, the fractional Cattaneo equation

0D
3−
t P(x; t) + �P =

(− 1)
2

P′′ ; (37)

corresponding to Eq. (5) is a good interpolation to the exact CTRW velocity result,
revealing the desired behaviour of Eq. (30), in consistency with the limiting equations
(35) and (23b) derived from the propagator (28) with 1¡¡2.

3. Conclusions

We have considered the velocity model continuous time random walk approach
which is well-established in di�usion theory [34] to a generalised Cattaneo scheme
describing the transition from the ballistic motion to anomalous transport behaviour.
This connection of the continuous time random walk framework with the Cattaneo
picture, one of the fundamental ideas in extended irreversible thermodynamics, to our
best knowledge, has not been discussed in literature.
For a broad waiting time distribution of the type (25) with 0¡¡1, the velocity

model leads to a subsisting ballistic motion, independent of the index  of the under-
lying waiting time distribution. The reason is that in the velocity picture, the broad
waiting time distribution causes long periods of walks in one direction before chang-
ing direction, irrespectively of the size of the interval one considers. This consequently
leads to an overall, averaged ballistic motion. In the long-time limit, the scaling factor
(1 − ) indicates that a certain number of collisions take place, but that the overall
motion is still dominated by long motion events in one direction, both features being
intimately connected to the anomalous di�usion behaviour resulting from the power-law
asymptotics of  (t) from Eqs. (18) and (25), i.e. the non-existence of a characteristic
waiting time separating microscopic and macroscopic time scales. On the other hand,
for 1¡¡2, a characteristic waiting time exists, which makes it possible to distinguish
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Fig. 4. Schematic diagram for the anomalous di�usion exponent � de�ned in Eq. (4), and the index  of
the waiting time distribution (25). For ¿ 2, even the second moment exists, and the di�usion is always
normal.

such time scales. Now, the change in direction occurs often enough for the motion to
become sub-ballistic, i.e. we �nd the desired transition to anomalous di�usion. For
¿ 2, also the variance exists, and therefore the long-time limit will become equiv-
alent to the Brownian di�usion, where the mean-squared displacement grows linearly
with time. This parametric dependence of the long-time, anomalous di�usion exponent
is graphed in Fig. 4.
Neither in the range 0¡¡1 nor in the interval 1¡¡2, a closed-form generalisa-

tion of the Cattaneo equation can be found. On the other hand, we could show that it is
possible to establish a microscopic random walk picture for enhanced anomalous Cat-
taneo behaviour. If exact results for the propagator, or the knowledge of higher-order
moments is not of interest, the fractional Cattaneo equation (37), equivalent to Eq. (5)
derived from a non-local transport model, is an alternative formulation.
Summarising, the derivation of a consistent generalised Cattaneo equation leading to

anomalous di�usion in the long-time limit and preserving the ballistic behaviour for
short times, is a di�cult task. Adding to the generalised Cattaneo equation found for
non-local transport theory (5) in Ref. [26], we have here discussed a stochastic ap-
proach to Cattaneo-type anomalous transport. Both models however, lead to enhanced,
intermediate motion with an anomalous di�usion exponent in between one and two.
The turnover to subdi�usion is not found, moreover we have argued that it cannot exist
within the L�evy walk velocity concept.
As anomalous transport is a typical feature for a rich variety of systems, we believe

that our �ndings contribute to the �eld of extended irreversible thermodynamics, espe-
cially in the modelling of reaction kinetics and other �elds, where the �nite velocity
contribution in the short-time behaviour cannot be neglected. The approximate inter-
polation through Eqs. (37), or (5), and their connections to non-local transport theory
makes this approach attractive for future research.
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Appendix A: Fractional calculus

Fractional calculus ideas date back to the days when classical calculus came of age.
These ideas were �rst expressed in some letters between the French and German mathe-
maticians de l’Hospital and Leibniz in 1695. Later, contributions came from Gr�unwald,
Krug, Heaviside, Laurent, Hadamard, L�evy, Hardy, Weyl, and others. Today’s de�ni-
tions are mainly based on the works of Liouville and Riemann published in the last
century [37,38].
There exists a variety of de�nitions of fractional operators, see the compendium of

Samko et al. [38]. The most widely used de�nition is the Riemann–Liouville operator

0D
−p
t f(t) =

1
�(p)

∫ t

0
d�

f(�)
(t − �)1−p ; (A.1)

extending Cauchy’s multiple integral for arbitrary complex p with Re(p)¿ 0, by use
of the Gamma function. A derivative of order q, q¿ 0, is consequently established via
the de�nition

0D
q
t f(t) =

dn

dtn 0D
q−n
t f(t) ; (A.2)

where n¿q, n ∈ N. The Laplace transform of a fractional integral expression [p¿ 0]
is very convenient:∫ ∞

0
dt e−ut d

−p

dt−pf(t) = u−pf(u) (A.3)

where f(u) is the Laplace transform of f(t) [37].

Appendix B: Derivation of the Cattaneo equation from a local model

Here we consider a way of deriving the Cattaneo equation from a discrete and local
jump model, i.e. from statistical considerations [11]. To this end, we start o� from the
discrete random walk step

pj(t + �) = apj−1(t) + bpj+1(t) ; (B.1)

where a and b with a+b=1 describe the probability to go left and right, and introducing
a continuum limit for small time steps � and small step lengths �x in the form:
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pj(t + �) ∼ p(x; t) + �ṗ(x; t) +
�2

2
�p(x; t) ; (B.2a)

apj−1(t)∼ap(x; t)− (�x)ap′ +
(�x)2

2
ap′′ ; (B.2b)

and a similar expression for bpj+1(t). Taking into account second-order expansions in
both time and space, the extended Cattaneo equation

ṗ− �
2
�p=

[
−f

@
@x
+ K

@2

@x2

]
p(x; t) ; (B.3)

is recovered straightforwardly, and includes the force and di�usion coe�cients

f = lim
� x→0

�x
�
(a− b) ; (B.4a)

K = lim
� x→0

(�x)2

�
: (B.4b)

Of course, in the symmetric case a= b, the force term vanishes, and we are led back
to the standard Cattaneo equation (1). This persistent random walk approach is not
suited for the introduction of broad waiting time distributions however, as it contains a
local formulation. Also, the usual way of taking the limit and considering second-order
expansions in time may seem arti�cial.

Appendix C: Derivation of the Cattaneo equation from a Fokker–Planck equation

Another approach goes back to a model discussed by Davies [35], where a two-
variable Fokker–Planck equation is introduced and a Cattaneo equation derived. Con-
sidering the two-variable equivalent of a recently introduced fractional Fokker–Planck
equation [36] for the distribution function W (x; v; t) in coordinate-velocity phase space

Ẇ (x; v; t) =0D
1−
t

[
−vW ′ +

@
@v
[�v− K(x)]W +

kBT�
m

@2

@v2
W
]

; (C.1)

and following Davies’ steps, we derive a generalised continuity equation Ṗ(x; t) =
−0D1−

t �vP, and consequently the generalised Cattaneo equation

0D
2
t P + � 0D


t P − t−�(x)

�(1− )
− t−2�(x)

�(1− 2) =− @
@x

K(x)P +
@2

@x2
P〈v2〉 : (C.2)

However, this equation does not lead to a �nite velocity of propagation for small times,
as can be readily veri�ed. In the force-free, the mean-squared displacement reads

〈x2〉 ∼




2t2

�(1 + 2)
; t.1 ;

2t

�(1 + )
; t/1 :

(C.3)

Therefore, this approach is not suitable for the description we have in mind, as well,
as it does not lead to a �nite velocity of propagation for small times, compare the
discussion of the model GCE I in Ref. [26].
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