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Abstract

We discuss two models for the description of anomalous di�usion, these being the continuous
time random walk scheme, and fractional di�usion equations. We show their interrelations, and
combine both approaches for the description of anomalous transport in constant external velocity
and force �elds. For an arbitrary external force F(x), we introduce a fractional Fokker–Planck
equation, which generalises the two Einstein relations. c© 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Transport in complex systems is intimately related to deviations from the standard
Fickean description of Brownian motion [1–4]. Anomalous di�usion is usually char-
acterised by the occurrence of a mean squared displacement of the form

〈(�x)2〉 ∼ t
 ; (1)

where the so – called anomalous di�usion exponent 
 covers the following r�egimes:


¡ 1 subdi�usive


= 1 Brownian


¿ 1 enhanced



1¡
¡ 2 intermediate ;

= 2 ballistic ;

¿ 2 “turbulent” :

The anomalous behaviour in Eq. (1) is related to deviations from the standard Gaussian
evolution of the propagator, caused by memory e�ects, and generalised L�evy–type
statistics [2–6].
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Examples for subdi�usive transport include charge transport in amorphous semicon-
ductors [7–9], NMR di�usometry in disordered materials [10], and the dynamics of
a bead in a polymer network [11]. On fractal supports, subdi�usion prevails, due to
the lacunarity of the structure, this is, the presence of “holes” of all length scales [3].
Enhanced di�usion is, for example, encountered in arrays of vortices in a rotating 
ow
[12], in layered velocity �elds [13], or for Richardson dispersion [14–16].
In the following, we introduce the concepts of fractional di�usion equations (FDE)

and the continuous time random walk (CTRW) scheme, and show their interrelations.
We then proceed by combining these two approaches for the inclusion of homogeneous
external velocity and force �elds. Finally, we introduce a fractional Fokker–Planck
equation, which describes subdi�usion in arbitrary external force �elds F(x).

2. Continuous time random walks and fractional di�usion equations

CTRW processes are characterised by the probability density function  (x; t), which
determines the length x of the jump, and the waiting time t which elapses after the
last jump, until a new jump occurs. For each jump, a new pair of jump length and
waiting time is drawn [17–20]. The jump probability density function  (x; t) can either
be given by the statistically independent product  (x; t)= �(x) (t) of jump length and
waiting time densities, which leads to subdi�usion for a broad  (t) ∼ t−1−
 and narrow
(Gaussian) �(x), or to L�evy 
ights. Alternatively, it can be given through the coupled
expression  (x; t) =p(x|t) (t), which is used for the introduction of L�evy walks with
a �nite velocity of propagation. Here, the conditional probability p(x|t) introduces a
time cost for the jumps and thus penalises long jumps [20].
From a generalised master equation approach [20], it can be shown, that the propa-

gator for such a process in Fourier–Laplace space (x ↔ k; t ↔ u) is given by

%(k; u) =
1−  (u)

u
1

1−  (k; u)
; (2)

where k is the wave vector, and u the Laplace variable complementary to the time t.
A CTRW process is characterised by the existence or divergence of a characteristic
waiting time T =

∫
dt t (t); and the second moment �2 =

∫
dt

∫
dx x2 (x; t) [20].

An alternative description of anomalous di�usion is given by FDEs [21–24]. Schnei-
der and Wyss [21] introduced an equation of the form

%(x; t)− %(x; 0) = K
 0D
−

t %′′ ; (3)

with the anomalous di�usion coe�cient K
 of dimension [K
] = cm2 s−
. In Eq. (3),
the Riemann–Liouville fractional integral operator 0D

−

t is de�ned through [25]

0D
−

t %(x; t) =

1
�(
)

∫ t

0
dt

′ %(x; t
′
)

(t − t′)1−
 : (4)

The extension to fractional di�erentiation is given by 0D�
t =d=dt 0D

−(1−�)
t for 0¡�¡ 1

[25].
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Let us now investigate the connections between CTRWs and FDEs. To this end, we
consider the case of a broad waiting time distribution  (t) ∼ (t=�)−1−
, 0¡
¡ 1, i.e.
diverging T , but �nite �2, for which we �nd the propagator [20]

%(k; u) =
1

u+ Dk2u1−
 : (5)

By means of the de�nitions of fractional calculus, we infer the corresponding FPE
[25–28]

%̇= 0D
1−

t K
%′′ : (6)

Using the composition rules of fractional calculus [25], it can be shown, that Eq. (6)
is equivalent to Eq. (3), or to

0D


t %−

t−
%(x; 0)
�(1− 
)

= K
%′′ : (7)

Both Eqs. (3) and (7) include the initial value %(x; 0). The correspondence of the
CTRW description (5) to the FDEs (3), (6) and (7), in the subdi�usive r�egime of
a broad waiting time distribution, is exact. An equation for intermediate transport,
similar to Eq. (6), was derived from a dichotomous stochastic process with a long-range
velocity–velocity correlation function by West et al. [29,30].

3. Anomalous di�usion in homogeneous velocity and force �elds

In this section, we consider the case of anomalous di�usion under the in
uence of
an external homogeneous velocity or force �eld, see also Ref. [28].
For a uniform velocity �eld v, we introduce the similarity variable � = x − vt for

the moving frame. This reduces the problem to the standard CTRW problem which
simply has to be transformed to the laboratory frame. In the rest frame of the 
uid, the
frame moving with velocity v relative to the laboratory frame, the jump distribution
is given by the standard CTRW expression,  (x; t). Therefore, following the Galilei
transformation to the laboratory frame, the jump distribution there, �(x; t), can be
expressed by

�(x; t) =  (x − vt; t): (8)

The corresponding relation in (k; u) space reads

�(k; u) =  (k; u+ ivk) : (9)

For the Brownian case we choose  (t) = �−1e−t=� and �(x) = [4��2]−1=2e−x2=(4�2),
leading to the di�usion-advection equation [1]

%̇(x; t) + v%
′
= K1%′′ (10)

with K1 = �2=�. For a broad waiting time distribution  (t) ∼ (t=�)−1−
 and 0¡
¡ 1,
the propagator becomes

%(k; u) =
1

u+ ivk
1

1 + K
k2u−
 ∼ 1
u+ ivk + K
k2u1−
 (11)
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in the k → 0 and u → 0 limit, from which the moments follow:

〈x〉(t) = vt ; (12a)

〈x2〉(t) = 2K


�(1 + 
)
t
 + v2t2 ; (12b)

〈(�x)2〉(t) = 2K


�(1 + 
)
t
 : (12c)

Thus, we obtain a proper Galilean drift vt, and a mean squared displacement which is
the subdi�usive molecular contribution. This is to be compared with the results below,
Eqs. (18a)–(18c). The corresponding generalised di�usion equation to the result in
Eq. (11) is

%̇(x; t) + v%
′
= K
 0D

1−

t %′′; (13)

where the drift term v%
′
is not a�ected by the memory convolution 0D

1−

t .

For the study of enhanced transport we avoid the occurrence of a diverging sec-
ond moment, and introduce the L�evy walk model, which is de�ned by the coupling
 (x; t) = C|x|−�� (|x| − t�) [20]. Several interesting cases that stem from the choice
of the parameters � and � can be distinguished, from which we concentrate on the
case for which 1¡��¡ 2 and �(� − 2)¡ 1. This choice leads to the propagator in
Fourier–Laplace space:

%=
1

u+ ivk
1

1 + K
k2u−2�
∼ 1

u+ ivk + K
k2u1−2�
; (14)

in the k → 0, u → 0 limit, which is to be compared with Eq. (43) in Ref. [20].
For the moments we end up with

〈x〉(t) = vt ; (15a)

〈x2〉(t) = 2K
t2�

�(1 + 2�)
+ v2t2 ; (15b)

〈(�x)2〉(t) = 2K
t2�

�(1 + 2�)
; (15c)

so that in this case we �nd the two possibilities of subdi�usive and enhanced motion,
depending on the value of �. Finally, the corresponding fractional equation is of the
form

%̇(x; t) + v%′ = K
 0D1−2�t %′′ ; (16)

similar to Eq. (13), where now the RHS can either be a fractional integration or di�er-
entiation, according to the value of �.
We now consider an interesting modi�cation of this model, which we call partial

sticking, where the Galilean invariance is no longer ful�lled. This might be of relevance
for di�usion in porous systems where the tracer particles can get stuck in pores before
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the next jump, or for modelling sticking in vortices in rotating 
ows. Partial sticking
can be taken into account by choosing �(u) = �(k = 0; u) [28]. That means, that
the particle does not move during the waiting time. For the propagator, we then �nd
(k → 0, u → 0)

%(k; u) =
1

u+ 
ivk − 
(
− 1)=2v2u−1k2 + K
u1−
k2
; (17)

and the results for the moments are now

〈x〉(t) = 
vt ; (18a)

〈x2〉(t) = 2K


�(1 + 
)
t
 +


(
+ 1)
2

v2t2 ; (18b)

〈(�x)2〉(t) = 2K


�(1 + 
)
t
 +


(1− 
)
2

v2t2 : (18c)

In this case, the velocity dependence does not cancel out. Consequently, a ballistic
behaviour remains in Eq. (18c), in contrast to the result ˙ t2
 in Ref. [31]. However,
the apparent drift velocity in Eq. (18a) is v scaled by the factor 
, 0¡
¡ 1. Regarding
the generalised equation corresponding to Eq. (17):

%̇+ v%′ =

(1− 
)
2

v2 0D−1
t %′′ + K
 0D

1−

t %′′ ; (19)

we recognise the division of the transport process into two di�erent mechanisms:
a subdi�usive part characterised by K
, and a “ballistic” part proportional to v2. In
this process, the particles that jump often, are separated more e�ciently from those
which are stuck for a long time. The signi�cant distinction of Eqs. (18a)–(18c) from
Eqs. (12a)–(12c) might also be important for the spreading of pollutants in ground
water 
ows in di�erent media.
We now turn to the problem of a constant force, which leads to di�erent results

in the case of anomalous transport. We model this case by a jump distribution
 (x; t) =  (t)�±(x) with an asymmetric jump length distribution �± = (� + (x)�(x)+
�−(x)�(−x)

)
, compare with [12,32,33]. For a broad  (t) and narrow jump length

distribution given by two Gaussians of inverse width a and b, we �nd [28]

〈x〉(t) = F

t


�(1 + 
)
; (20a)

〈x2〉(t) = 2K

t


�(1 + 
)
+ 2F2


t2


�(1 + 2
)
; (20b)

〈(�x)2〉(t) = F2

2�2(1 + 
)− �(1 + 2
)
�(1 + 2
)�2(1 + 
)

t2
 + 2K

t


�(1 + 
)
(20c)

for the moments and

%̇= 0D
1−

t

(
−@F
%

@x
+

@2K
%
@x2

)
(21)
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for the fractional di�usion equation, with the velocity force term F
 = (
√
a − √

b)=
[2�


√
�
√
ab] and the generalised di�usion constant K
 = (a + b)=[8�
ab]. From Eq.

(20a), we see that now the divergence of the characteristic waiting time T leads to a
sublinear time dependence of the �rst moment. This also causes a t2
 behaviour in the
mean squared displacement, which is mirrored in the fractional equation (21), where
now the force is inside the memory convolution, in contrast to Eq. (13).

4. Fractional Fokker–Planck equation for one variable

In this section, we generalise the above considerations to arbitrary external force
�elds F(x) = −V ′(x) for the subdi�usive case, close to thermal equilibrium. Possi-
ble applications include Refs. [7–9,11], or the sedimentation of pollutants under the
in
uence of gravitation.
Usually, di�usion problems in an external force �eld are modelled by a Fokker–

Planck equation (FPE) [34]. Fractional Fokker–Planck equations (FFPE) have been
previously discussed for chaotic systems [35], for L�evy 
ights in random environments
[36], or for fractal time spaces [37].
We propose the one-dimensional FFPE for one variable (Smoluchowski equation)

[38]

%̇(x; t) = 0D
1−

t LFP% (22)

for the study of subdi�usive processes, where the linear Fokker–Planck operator, act-

ing upon the probability density function %(x; t), is given by LFP =
[
@=@xV

′
(x)=m�
+

K
@2=@x2
]
with the external potential �eld V (x) and the generalised friction coe�cient

�
 with [�
] = sec
−2.
The RHS of the FFPE (22) is equivalent to − 0D

1−

t @S(x; t)=@x, where S is the prob-

ability current [34]. If a stationary state is reached, S must be constant. Thus, if
S = 0 for any x, it vanishes for all x [34], and the stationary solution is given by
V

′
(x)%st + K%

′
st = 0. Comparing this expression with the required Boltzmann distribu-

tion %st ˙ exp(−V (x)=[kBT ]), we �nd a generalisation of the Einstein relation, also
referred to as Stokes–Einstein–Smoluchowski relation,

K
 =
kBT
m�


; (23)

for the generalised coe�cients K
 and �
.
In the presence of a uniform force �eld, given by V (x) = −Fx, a net drift occurs.

We calculate the quantity 〈ẋ〉F =
∫
dx x%̇ via the FFPE (22), for which we �nd

〈x〉F = F
m�


t


�(1 + 
)
: (24)
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On the other hand, the mean squared displacement for the FFPE (22) in absence of a
force, can be calculated similarly:

〈x2〉0 = 2K
t


�(1 + 
)
; (25)

where the subscripts F and 0 indicate presence and absence of the force �eld. Using
Eq. (23), we �nally recover the generalised Einstein relation

〈x〉F = 12
F〈x2〉0
kBT

(26)

connecting the �rst moment in the presence with the second moment in absence of the
force, see Refs. [4,39].
From Ref. [11] and the following discussion in Ref. [40], it was shown, that in the

subdi�usive case the generalised Einstein relation holds true. The investigation in Ref.
[9] revealed, that, up to a factor of 2, which could not be determined exactly, relation
(26) is valid.
The FFPE (22) can be solved exactly by a separation ansatz %n = Tn(t)’n(x) for a

given eigenvalue n, the full result being [38]

%(x; t|x′; 0)

=e�(x
′)=2−�(x)=2

∑
n

	n(x)	n(x′)E

(−�n; 
t


)
; (27 )

for an initial distribution concentrated in x′. The single modes of this solution corre-
spond to an anomalous Mittag–Le�er relaxation with an asymptotic power–law depen-
dence ˙ t−
, in contrast to the standard exponential decay. In Eq. (27), the functions
	n(x)=e�(x)=2’n(x) are related to the eigenfunctions of the Fokker–Planck operator LFP,
’n(x), via the scaled potential �(x)=V (x)=[kBT ]. The 	n are eigenfunctions of the Her-
mitian operator L= e−�LFPe�. L and LFP have the same eigenvalues �n; 
=(�1=�
)�n; 1,
where the subscript 1 refers to the standard case 
= 1 [34].

5. Conclusions

We have shown that the combined approach by FDE and CTRW allows for consis-
tent extensions of equations which describe anomalous di�usion in disordered systems,
under the in
uence of external �elds. Especially, the problems of a constant velocity
and a constant force �eld have been discussed. For subdi�usive transport processes
under arbitrary external force �elds, we introduced a new fractional Fokker–Planck
equation, which was shown to relax towards the Boltzmann equilibrium, and to lead
to generalisations of the Einstein relations.
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