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Deriving fractional Fokker-Planck equations
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Abstract. – A generalised master equation is constructed from a non-homogeneous random
walk scheme. It is shown how fractional Fokker-Planck equations for the description of anoma-
lous diffusion in external fields, recently proposed in the literature, can be derived from this
framework. Long-tailed waiting time distributions which cause slowly decaying memory effects,
are demonstrated to give rise to a time-fractional Fokker-Planck equation that describes systems
close to thermal equilibrium. An extension to include also Lévy flights leads to a generalised
Laplacian in the corresponding fractional Fokker-Planck equation.

Anomalous diffusion is characterised through the power law form [1]

〈(∆x)2〉 ∝ Kγt
γ (1)

of the mean-square displacement deviating from the hallmark property 〈(∆x)2〉 ∝ K1t of
Gaussian diffusion. According to the value of the anomalous diffusion coefficient γ, one
distinguishes subdiffusion (0 < γ < 1) and superdiffusion (γ > 1). The dimension of the
anomalous diffusion constant is [Kγ ] = cm2s−γ .

Normal diffusion under the influence of an external force field is often described in terms of
the Fokker-Planck equation (FPE)

Ẇ =

[
−
∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x)

]
W (x, t) , (2)
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where D(1)(x) is the external drift and D(2)(x) is the diffusion coefficient [2]. The one-
dimensional FPE for one variable (2) is also referred to as Smoluchowski equation, and is
discussed in terms of probability theory in ref. [3]. Equation (2) can be mapped onto the
normalised FPE

Ẇ = LFPW (x, t) (3a)

through a transformation of variables [2] where the normalised FP-operator

LFP =

[
∂

∂x

V ′(x)

mη1
+K1

∂2

∂x2

]
(3b)

possesses a constant diffusion coefficient K1. In eq. (3b), V (x) is an external potential, m is
the mass of the diffusing particle, and η1 is the friction coefficient. Therefore, in what follows,
we restrict our discussion to the normalised version of the FPE. We also limit the presentation
to one dimension, with obvious generalisations to higher dimensions.

In analogy to the description of normal diffusion in an external field via the FPE (2)
or its normalised version (3a), it has been suggested to model anomalous diffusion under
the influence of an external field through fractional Fokker-Planck equations (FFPEs) which
have been suggested for Lévy flights in random environments [4-6], for chaotic Hamiltonian
systems [7], and for subdiffusive systems close to thermal equilibrium [8]. Apparently, these
FFPEs differ considerably from each other. Here we demonstrate the derivation of the FFPE
from a generalised master equation (GME) of the type [9]

Ẇ (x, t) =

∫ ∞
−∞

dx′
∫ t

0

dt′K(x, x′; t− t′)W (x′, t′) , (4)

with the kernel K(x, x′; t) which, in general, introduces a non-Markovian memory and spatial
correlations [2]. Note that we assumed that the kernel K depends only on the time difference
|t − t′|. GMEs of the type (4) have been recently discussed in connection with the non-
Markovian dynamics of protein folding [10].

In the following, we construct the GME (4) for a position-dependent external force field
F (x) = −V ′(x) and a site-dependent and non-local transfer kernel K(x, x′, t) which decays
slowly in space and time, on the basis of a non-homogeneous random walk scheme. This
approach allows us to simultaneously consider both long-range transfer and waiting time
statistics.

Following Weiss, we start off from the discrete master equation [11]

Wj(t+ ∆t) = Aj−1Wj−1(t) +Bj+1Wj+1(t), (5)

describing the transfer properties of the system through the probability Wj to find the particle
on site j after a jump during ∆t, in dependence on the populations of the adjacent sites j − 1
and j + 1. Aj−1 and Bj+1 are the corresponding jump probabilities fulfilling the constraint
Aj + Bj = 1. Upon Taylor expansions in time and space one recovers the FPE (3a) with
the FP-operator (3b) in the continuum limit [11]. The lattice spacing ∆x and the time step
∆t assumed to be small parameters going to zero such that the ratio (∆x)2/∆t is finite, the
coefficients in the FP-operator are given by

V ′(x)

mη1
≡ lim

∆x→0,∆t→0

∆x

∆t
[B(x) −A(x)] , (6a)

K1 ≡ lim
∆x→0,∆t→0

(∆x)2

∆t
. (6b)
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For taking the limits in eqs. (6a) and (6b) we impose the normalisation A(x) + B(x) = 1

and note that A(x−∆x)
B(x+∆x) ∼ 1 + 2∆xV ′(x)

kBT
for ∆x � 1, assuming that the inhomogeneity in

jumping left or right on a site, A(x) − B(x), follows the Boltzmann distribution, kBT being
the Boltzmann temperature.

The GME (5) describes Markovian systems with local jumps; thus justifying the Taylor
expansions in t and x. Anomalous diffusion is intimately related to long-range temporal
memory effects or jump length statistics. In the following we develop a framework which
allows for the consideration of both temporal and spatial anomalies. At first, we consider
the non-locality in space by allowing for jumps from any site j ± n to j, according to the
GME Wj(t+ ∆t) =

∑∞
n=1Aj,nWj−n(t) +

∑∞
n=1Bj,nWj+n(t) where now the transition matrix

elements Aj,n and Bj,n underlie the normalisation condition
∑∞
n=1 (Aj,n +Bj,n) = 1. In order

to obtain the continuum limit of this GME, accounting for the non-locality of the transfer
statistics, we employ the idea of a direction-dependent jump length distribution developed
in ref. [12] for the description of random walks in a constant force field. As an x-dependent
force field F (x) = −V ′(x) destroys the spatial homogeneity, the transfer statistics, as already
implied by the matrices (Aj,n) and (Bj,n), must depend on the departure site x′, as well as
on the arrival site x. We assume that the transfer kernel Λ(x, x′) accounting for the distance
between departure site x′ and arrival site x, and the spatial asymmetry due to the force F (x),
is given through the functional form

Λ(x, x′) ≡ λ(x− x′)[A(x′)Θ(x− x′) +B(x′)Θ(x′ − x)] , (7)

where Θ(x) is the Heaviside jump function. Thus, Λ(x, x′) = Λ(x′||x − x′), i.e. the terms
determining the jump length |x − x′| and the dependence on x′ separate. We impose the
normalisation

∫∞
−∞ dδΛ(x′||δ) = 1. Thus, on each site x′, A(x′) and B(x′) are local weights for

going right or left, and λ(x) is the jump length or transfer distance probability density function.
In order to include the above-mentioned temporal memory effects, we introduce a memory
function ψ(t), an example for which is the waiting time probability density function from
continuous time random walk theory [13] which ascribes the time interval between successive
jumps a waiting time t drawn from this waiting time probability density function. In the
following, we adopt this term even for the more general case of an arbitrary memory for which
the following derivations are valid. The non-local, continuous time-continuous space version
of the GME (5) is, accordingly, given through

W (x, t) =

∫ ∞
−∞

dx′
∫ t

0

dt′ψ(t− t′)Λ(x, x′)W (x′, t′) + Φ(t)W0(x) , (8)

which explicitly involves the initial condition W0(x) = W (x, 0), as via the introduction of the
waiting time probability density function ψ(t) the particle can rest on a given site according

to the probability Φ(t) = 1 −
∫ t

0 dt′ψ(t′). It is easy to show that eq. (8) is equivalent to the
GME (4), with the kernel

K(x, x′;u) = uψ(u)
Λ(x, x′)− δ(x)

1− ψ(u)
(9)

which generalises a result reported in ref. [14].
The GME (4) with the kernel (9) is a general description of a random walk process

underlying only the assumption of the special form (7) of the transfer kernel.
Random walks defined through the functions Λ(x, x′) and ψ(t) introduced above are an

extension of homogeneous random walk schemes [11, 15], and they can be categorised by
the existence or divergence of a finite transfer distance variance Σ2 ≡

∫∞
−∞ dxλ(x)x2 and
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characteristic waiting time T ≡
∫∞

0 dt′ψ(t′)t′. The cases in which we are interested can be
described by Lévy-type jump length densities of index µ ∈ (1, 2), following the asymptotic
behaviour [16] λ(x) ∼ c1σ

µ/|x|1+µ, or the waiting time density ψ(t) ∼ c2τ
γ/t1+γ . In Fourier

and Laplace space, in the k → 0 and u → 0 limits, we find the asymptotic forms λC(k) ∼
1− σµ|k|µ and λS(k) ∼ 2

µ
σk for the cosine and sine transforms, and ψ(u) ∼ 1− (uτ)γ . In the

k and u representations for (µ, γ) = (2, 1), the expansions correspond to those of a Gaussian
λ(x) and Poissonian ψ(t), and thus this case denotes Brownian diffusion in the force field F (x).

To introduce these anomalous statistics into eq. (8) (or, equivalently, into the GME (4) with
the kernel (9)), we rewrite it in Fourier-Laplace space:

uW (k, u)−W0(k) = uψ(u)Λ(k)W (k, u)− ψ(u)W0(k). (10)

Due to its definition (7), the Fourier transform of the transfer kernel Λ(k) in eq. (10) is an
operator in k, according to the observation that Λ(x, x′)W (x, t) transforms to

Λ(k)W (k, t) ≡ λC(k)W (k, t) + iλS(k){[A(k)−B(k)] ∗W (k, t)} , (11)

where the asterisk denotes a Fourier convolution which is to be taken within the braces [17].
Subdiffusion is characterised by a finite transfer variance Σ2 and a diverging characteristic

waiting time T . This corresponds to µ = 2 and γ < 1. Taking into account the expansions for
small k and the usual long-time limit [13], we arrive at the relation

W (k, u)−
W0(k)

u
= u−γLFP(k)W (k, u). (12)

Employing the definition of the Riemann-Liouville fractional derivative 0D
1−γ
t = ∂

∂t 0D
−γ
t

given through [18]

0D
1−γ
t W (x, t) =

1

Γ(γ)

∂

∂t

∫ t

0

dt′
W (x, t′)

(t− t′)1−γ
(13)

and the corresponding theorem L{ 0D
−γ
t W (x, t)} = u−γW (x, u), we obtain the FFPE

Ẇ = 0D
1−γ
t LFPW (x, t) , (14)

which we recently proposed in ref. [8], with the FP-operator LFP (3b). It involves the
coefficients

V ′(x)

mηγ
≡

2σ

µτγ
[B(x) −A(x)] , (15a)

Kµ
γ ≡

σµ

τγ
, (15b)

with µ = 2, the generalised friction coefficient ηγ being of dimension [ηγ ] = sγ−2. In the
FFPE (14) single modes decay in a Mittag-Leffler pattern with an asymptotic power law
behaviour (see below), and this replaces the ordinary exponential decay found in the normal
FPE. For systems relaxing towards thermal equilibrium, we find that the FFPE (14) obeys the
generalised Einstein-Stokes relation Kγ = kBT

mηγ
relating the generalised coefficientsKγ = σ2/τγ

and ηγ via the Boltzmann temperature. Furthermore, eq. (14) fulfils the generalised Einstein

relation [19] 〈x〉F0 = 1
2
F0〈x

2〉0
kBT

, connecting the drift 〈x〉F0 in the presence of a constant force

F0 with the second moment 〈x2〉0 =
2Kγ

Γ(1+γ) t
γ in the absence of the force [8].

The divergence of the characteristic waiting time T has been shown to lead to the Riemann-
Liouville time fractional operator 0D

1−γ
t . We now go a step further and investigate the
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additional divergence of the jump length variance Σ2, i.e. we assume a Lévy distribution with
µ < 2 for the jump distance distribution λ(x) which is typical for Lévy flights. Then, the Fourier
transform of the transfer kernel Λ(x, x′) contains the factor |k|µ in the diffusive term whereas
the drift term is not modified . The last point is at variance with the generalised drift occurring
in the FFPE obtained in [7] from a generalised Kramers-Moyal expansion for chaotic systems.
Recalling the definition of the Riesz fractional derivative F {∇µW (x, t)} = −|k|µW (k, t) [20],
we obtain, after some manipulations, the FFPE

Ẇ = 0D
1−γ
t LFFPW (x, t) (16a)

with the fractional FP-operator

LFFP =

[
∂

∂x

V ′(x)

mηγ
+∇µKµ

γ

]
, (16b)

for Lévy flights in an external potential. The drift and diffusion coefficients are defined in
eqs. (15a) and (15b).

The FFPE (16a) describes the interplay between subdiffusion and Lévy flights. This can be
seen as follows. Through the separation ansatz Wn(x, t) = Tn(t)ϕn(x) for the eigenvalue λn,γ ,
the FFPE (16a) can be reduced to the spatial eigenequation LFFPϕn(x) = −λn,γϕn, whereas
the temporal eigenequation is solved by the Mittag-Leffler function: Tn(t) = Eγ (−λn,γtγ) =∑∞
l=0

(−λn,γt
γ)l

Γ(1+γl) with the power law asymptotic behaviour Tn(t) ∼ λ−1
n,γt

−γ . The complete

solution is then given by the sum over all eigensolutions [6, 8]. Thus, single modes decay
in the slow Mittag-Leffler pattern, whereas the spatial eigensolutions ϕn(x) are Lévy stable
distributions of Lévy index µ. Due to the generalised central-limit theorem [16], also the full
solution W (x, t) is a Lévy distribution in x which causes the divergence of the mean-square
displacement [6]. An alternative method of solution which can be applied to certain FFPEs
is the method of characteristics [6]. A formal solution of eq. (16a) can be written in the form
W (x, t) = Eγ (LFFPt

γ)W (x, 0).
Let us now discuss the connection of the FFPE (16a) to the equations proposed in literature.

Equation (16a) reduces to the normal FPE (3a) for µ = 2 and γ = 1. The Markovian (i.e.
for γ = 1) version of the FFPE (16a) was derived in ref. [4] from a Langevin equation in a
random environment. The general form of eq. (16a) corresponds to the result introduced in
ref. [5] through the parametrisation of the trajectory. For a finite jump length variance Σ2,
the FFPE (14) was introduced in ref. [8]. It is interesting to note that the k-space equivalent
of the FFPE (16a) for γ = 1 was derived in ref. [21].

The stationary solution of the FFPE (16a) is obtained through the usual requirement
∂W
∂t

= 0. If a stationary solution exists, i.e. iff the lowest eigenvalue λ0 = 0, this corresponds
to a vanishing probability current [2]. The expectation that drift and diffusion should give
independent contributions to the probability current is mirrored in the fact that the first-order
spatial derivative in the drift term in the FFPE (16a) is not changed for the case µ < 2.

To conclude, we have introduced a new, non-homogeneous random walk model which
explicitly takes into account the symmetry breaking of the space through the external field
V (x). Anomalous diffusion statistics in time and space are simultaneously incorporated. From
this extended random walk scheme we constructed a generalised master equation which involves
temporal memory effects and non-locality in space. It was shown how a diverging characteristic
waiting time T and a diverging transfer distance variance Σ2 give rise to the occurrence of
a time-fractional Riemann-Liouville operator, and a generalised Laplacian, respectively. Our
derivation further corroborates the use of fractional Fokker-Planck equations for the description
of systems whose dynamics is governed by anomalous diffusion, i.e. generalised statistics
of the microscopic motion underlying the process, averaged in some sense. The established



436 EUROPHYSICS LETTERS

connection between the extended random walk scheme, the generalised master equation, and
fractional Fokker-Planck equations, besides their connection to the Langevin equation, will
lead to a deeper physical understanding of systems exhibiting anomalous dynamics. The
toolbox incorporating the approaches listed above offers a broad and unique approach to
complex systems, and the solution for given potential types, such as a bistable potential used
to model chemical or biological systems, will enrich the theoretical modelling. The advantage
of the FFPE approach over the other approaches mentioned is, alike the situation for normal
diffusion, that explicit solutions for a given external potential V (x) or boundary value problems
are obtained in a straightforward manner from this equation.
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[3] Léuy P., Processus stochastiques et mouvement Brownien (Gauthier-Villars, Paris) 1965.

[4] Fogedby H. C., Phys. Rev. Lett., 73 (1994) 2517; Phys. Rev. E , 58 (1998) 1690.

[5] Fogedby H. C., Phys. Rev. E, 50 (1994) 1657.

[6] Jespersen S., Metzler R. and Fogedby H. C., Phys. Rev. E, 59 (1999) 2736.

[7] Zaslavsky G. M., Edelman M. and Niyazov B. A., Chaos, 7 (1997) 159.

[8] Metzler R., Barkai E. and Klafter J., submitted to Phys. Rev. Lett.

[9] Oppenheim I., Shuler K. E. and Weiss G. H. (Editors), Stochastic Processes in Chemical
Physics: The Master Equation (MIT Press, Cambridge, Massachusetts) 1977.

[10] Plotkin S. S. and Wolynes P. G., Phys. Rev. Lett., 80 (1998) 5015; Bryngelson J. D. and
Wolynes P. G., J. Phys. Chem., 93 (1989) 6902.

[11] Weiss G. H., Aspects and Applications of the Random Walk (North Holland, Amsterdam) 1994.

[12] Metzler R., Klafter J. and Sokolov I., Phys. Rev. E, 58 (1998) 1621.

[13] Klafter J., Blumen A. and Shlesinger M. F., Phys. Rev. A, 35 (1987) 3081.

[14] KenkrE V. M., Montroll E. W. and Shlesinger M. F., J. Stat. Phys., 9 (1973) 45.

[15] Hughes B. D., Random Walks and Random Environments, Volume 1: Random Walks (Oxford
University Press, Oxford) 1995.
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