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Fractional diffusion, waiting-time distributions, and Cattaneo-type equations

Ralf Metzler* and Theo F. Nonnenmacher
Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D–89069 Ulm, Germany

~Received 24 July 1997; revised manuscript received 17 February 1998!

We discuss a generalized diffusion equation resulting from an additive two-state process, in combination
with an asymptotically fractal~asymptotic power-law! waiting-time distribution. The obtained equation is an
extension to previously discussed fractional diffusion equations. Our description leads to a mean squared
displacement which describes enhanced, subballistic transport for long times. The short time behavior, how-
ever, is of a ballistic nature. This separation into two domains results from the introduction of a time scale
through the asymptotically fractal waiting-time distribution. This is also mirrored by the observation that, for
small times, our generalized diffusion equation reduces to the standard Cattaneo equation. The asymptotic
probability density is of compressed Gaussian type, and thus differs from the Le´vy tail generally found for
these kinds of processes.@S1063-651X~98!01606-7#

PACS number~s!: 05.40.1j, 05.60.1w
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I. INTRODUCTION

Fractional differential equations have been extensiv
shown to be a well-suited tool for the description of anom
lous relaxation and diffusion processes in complex syste
@1–3#. On the other hand, continuous time random w
~CTRW! theory has been extraordinarily successful in mo
eling similar processes, in an even wider range of phys
parameters@4–9#. It is thus an interesting question wheth
there exists a connection between both models. Compte@8#
established fractional diffusion equations where the fr
tional time derivative mirrors the anomalous waiting-tim
distribution, and the fractional spatial derivative refers to
power-law jump length distribution.

Recently, Westet al. @10# considered an additive stocha
tic differential equation~see van Kampen@11#!

ẋ~ t !5j~ t ! ~1!

for the two-state processj(t), which takes on the value
6w. In phase space, the evolution equation correspondin
the stochastic Eq.~1! is given by

]w~x,j,t !

]t
5S 2 ĵ

]

]x
1ĜDw~x,j,t !, ~2!

wherew(x,j,t)dx dj is the probability that the dynamica
variablesx(t) and j(t) take on values in the intervals (x,x
1dx) and (j,j1dj), respectively.~For this discussion, also
see Ref.@5#.! The operatorĜ defines the actual dynamics o
the stochastic processx, which is described throughj. The
two-state operatorĵ, according to the basic assumption, h
the eigenvalues6w, i.e., transforms between the ‘‘up’’ an
‘‘down’’ states. Following a projection operator formalism
the integrodifferential equation

*Present address: School of Chemistry, Tel Aviv Univers
69978 Tel Aviv, Israel.
571063-651X/98/57~6!/6409~6!/$15.00
y
-
s

-
al

-

a

to

]s0~x,t !

]t
5E

0

t

dtPĵQe2Ĝ~ t82t !Qĵ
]2s0~x,t8!

]x2
~3!

for the spatial distribution functions0(x,t) of the random
walk, described by the stochastic variablex(t), is recovered
@see Eq.~7! of Ref. @10##. Here,P25P andP1Q51 mapw
onto distributions in (x,t) space. This means thatP averages
w over the configurational space ofĵ.

It can also be proven thatPĵQe2Ĝ(t82t)Qĵ[^j(t)j(t8)&,
namely, the kernel in Eq.~3! is the two-time correlation
function of j(t). We do not hesitate to remark that, due
the left hand side of this identity, the correlation functio
depends on the time difference, exclusively, i.
^j(t)j(t8)&5 f (t2t8). One finally arrives at the evolution
equation

]s0~x,t !

]t
5E

0

t

dt8^j~ t !j~ t8!&
]2s0~x,t8!

]x2
~4!

of the two-state process~1!. Introducing the normalized equi
librium correlation function

Fj~ t !5
^j~0!j~ t !&

^j2&
, ~5!

the integral in Eq.~4! is a Laplace convolution. After a
Laplace transform, Eq.~4! becomes

us0~x,u!2s0~x,0!5^j2&Fj~u!
]2s0~x,u!

]x2
, ~6!

wheres0(x,0)5d(x) is the initial value. For a finite charac
teristic time, which is defined via the equilibrium correlatio
function according to

t5E
0

`

dt Fj~ t !, ~7!

one is led to a Gaussian diffusion process@5,6,8#.
,
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The generalization to anomalous diffusion processe
based on the connection

Fj~ t !5

E t
`dt8~ t2t8!c~ t8!

E 0
`dt8t8c~ t8!

, ~8!

established by Geisel and co-workers@12#, relating the cor-
relation functionFj(t) to the waiting-time distributionc(t)
used in CTRW theory. The probability thatj(t) makes a
transition at a given timet is given byc(t). Thus one is able
to model the two-state stochastic process~1! in terms of
CTRW theory. A comparison to Ref.@13# shows thatFj

corresponds to the velocity-velocity correlation function.

II. FRACTIONAL DIFFUSION EQUATIONS

Due to Eq. ~8!, one can now introduce a waiting-tim
distribution which will, through insertingFj into Eqs.~4! or
~6!, determine the structure of the resulting equation fors0.
In Ref. @10#, the power-law waiting-time distribution

c~ t !;t2~g11!, 1,g,2 ~9!

is considered. The restriction ofg to be larger than 1 is due
to the convergence of the integrals in Eq.~8!. Comparing the
resulting equation with the definition of fractional operato
~see the Appendix!, one recovers the fractional diffusio
equation

]s0~x,t !

]t
5C

]g22

]tg22

]2s0~x,t !

]x2
, ~10!

which, after applying]22g/]t22g, leads to the generalize
equation

]32gs0~x,t !

]t32g
5C

]2s0~x,t !

]x2
. ~11!

This equation is similar to equations derived from CTR
theory by Compte@8#. There, however, we encounter a d
rivative of order between 0 and 1, whereas in Eq.~11! we
have 1,(32g),2; this gives rise to the intermediate tran
port ^x2&(t);t32g, i.e., enhanced sub-ballistic transpo
@We note in passing that Eq.~11! corresponds to Eq.~20! in
Ref. @10#, where on the right hand sideb should be replaced
by b21, a trivial misprint which does not affect the furthe
procedure there.# Of course,c(t);t2(g11) diverges for t
→0, and so doesFj(t);t2(g21).

III. ASYMPTOTICALLY FRACTAL WAITING-TIME
DISTRIBUTION „1…

To overcome the divergence ofFj in the model, Westet
al. introduced the asymptotically fractal waiting-time dist
bution @10#

c~ t !5
A

~B1t !g11
, B.0, ~12!

and the space-time coupling via ad function as constraint:
is
s0~x,t2t8!5

1

2wE2`

`

dx8dS t82
ux2x8u

w Ds0~x8,t !.

~13!

Some comments concerning Eq.~12! are in order. Pure
fractals or power laws do not possess a characteristic le
or time: f (lt)5lm f (t), i.e., the change of length or tim
scale by a factor ofl simply changes the scale of the resu
characterized by a power ofm. This is, of course, fulfilled for
the waiting-time distribution given in Eq.~9!. In the case of
Eq. ~12!, however, this is only true fort@B. Thus the pa-
rameterB which has the dimension of time limits the fract
region for small times. For such a behavior, which is qu
common in nature, Rigaut coined the notion of asympto
fractals@14#; see also Refs.@15,16#.

Let us briefly discuss the consequence of the step of
troducing the asymptotically fractal waiting-time distributio
~12! and the constraint~13!. Equation~11!, which is inti-
mately connected to the integrodifferential Eq.~4!, includes
a second-order spatial derivative leading to a modified ex
nential decrease of the solutions0(x,t). This can be seen
most easily in its Fourier-Laplace transform

s0~k,u!5
1

u1A^j2&ug22k2
, ~14!

where the second power ofk occurs. Reminding the calcu
lation of the moments via the characteristic function throu

^xn&~u! lim
k→0

dns0~k,u!

i ndkn
, ~15!

one recognizes immediately that all odd moments van
while all even moments are finite, thus causing the modifi
exponential decay@11#. On the other hand, the fractiona
derivative in Eq.~11! leads to a divergence of the characte
istic time t in Eq. ~7! @6,8#.

The modifications introduced in Ref.@10#, i.e., the
waiting-time distribution~12! and the constraint~13!, on the
other hand, lead to the characteristic function@see Eq.~54! in
Ref. @10##

s0~k,u!5
1

u1bukug
. ~16!

Relation~16! gives rise to a finite characteristic timet, but
an infinite variancê x2&, see the discussion in Ref.@6#. In
other words, Eq.~16! leads to the well-known Le´vy tail as-
ymptotics for enhanced sub-ballistic transport@17,18#, see
below.

Equation~14!, i.e., the original model, describes a phys
cal situation where very large jumps of the random walk
are ‘‘penalized’’ by a longer time cost.@Compare Eq.~14!
with Ref. @6#.# This can, in CTRW theory, be achieved v
the coupling c(x,t)5p(tux)l(x) in the jump probability
c(x,t), where the conditional probabilityp(tux) selects the
waiting time in accordance to a given jump length; see R
@6#. In the constant velocity model, this is equivalent to t
choice c(x,t)5p(xut)c(t) due to thed function. Such a
classification according to the different CTRW categor



,

a
t
d

e

e
lt
yp

l
is

r

on
a
W

n
h

f t
n

is

t

f
-

all

lt,
.
or-
-
i.e.,
ver,

con-

-
be

rd
a-
on

if-

’s
es
in

us

n
, we

as
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listed in Ref.@6# is unequivocal. Equation~16!, on the other
hand, is equivalent to a decoupled modelc(x,t)
5c(t)l(x), with a power-law jump length distribution. In
this model, even very large jumps are allowed to occur
situation which is often referred to as Le´vy flights, in con-
trast to Lévy walks like Eq.~14!.

Moreover, there is no longer a fractional diffusion equ
tion of the type~4!. Instead, as Compte showed, this leads
a Riesz derivative substituting the second-order spatial
rivative, see@8#.

IV. ASYMPTOTICALLY FRACTAL WAITING-TIME
DISTRIBUTION „2…

In the following, we show that the introduction of th
asymptotically fractal waiting-time distribution~12! suffices
to correct the unphysical behavior forFj(t). We calculate an
exact expression forFj(u), and discuss the consequenc
for the mean squared displacement. An important resu
that the modified Gaussian decay is preserved, which is t
cal for anomalous diffusion phenomena; see Refs.@7,19,20#
and the modeling in Ref.@3#. Thus the asymptotic fracta
~12! does not alter the overall shape of the solution. This
of course, due to the fact that, in Eq.~4!, the second-orde
differentiation in space is not altered, again leading to
Fourier-Laplace transform of the form~14! in the asymptotic
limit. ^x2& of this process is finite.

On the other hand, Westet al. remarked that both
Zumofen and Klafter@17# and Trefàn et al. @18# ended up in
processes that are characterized by Le´vy statistics, not by an
exponential in the asymptotic limit in (x,t) space. This is a
point where the description through a fractional diffusi
equation and the CTRW theory differ. Both lead to
stretched Gaussian for dispersive transport. But CTR
theory shows a Le´vy tail in the probability distribution of the
enhanced sub-ballistic case, whereas our model prese
here has a compressed exponential as its asymptotic be
ior. However, both approaches have the same scaling o
variance, i.e.,̂ x2&(t);t32g in this range. This observatio
leads us to the consideration of expression~12!, without cou-
pling ~13!, as an alternative solution, preserving the ex
tence of^x2&.

Now taking Eq. ~12! and inserting it into Eq.~8!, we
arrive at ^j2&5(AB12g)/(g22g). The new correlation
function is given by

Fj~ t !5
Bg21

~B1t !g21
. ~17!

We observe that, fort@B, we recover the original resul
Fj(t);t12g of West et al. @10#. On the other hand, fort
!B, the correlation is unity, as it should be.

To compute the equivalent of Eq.~6!, we need the
Laplace transform ofFj(t). The result is~Refs.@21–23#!

Fj~u!5Bg21eBuug22G~22g,Bu!, ~18!

where G(22g,Bu) denotes the incompleteg function
G(a,x)5*x

`e2tta21dt. The asymptotic expansions o
G(a,t) are given in the Appendix. This result is to be com
pared with Ref.@13#.
a
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From the characteristic function~14!, we compute the
mean squared displacement

^x2&~u!52^j2&u22Fj~u! ~19!

in Laplace space. For the limiting cases of large and sm
times, it follows~see the Appendix for the expansions! that

^x2&~ t !;2^j2&Bg21G~22g!

3S t32g

G~42g!
2

B22g

G~32g!
t1••• D , t@B, ~20a!

^x2&~ t !;2^j2&S t2

2
2

g21

6B
t31••• D , t!B. ~20b!

Thus, in the long-time limit, we recover the former resu
Eq. ~44! in Ref. @10#, in the first order of the expansion in Eq
~20b!, as it should be. The next term gives a negative c
rection. We observe that̂x2&;t32g corresponds to en
hanced transport between normal and ballistic transport,
intermediate transport; see above. For small times, howe
we find purely ballistic transport,;t2, as it is normally re-
covered for Cattaneo-type approaches where a modified
stitutive equation is assumed; see Ref.@24#. A further char-
acteristic of Eq. ~20b! is that g appears only in the
coefficients of the higher-t powers. Thus the short-time re
gion is not affected by the anomalous behavior, as is to
expected for the choice ofc(t) according to Eq.~12!, which
is constant for small times.

V. CATTANEO-TYPE EQUATION

A typical feature for the diffusion equation, be it standa
or of fractional order in time, is the infinitely fast propag
tion; i.e., even for very small times, there is a finite porti
of the probability density for very largeuxu. This is due to the
Gaussian~or modified Gaussian! structure of the solution.
Mathematically speaking, this is due to the fact that the d
fusion equation is aparabolic partial differential equation.
To avoid this, Cattaneo@25# proposed in 1948 hishyperbolic
modified diffusion equation, which is of a telegrapher
equation type. His modified constitutive equation introduc
a relaxation of the flux. A detailed discussion is found
Refs.@24,26#.

To underline the relation to the Cattaneo formalism, let
introduce the extension of Eq.~11! for the waiting-time dis-
tribution ~12!. In order to obtain a differential equatio
where the spatial and temporal derivatives are separated
divide by the correlation functionFj in Eq. ~6!, and expand
the fraction. For small times~i.e., largeu), we end up, to
second order, with the Cattaneo equation

]2s0~x,t !

]t2
1

g21

B

]s0~x,t !

]t
5^j2&

]2s0~x,t !

]x2
, ~21!

leading to the short-time mean squared displacement~20b!,
as would be expected@24#. The solution to Eq.~21! is given
by Ref. @27# (t and x are rescaled to keep the notation
simple as possible!:
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s0~x,t !5
e2t

2 F H I 0~At22x2!1
t

At22x2
I 1~At22x2!J

3x2t,t~x!1d~x1t !1d~x2t !G , ~22!

where x2t,t(x)5Q(x1t)2Q(x2t) is the rectangle func-
tion. Note the occurrence of the wave variablex6t and the
typical variableAt22x2 of the telegrapher’s equation. Fo
Eq. ~21!, one can show that, for small times, the propagat
velocity is finite, namely.

v5A^j2& ~23!

in our notation.~For the definition ofv, see Refs.@24,26#.!
To end up with an equation for larget, we neglect

s0(x,0) in Eq. ~6!, divide by Fj , and finally expand this
expression for smallu, i.e., larget. The resulting equation
reads

]32gs0~x,t !

]t32g
1

B22g

G~32g!

]522gs0~x,t !

]t522g

1•••1B
]2s0~x,t !

]t2
5K

]2s0~x,t !

]x2
. ~24a!

The constant on the right hand side is given byK
5Bg21G(22g)^j2&. Compare this equation with the GC
II model in Ref. @26#. The dots in Eq.~24a! indicate the
higher orders of the expansion, which we do not write do
explicitly. In the limit g→2, both of the first terms reduce t
a first-order temporal derivative, as do the many higher-or
terms symbolized by the dots. However, at next higher ord
the second-order derivative remains unchanged. Thus fog
→2, calculating all the occurring summations, one recov
a standard Cattaneo equation. This complicated behavio
due to the series expansion ofFj(t) involved.

Finally, rewriting Eq. ~24a! in terms of b5g21, i.e.,
0,b,1,

]22bs0~x,t !

]t22b
1

B12b

G~22b!

]322bs0~x,t !

]t322b

1•••1B
]2s0~x,t !

]t2
5K

]2s0~x,t !

]x2
, ~24b!

it becomes clear that the lowest order of the time derivativ
22b, describes enhanced transport in the intermediate
gion. Equations~24a! and~24b! may be regarded as anom
lous extensions of the Cattaneo equation. Generalized C
neo equations of fractional order were extensively discus
in Ref. @26#. Both limiting Cattaneo equations~21! and~24a!
reconstitute the standard Cattaneo equation forg→2. We
note in passing that Eqs.~24a! and~24b! reduce to the resul
of Ref. @10# for B→0.
n

n

er
r,

s
is

s,
e-

ta-
d

VI. CONCLUSION

We observe that a nondiverging~‘‘nonpathological’’!
choice of the waiting-time distribution@Eq. ~12!#, leads to a
distribution function for which all moments are finite. W
cannot calculate an exact solution for Eqs.~24a! and ~24b!.
The asymptotic shape in the extreme diffusion limitt@B,
however, can be calculated from a truncation in the 1/Fj

expansion, leading to the well-known result

s0~x,t !;
2t1/221/b

AK~22b!
S uxu

AK
D 1/b21

3expH 2c~b!S uxu

AKt12b/2D 2/bJ , ~25!

wherec(b)5222/bb(22b)2/b21, matching Eq.~39! in Ref.
@10#, as it should. Of course, Eq.~25! leads back to a stan
dard Gaussian for the limiting caseb→1.

We have demonstrated that the asymptotically frac
waiting-time distribution~12! gives rise to a description o
enhanced sub-ballistic diffusion fort@B. For small timest
!B, however, the correlation function approaches un
which causes the ballistic transport, i.e., the Cattaneo-t
behavior. Generalized Cattaneo equations~21!, ~24a!, and
~24b! can be deduced, valid for small and large time, resp
tively. This behavior, i.e., separation intot!B and t@B, is
due to the introduction of a microscopic time scaleB, which
separates two different domains on the time arrow.

The Cattaneo picture found for small times can be und
stood in physical terms as the movement of gas partic
moving ballistically and independently of each other, befo
collisions come into play~which is the case for times of th
order of the mean collision time and longer!, see the connec
tions to the Boltzmann equation@28#.

This result contrasts with the alternative Le´vy approach of
West et al. in Ref. @10#, as in our case the mean squar
displacement is kept finite and the modified exponential
lution is preserved. Our finding is asymptotically equivale
to the coupled case describing enhanced transport in Ref.@6#,
and it can still be described by a modified diffusion equatio
It thus refers to physical situations where very large jum
are ‘‘punished’’~Lévy walks!. Thus, while the mean square
displacement of both approaches leads to the same resul
Lévy tail of the CTRW dynamical approach differs from th
compressed exponential found here.
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APPENDIX: FRACTIONAL CALCULUS

Fractional calculus ideas date back to the days when c
sical calculus came of age. These ideas were first expre
in some letters between de l’Hospital and Leibniz in 169
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Today’s definitions are mainly basing on the works of Lio
ville and Riemann published in the last century@29–32#.

Today, there exists an immense variety of definitions
fractional operators, see the compendium of Samko, Kilb
and Marichev ~Ref. @31#!. The most common definition
however, goes back to the Riemann definition

t0
Dt

2pf ~ t !5
1

G~p!
E

t0

t

dt
f ~t!

~ t2t!12p
, ~A1!

extending Cauchy’s multiple integral for arbitrary complexp
with Re(q).0, by use of theg function. Herein, we are led
to the Riemann–Liouville fractional calculus, i.e.,t050:

0Dt
2pf ~ t !5

1

G~p!
E

0

t

dt
f ~t!

~ t2t!12p
~A2!

for Re(p).0. A derivative of orderq, q.0, is consequently
established via the definition

dq

dtq
f ~ t ![0Dt

qf ~ t !5
dn

dtn
0Dt

q2nf ~ t !, ~A3!
-

J.
f
s,

wheren>q, nPN is a natural number. Here, also, we intr
duce the shorthand notationdq/dtq used in the text which we
use for bothq,0 andq.0, in the above spirit.

The Laplace transform of a fractional integral express
is very convenient:

E
0

`

dt e2ut
d2q

dt2q
f ~ t !5u2qf ~u!, ~A4!

where f (u) is the Laplace transform off (t) @29#.
Often, linear fractional equations can be solved by use

Fox functions, or transformations can be given exactly
terms of Fox functions. In the case of generalized Catta
equations, no exact solutions can be given. Even the solu
of the standard Cattaneo equation becomes quite intri
@27#. We are thus limited to the discussion ofs0(k,u) and
asymptotic cases in (x,t) space, and̂x2&.

For the calculations in this paper, we need the asympt
expansion of the incompleteg function G(a,t):
G~a,x!5G~a!2g~a,x!5E
x

`

e2tta21dt ~A5!

55 xa21e2xF11
a21

x
1

~a21!~a22!

x2
1•••G , x→`

G~a!F12e2x(
n50

`
xn

G~a1n11!G , uxu,`,

~A6!

where the last expression is obtained via the connection

G~a,x!5G~a!@12xag* ~a,x!# ~A7!

relatingG(a,x) andg* (a,x). g* (a,x) is single valued ina andx, and shows no finite singularities@23#.
For completeness, we finally mention the well-known Taylor series

1

12x
511x1x21O~x3!. ~A8!
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