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Fractional diffusion, waiting-time distributions, and Cattaneo-type equations
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We discuss a generalized diffusion equation resulting from an additive two-state process, in combination
with an asymptotically fractalasymptotic power-layvwaiting-time distribution. The obtained equation is an
extension to previously discussed fractional diffusion equations. Our description leads to a mean squared
displacement which describes enhanced, subballistic transport for long times. The short time behavior, how-
ever, is of a ballistic nature. This separation into two domains results from the introduction of a time scale
through the asymptotically fractal waiting-time distribution. This is also mirrored by the observation that, for
small times, our generalized diffusion equation reduces to the standard Cattaneo equation. The asymptotic
probability density is of compressed Gaussian type, and thus differs from thetai generally found for
these kinds of processg$1063-651X98)01606-7

PACS numbegps): 05.40:+j, 05.60+w
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Fractional differential equations have been extensively 0 X

shown to be a well-suited tool for the description of anoma- . o :

lous relaxation and diffusion processes in complex systemg)r the spapal distribution funct_|omr0(_x,t) of _the random
[1-3]. On the other hand, continuous time random walkWwalk, described by the stochastic variaklg), is recovered
(CTRW) theory has been extraordinarily successful in mod1S€€ Eq(7) of Ref. [10]]. Here,PzzP andP+ Q=1 mape
eling similar processes, in an even wider range of physicaPnto distributions inX,t) space. This means th&taverages
parameter§4—9]. It is thus an interesting question whether ¢ over the configurational space &f

there exists a connection between both models. Cofiiijte It can also be proven th@gge—m’—t)Q?SrE(g(t)g(t’»,
established fractional diffusion equations where the fraCname|y, the kernel in Eq(3) is the two-time correlation

tional time derivative mirrors the anomalous waiting-time function of £(t). We do not hesitate to remark that, due to
distribution, and the fractional spatial derivative refers to athe left hand side of this identity, the correlation function

power-law jump length distribution. = depends on the time difference, exclusively, i.e.,
Recently, Weset al.[10] considered an additive stochas- (£(t)¢(t'))=f(t—t’). One finally arrives at the evolution
tic differential equationsee van Kampefl1]) equation
X(t)=£(t) (1) Jog(X,t) Pay(x,t)

! ! !
0 [y @

ax?
for the two-state proces§(t), which takes on the values _ ) )
+w. In phase space, the evolution equation corresponding tef the two-state proces4). Introducing the normalized equi-

the stochastic Eq1) is given by librium correlation function
(£(0)&(1))
dp(X,é,t 0 A 1) = | .
QD(atf ) :( _5&4—1“) o(X,&,1), 2) 1) —<§2> (5)

the integral in Eq.(4) is a Laplace convolution. After a
where ¢(x,£,t)dx dé is the probability that the dynamical Laplace transform, Eq4) becomes
variablesx(t) and &(t) take on values in the intervalx,k
+dx) and (,£+d¢), respectively(For this discussion, also 5 d?0o(X,u)
see Ref[5].) The operatol defines the actual dynamics of Uog(X,U) = 0o(X,0) = (&) P () P ©®
the stochastic process which is described througf. The
two-state operato@-‘, according to the basic assumption, haswherea(x,0)= &(x) is the initial value. For a finite charac-
the eigenvalues-w, i.e., transforms between the “up” and teristic time, which is defined via the equilibrium correlation
“down” states. Following a projection operator formalism, function according to
the integrodifferential equation

= f:dt D (1), @

*Present address: School of Chemistry, Tel Aviv University,
69978 Tel Aviv, Israel. one is led to a Gaussian diffusion proc¢ss,d.
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The generalization to anomalous diffusion processes is 1 (= [x—x']|
based on the connection oo(X,t—t")= ﬂf ocdx’ 5<t’— oo(X',b).
(13
f?dt'(t—t’wa’) _ _
D y(t) = , 8) Some comments concerning Ed.2) are in order. Pure
© ares 1er fractals or power laws do not possess a characteristic length
fodt U(t’) or time: f(\t)=\#f(1), i.e., the change of length or time

scale by a factor ok simply changes the scale of the result,
established by Geisel and co-work¢i], relating the cor-  characterized by a power gf. This is, of course, fulfilled for
relation function®.(t) to the waiting-time distribution/(t)  the waiting-time distribution given in Ed9). In the case of
used in CTRW theory. The probability thg(t) makes a Eq. (12), however, this is only true for>B. Thus the pa-
transition at a given timeis given byy(t). Thus one is able rameterB which has the dimension of time limits the fractal
to model the two-state stochastic procéss in terms of  region for small times. For such a behavior, which is quite
CTRW theory. A comparison to Ref13] shows that®,  common in nature, Rigaut coined the notion of asymptotic
corresponds to the velocity-velocity correlation function.  fractals[14]; see also Refd15,16.
Let us briefly discuss the consequence of the step of in-
Il. FRACTIONAL DIFFUSION EQUATIONS troducing the asymptotically fractal waiting-time distribution
(12) and the constrain(13). Equation(11), which is inti-
mately connected to the integrodifferential E4), includes
a second-order spatial derivative leading to a modified expo-
nential decrease of the solutiary(x,t). This can be seen
most easily in its Fourier-Laplace transform

Due to Eg.(8), one can now introduce a waiting-time
distribution which will, through inserting . into Egs.(4) or
(6), determine the structure of the resulting equationdgr
In Ref.[10], the power-law waiting-time distribution

Y()~t~ 0D 1< y<2 9)

is considered. The restriction gfto be larger than 1 is due ao(k,u)= u+A(E)ur 22 (14)

to the convergence of the integrals in E8).. Comparing the
I’esulting equation W|th the deﬁnition of fraCtional OperatorSWhere the Second power kfoccurS. Reminding the Calcu_
(see the Appendix one recovers the fractional diffusion |ation of the moments via the characteristic function through
equation
-2 .2 . dn(To(k,U)
dog(X,t) 74 d%ag(X,t1) (XM (u) lim————, (15
:C _ ’ (10) k—0 |nd kn
at Y2 gx?

one recognizes immediately that all odd moments vanish

H : 2—y 2—y H
which, after applyings™"*/dt™"7, leads to the generalized while all even moments are finite, thus causing the modified

equation exponential decayl11]. On the other hand, the fractional
B Tao(x.t Poo(x.t derivative in Eq.(11) leads to a divergence of the character-
(:(i( )_ UO(z ) (11)  istic time 7 in Eq. (7) [6,8].
= 12 The modifications introduced in Refl10], i.e., the

waiting-time distribution(12) and the constraintl3), on the

This equation is similar to equations derived from CTRW g .
theory by Comptd8]. There, however, we encounter a de- %tgfer[lhda]?d, lead to the characteristic funcieee Eq(54) in

rivative of order between 0 and 1, whereas in Efl) we

have 1<(3— y)<2; this gives rise to the intermediate trans-

port (x2)(t)~t377, i.e., enhanced sub-ballistic transport. ook, u)y=——.
[We note in passing that E¢L1) corresponds to E¢20) in u+blk|”
Ref.[10], where on the right hand sig¢@ should be replaced ) ) _ o o
by B—1, a trivial misprint which does not affect the further Re'?“?f‘(le’) gives rise to a finite gharac_tens_nc time but
procedure theréof Courseiw(t),\,t_(')/‘*'l) diverges fort an |nf|n|te Val’lanCE(X2>, see the d|SCUSS|0n n Rdﬁ] |n

(16)

—.0, and so doed ,(t)~t~ (") other words, Eq(16) leads to the well-known Ty tail as-
' ¢ ymptotics for enhanced sub-ballistic transpfit?,18, see
. ASYMPTOTICALLY FRACTAL WAITING-TIME below. . . .. . .
DISTRIBUTION (1) Equation(14), i.e., the original model, describes a physi-

cal situation where very large jumps of the random walker
To overcome the divergence df; in the model, Weset  are “penalized” by a longer time cosfCompare Eq(14)

al. introduced the asymptotically fractal waiting-time distri- with Ref. [6].] This can, in CTRW theory, be achieved via
bution[10] the coupling ¢(x,t)=p(t|x)A(X) in the jump probability
#(x,t), where the conditional probabilitg(t|x) selects the
waiting time in accordance to a given jump length; see Ref.
[6]. In the constant velocity model, this is equivalent to the
choice ¢(x,t)=p(x|t)(t) due to thed function. Such a
and the space-time coupling viaddunction as constraint:  classification according to the different CTRW categories

W(t)= B>0, (12

(B+t)7*+1’
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listed in Ref.[6] is unequivocal. EquatiofiL6), on the other From the characteristic functiofil4), we compute the
hand, is equivalent to a decoupled modek(x,t) mean squared displacement

=y(t)N(x), with a power-law jump length distribution. In

this model, even very large jumps are allowed to occur, a (X3 (U)=2(EHU" 2D «(u) (19
situation which is often referred to as \neflights, in con-
trast to Levy walks like Eq.(14). in Laplace space. For the limiting cases of large and small

Moreover, there is no longer a fractional diffusion equa-times, it follows(see the Appendix for the expansigrnbat
tion of the type(4). Instead, as Compte showed, this leads to
a Riesz derivative substituting the second-order spatial dex?)(t)~2(£2)BY I'(2— )
rivative, sed 8].

37 B2~
X - t+---], t>B, (209
IV. ASYMPTOTICALLY FRACTAL WAITING-TIME F4—y) TI'(3—vy)
DISTRIBUTION (2) ,
t -1
In the following, we show that the introduction of the <X2>(t)~2<§2>(§_76_8t3+m , t<B. (20b)

asymptotically fractal waiting-time distributiof12) suffices

to correct the unphysical behavior fér,(t). We calculate an
exact expression fo,(u), and discuss the consequences . . : S
for the mean squared displacement. An important result i 2%&44) m_:?e}:. [1%’;)” th1_ehf|rstorfjtezr of th_e expansmnt_ln Eg.
that the modified Gaussian decay is preserved, which is typi ), as it shou €. The next term gives a negatve cor-

i 2\ __43— _
cal for anomalous diffusion phenomena; see Rigfsl9,2(] rection. We observe thax®)~t>"” corre_sppnds to en-
and the modeling in Refi3]. Thus the asymptotic fractal hanced transport between normal and ballistic transport, i.e.,

(12) does not alter the overall shape of the solution. This jsintermediate transport; see above. For small times, however,

of course, due to the fact that, in E@), the second-order V& find purely ballistic transport-t?, as it is normally_re—
differentiation in space is not altered, again leading to &0Vered for Cattaneo-type approaches where a modified con-

Fourier-Laplace transform of the for(f4) in the asymptotic StitUti.V € equation is assgmed; see He#]. A further .char-
limit. (x2) of this process is finite. acteristic of Eg.(20b) is that y appears only in the

On the other hand, Wesetal. remarked that both coefficients of the higher-powers. Thus the short-time re-
Zumofen and Klaftef17] and Trefa et al. [18] ended up in gion is not affected py the anomalo.us behavior, as is to be
processes that are characterized byyLstatistics, not by an €XPected for the choice af(t) according to Eq(12), which
exponential in the asymptotic limit inx(t) space. This is a is constant for small times.
point where the description through a fractional diffusion
equation and the CTRW theory differ. Both lead to a V. CATTANEO-TYPE EQUATION
stretched Gaussian _fqr dispersive_ transport. But CTRW
ey el o e o g yonerff o factonalorder n e, s e il a3t propage
here has a compressed exponential as its asymptotic behdiPn; i.e., even for very small times, there is a finite portion

ior. However, both approaches have the same scaling of th f the probability c_i(_ansity for very largia|. This is due to Fhe
variance, i.e.{x2)(t)~t3~” in this range. This observation aussian(or modified Gaussignstructure of the solution.

leads us to the consideration of expressib®), without cou- Mathematically speaking, this is due to the fact that the dif-

. . . . . fusion equation is garabolic partial differential equation.
I 13), It t lution, th - A . ; :
?elr?c?e (of<)x2§13 an afiernative solution, preserving the exis To avoid this, Cattanef®5] proposed in 1948 hikyperbolic

Now taking Eq.(12) and inserting it into Eq(8), we modified diffusion equation, which is of a telegrapher’'s
arrive at <§2>:(A'Bl,y)/( 2_4). The new cc;rrélation equation type. His modified constitutive equation introduces
function is given by Y= a relaxation of the flux. A detailed discussion is found in

Thus, in the long-time limit, we recover the former result,

A typical feature for the diffusion equation, be it standard

Refs.[24,26].
y-1 To underline the relation to the Cattaneo formalism, let us
Dy(t)= _ (17)  introduce the extension of EqL1) for the waiting-time dis-
(B+t)7 ! tribution (12). In order to obtain a differential equation

o where the spatial and temporal derivatives are separated, we
We observe that, fot>B, we recover the original result divide by the correlation functio®, in Eg. (6), and expand
®4(t)~t*"7 of Westetal. [10]. On the other hand, for  the fraction. For small time§i.e., largeu), we end up, to

<B, the correlation is unity, as it should be. second order, with the Cattaneo equation
To compute the equivalent of Ed6), we need the
Laplace transform ofb.(t). The result isRefs.[21-23) Pog(x,t)  y—1 dog(x,t) e Paoo(x,t) -
P (u)=B7"1eBuwr 21 (2—y,Bu), (18 at? B at oxe

where I'(2—y,Bu) denotes the incompletey function leading to the short-time mean squared displacer@ot),
I'(a,x)=[;e t3 1dt. The asymptotic expansions of as would be expectd@4]. The solution to Eq(21) is given
I'(a,t) are given in the Appendix. This result is to be com- by Ref.[27] (t and x are rescaled to keep the notation as
pared with Ref[13]. simple as possibje
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t VI. CONCLUSION

{IO( V=X + Wll( V=X )] We observe that a nondiverging‘nonpathological’)
choice of the waiting-time distributiofEg. (12)], leads to a
distribution function for which all moments are finite. We
XX —t1(X)+o(x+1) + 5(X—t)], (220 cannot calculate an exact solution for E¢®4a and (24b).
The asymptotic shape in the extreme diffusion limtB,
however, can be calculated from a truncation in thé 1/
where y_ (X) =0 (x+t)—0O(x—t) is the rectangle func- expansion, leading to the well-known result
tion. Note the occurrence of the wave variaklet and the

ot
oo(X,t)=—-

typical variable t?—x? of the telegrapher’s equation. For 0 oty up [ x|\ At
Eq. (21), one can show that, for small times, the propagation oo(X,1)~ =l e
velocity is finite, namely. VK2-p)\ VK
M|
0= (&) (23 XGXP{ —C<ﬂ>( mmm) ] (25

in our notation.(For the definition ofy, see Refs[24,26l.)  wherec(B)=2"2PB(2— B)?F~1, matching Eq(39) in Ref.

To end up with an equation for largg we neglect [10], as it should. Of course, E@25) leads back to a stan-
oo(x,0) in Eq. (6), divide by ®,, and finally expand this dard Gaussian for the limiting cage—1.
expression for small, i.e., larget. The resulting equation We have demonstrated that the asymptotically fractal
reads waiting-time distribution(12) gives rise to a description of
enhanced sub-ballistic diffusion foBB. For small times
<B, however, the correlation function approaches unity

3— 2— 5-2
9> Yoo(x,t) BT 7 og(x.h) which causes the ballistic transport, i.e., the Cattaneo-type

a3 I's—vy) at°—2y behavior. Generalized Cattaneo equati¢®$), (249, and
(24b) can be deduced, valid for small and large time, respec-

Pog(x,t)  dPo(x,t) tively. This behavior, i.e., separation int&cB andt>B, is

+- B =K . (243 due to the introduction of a microscopic time scBlewhich

at? x> , ; ;
separates two different domains on the time arrow.
The Cattaneo picture found for small times can be under-

The constant on the right hand side is given By stood in physical terms as the movement of gas particles
=B” 'I'(2— y)(£%). Compare this equation with the GCE moving ballistically and independently of each other, before
Il model in Ref.[26]. The dots in Eq.(249 indicate the collisions come into playwhich is the case for times of the
higher orders of the expansion, which we do not write downorder of the mean collision time and longesee the connec-
explicitly. In the limit y— 2, both of the first terms reduce to tions to the Boltzmann equatid28].
a first-order temporal derivative, as do the many higher-order This result contrasts with the alternativevyeapproach of
terms symbolized by the dots. However, at next higher ordenwest et al. in Ref. [10], as in our case the mean squared
the second-order derivative remains unchanged. Thuy for displacement is kept finite and the modified exponential so-
—2, calculating all the occurring summations, one recoversution is preserved. Our finding is asymptotically equivalent
a standard Cattaneo equation. This complicated behavior 9 the coupled case describing enhanced transport inf &ef.

due to the series expansion @f;(t) involved. and it can still be described by a modified diffusion equation.
Finally, rewriting Eq. (248 in terms of 8=y—1, i.e., It thus refers to physical situations where very large jumps
0<B<1, are “punished” (Lévy walks). Thus, while the mean squared

displacement of both approaches leads to the same result, the
_ _ _ Lévy tail of the CTRW dynamical approach differs from the
2-B 1-8 3-28

9" oot B J ao(X.1) compressed exponential found here.

2P re2-p) st3-28
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lous extensions of the Cattaneo equation. Generalized Catta-

neo equations of fractional order were extensively discussed APPENDIX: FRACTIONAL CALCULUS
in Ref.[26]. Both limiting Cattaneo equatiorf21) and (243 '
reconstitute the standard Cattaneo equationfer2. We Fractional calculus ideas date back to the days when clas-

note in passing that Eq&24a and(24b) reduce to the result sical calculus came of age. These ideas were first expressed
of Ref.[10] for B—0. in some letters between de I'Hospital and Leibniz in 1695.
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Today’s definitions are mainly basing on the works of Liou-wheren=q, ne N is a natural number. Here, also, we intro-

ville and Riemann published in the last centip®—32. duce the shorthand notatiaid/dt used in the text which we
Today, there exists an immense variety of definitions ofuse for bothq<0 andq>0, in the above spirit.

fractional operators, see the compendium of Samko, Kilbas, The Laplace transform of a fractional integral expression

and Marichev (Ref. [31]). The most common definition, jg very convenient;

however, goes back to the Riemann definition

1 [t f(7)

e " —q
L V) Py (AL) fo dt e“t%f(t)zu%(u), (A4)
extending Cauchy’s multiple integral for arbitrary compfex
with Re(q) >0, by use of they function. Herein, we are led
to the Riemann—Liouville fractional calculus, i.€;=0: wheref(u) is the Laplace transform df(t) [29].
Often, linear fractional equations can be solved by use of
b 1 [t f(7) Fox functions, or transformations can be given exactly in
oD (D)= r(p)fodT (t—7)LP (A2) " terms of Fox functions. In the case of generalized Cattaneo

equations, no exact solutions can be given. Even the solution
for Re(p)>0. A derivative of orden], g>0, is consequently of the standard Cattaneo equation becomes quite intricate
established via the definition [27]. We are thus limited to the discussion @f(k,u) and
asymptotic cases inx(t) space, andx?).
For the calculations in this paper, we need the asymptotic
expansion of the incomplete functionI'(a,t):

el gn
—f(t)=,D¥(t)= —;DI "f(1), A3
dtq()Ot()dtnOt (1) (A3)

F(a,x)=l“(a)—y(a,x)=f e 't 1dt (A5)
X
a—1 a—1)(a—2
1,81, (a-D(@a-2) +] -
X X2
= - (AB)
Xn
Na)j|i-e 2, =———|, X| <o,
(@) nzo I'(a+n+1) X
where the last expression is obtained via the connection
I'(ax)=T(a)[1-x*y*(ax)] (A7)
relatingI'(a,x) and y* (a,x). y*(a,x) is single valued ira andx, and shows no finite singulariti¢23].
For completeness, we finally mention the well-known Taylor series
1 2 3
——=1+x+x2+0(x3). (A8)
1-x
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