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Abstract. For all the relevant transformed spaces, i.e. Fourier, Laplace and Fourier–Laplace,
we presentexact solutions of a fractional diffusion equation, describing random transport on
fractals. The potential importance of such spectral representations lies in their applications to
interpreting experimental measurements of anomalous diffusion processes. In contrast to the well
known asymptotic results, the exact representations provide a much broader basis for comparison
with data.

Relaxation (Schiesselet al 1995) as well as diffusion (Havlin and Ben-Avraham 1987)
processes in complex systems show deviations from the standard (Debye or Fickean) laws,
respectively. Substituting for the Markovian nature, a straightforward way to incorporate
memory effects is the modification of the corresponding differential equations by use of
fractional calculus, modelling memory as a long (Lévy) tail. Anomalous diffusion is
characterized via the mean square displacement

〈r2(t)〉 ∝ t2/dw (1)

deviating from the ‘normal’ linear dependence on time, if the anomalous diffusion exponent,
dw, differs from 2. For diffusion on fractals one findsdw > 2. The returning probability of
a random walker to the origin is decaying like

P(r = 0, t) ∝ t−ds/2 (2)

whereds = 2df /dw is the spectral (fracton) dimension;df is the fractal dimension of the
underlying structure. Much effort has been spent on obtaining the asymptotic shape of the
position probability densityP(r, t) displayed by a random walker. The asymptotes under
discussion are of stretched exponential nature:

Pi(r, t) ∼ t−ds/2ξαi exp
(−ciξui ) (3)

where the connection to the different models is given in table 1.ξ = rt−1/dw is the
unequivocal similarity variable. Regardingα arbitrary, the case Gen is the most general
model which may be discussed on the basis of equation (3), for the caseu = dw/(dw − 1).
A detailed discussion of the power law prefactorξαi may be found in Roman and Alemanyi
(1994), Roman (1995). The influence of the number of configurations, taken into account
in the averages, onP(r, t) is investigated in Bunde and Draeger (1995).
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Table 1. Asymptotic parameters for the various models discussed (cf equation (3)): OP
(O’Shaugnessy and Procaccia 1985), KZB (Klafteret al 1991, Roman and Alemanyi 1994),
M (Metzler et al 1994, see also Schneider and Wyss 1989 and Giona and Roman 1992) and
Gen.

αi ui

OP 0 dw
KZB (df − dw/2)/(dw − 1) dw/(dw − 1)
M 0 dw/(dw − 1)
Gen (df −Ddw/2)/(dw − 1) dw/(dw − 1)

Table 2. Identification of the occurring parameters (see equation (4)) for the different models
discussed.

M KZB Gen OP

2 0 0 0 dw − 2
γ 2/dw 2/dw 2/dw 1
D ds 1 D df

To account for the scaling powerξαi in equation (3), let us regard the generalized
diffusion equation (Metzleret al 1994 withα = 0)

∂γ P (r, t)

∂tγ
= r1−D ∂

∂r
rD−1r−2

∂

∂r
P (r, t) (4)

which involves a fractionalt-derivative of orderγ , a modified Laplacian operator with fractal
orderD, andr−2 being a possibly non-constant diffusion coefficient. Some comments on
equation (4) and its connection to CTRW are given by Shlesinger (1995). The solution
procedure of equation (4), shown in Metzleret al (1994), remains valid and the propagator
is given, in terms of Fox’sH -functions:

P(r, t) = A

t
(r

2+2
2 )

2
γ
− 2df

2+2H 20
12

[
r(2+2)/γ

(2+2)2/γ t
∣∣∣∣ (0, 1)(

1− 1
γ
+ df−D

2+2 ,
1
γ

)
,
(

df
2+2 − 1

γ
, 1
γ

) ] (5)

with A being the normalization constant. The occurring parameters may now be reduced by
considering the conditions (1)–(3). One thus arrives at the identification of the parameters
for the different models listed in table 2. The model Gen leavesα open, according to the
discussion in Roman (1995), and embraces the more special models M and KZB. The single
restriction forD is that it must reduce to the Euclidean dimensiond if the standard Fickean
case (dw → 2, df → d ∈ N) shall be recovered. Forα = u(ds/2− D/2), as suggested
in Klafter et al (1991), one is led to the peculiar constraint thatD must equal 1 for the
standard Fickean pendant. The reason is shown below.

The advantage of the present approach involvingH -functions which may seem rather
complicated is, that equation (4) can be solved in closed form, and the spectral functions
can also be calculatedexactly. Thus, one can find access to more than only theξ � 1
asymptote: to theξ � 1 and the transition region. The exact solutions forP(r, t) and
its spectral functions provide increased information for comparison with experimental or
computer data. We do not hesitate mentioning that the presented equation (4) remains
valid, even in the intermediate ultradiffusive regime in between standard (dw = 2) and
ballistic (dw = 1) transport (Westet al 1996).
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Table 3. Asymptotic expansions for the different transform domains whereHm,n
p,q (z) = O(zc)

for z � 1 andHm,n
p,q (z) = O(zd ) for z � 1. Here,O denotes the Landau symbol.

z c d

P ∗(k, t) ktγ /(2+2) 0 max(−df ,−2−2+D − df )
rd̃−(2+2)/γ P̃ (r, s) r(2+2)/γ s γ min

(
1− 1

γ
+ df−D

2+2 ,
df

2+2 − 1
γ

)
zγ (α−1/2)/2 exp−dzγ/2

sP̃ ∗(k, s) ks−γ /(2+2) 0 max(−df ,−2−2+D − df )

The modified Laplacian in equation (4) may be written as(dVeff/dr)−1∂/∂r(dVeff/dr)
∂/∂r, involving the effective volumeVeff as sensed by the wiggling random walker.
IdentifyingVeff ∝ rD,D < df suggests that the walker senses a smeared-out structure. Thus,
it is a matter of importance to have at hand adequate information—either by simulations or
by very precise experimental measurements—on the ‘true’ shape ofP(r, t), i.e. whichD is
significant for the actually underlying structure, see also Roman (1995) in this connection.
As our closed form solution forP(r, t) includes theξ � 1 and thetransition regiontowards
ξ � 1 it should be significantly better for comparisons with data than the mere stretched
exponential asymptote, or the asymptotic power-laws in the transformed spaces.

For the discussion of the asymptotic probability density in the Laplace domain, let us
first consider the Gaussian position probability density

P(r, t) = (2πt)−d/2 exp

(
− r

2

4t

)
(6)

in d ∈ N dimensions, and its Laplace transform

P̃ (r, s) = π−d/2r(2−d)/2s(d−2)/4Kd/2−1(rs
1/2) ∼ r(1−d)/2s(d−3)/4 exp−rs1/2 (7)

which involves the Bessel functionK. Guyer’s result (Guyer 1984) in the Laplace domain

P̃Guy ∼ sds/2−1 exp−ars1/dw (8)

upon which Klafteret al (1991) base their research, it does not include the prefactor
(rs1/2)(1−d)/2 before the exponential in comparison with equation (7). But the models
previously labelled OSP, M, and Gen reduce exactly to the Laplace transformed Gaussian,
equation (7). Especially for the model Gen one finds

P̃ (r; s) ∝ (rs1/dw )1−D/2sds/2−1K1−D/2(rs1/dw ) ∼ (rs1/dw )(1−D)/2sds/2−1 exp(−rs1/dw ). (9)

For a proper description in Laplace space equation (9) should therefore be preferred to
equation (8). It is exactly the choice of (8) instead of (9) that causes the failure of the KZB
model to reduce to the transformed Gaussian for any integer dimension but 1.

Physical measurements mostly reveal notP(r, t) but some spectral function, e.g. the
Fourier transformed spectral densityP ∗(k, t). Especially for these spectral functions
relatively large ranges are experimentally accessible. It is there, where the transition region
described by our results, significantly enhances the accuracy of data fits, a fact well known
from asymptotic fractals. Therefore, we present the general integral transforms of (5) in
closed form. This is made possible by use of theH -function (see appendix). Below,A
denotes the appropriate normalization constant. The asymptotic behaviour of the calculated
functions is summarized in table 3. All the occurringH -functions may be represented in a
computable form by simply inserting the parameters into equation (A2). This can be done
conveniently with aMathematica program.
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Figure 1. Fourier–Laplace transform̃P ∗(k, s) for s = 100, 500, 1000, 2000 (bottom to top)
and df = 1.58, dw = 2.32 in log–log representation. The broken line indicates the long-tail
power law∼ k−df . Note the late inset of the asymptotic power-law behaviour.

The fractal Fourier transform (see appendix) ofP(r, t), equation (5), is given by

P ∗(k, t) = AH 12
23

[
(2+2)2/(2+2)ktγ /(2+2)

∣∣∣∣∣
(
D−df
2+2 ,

1
2+2

)
,
(

1− df
2+2,

1
2+2

)
(
0, 1

2

)
,
(
0, γ

2+2
)
,
(− 1

2,
1
2

) ]
. (10)

The Laplace transform ofP(r, t), equation (5), can either be written in terms of modified
Bessel functions (Metzleret al 1994) or directly be expressed by the correspondingH -
function:

P̃ (r, s)=Ar(2+2)/γ−df H 20
02

[
r(2+2)/γ s

(2+2)2/(2+2)
∣∣∣∣(1− 1

γ
+ df −D

2+2 ,
1

γ

)
,

(
df

2+2−
1

γ
,

1

γ

)]
.

(11)

Finally, the Fourier–Laplace transform of equation (5) turns out to be

P̃ ∗(k, s) = A

s
H 12

22

[
(2+2)2/(2+2)ks−γ /(2+2)

∣∣∣∣∣
(
D−df
2+2 ,

1
2+2
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,
(

1− df
2+2,
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2

)
,
(− 1

2,
1
2

) ]
. (12)

It is worth mentioning that the reduction of this function to the standard Fickean case is
accomplished easily for theH -function, using its standard properties.

Consulting table 2 one observes that, due to the choice of the volume element in
the fractal Fourier transform, bothP ∗ and P̃ ∗ show a horizontal asymptote, i.e. constant
behaviour forξ � 1. Thus, it is a reasonable generalization of the standard case and
underlines the significance of the(k, s)-space. Figure 1 shows̃P ∗ as an example. The
inserted long-tail asymptote visualizes the relatively late inset of the calculated behaviour.
This again shows the great importance of the knowledge of the transition region.

In this paper, ambiguities of existing theories have been discussed and anew suggestion
for the Laplace transformof P(r, t) has been presented. For the first timeexact solutions
for the spectral functionshave been stated and given in a computable form. Nevertheless,
real existing experimental evidence on the occurrence of the coupling of static space (df )
and dynamics (dw) in a fractional diffusion process is still outstanding. Taken from the
formal mathematical manipulations, the presented exact solutions are the basis for reliable
numerical investigations of experimental data.

This paper was supported by the Deutsche Forschungsgemeinschaft (SFB 239).
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Appendix. Fox’sH-function and fractal Fourier transform

Fox’s H -function is defined in terms of a Mellin–Barnes-type integral, its mathematical
definition and properties are compiled in Mathai and Saxena (1978). For a givenH -function

Hmn
pq (z) = Hmn

pq

[
z | (a1, A1), (a2, A2), . . . , (ap, Ap)

(b1, B1), (b2, B2), . . . , (bq, Bq)

]
(A1)

the series expansion reads

Hmn
pq (z) =

m∑
h=1

∞∑
ν=a

∏m
j=1,j 6=h 0(bj − Bj(bh + ν)/Bh)∏q

j=m+10(1− bj + Bj(bh + ν)/Bh)

×
∏n
j=10(1− aj + Aj(bh + ν)/Bh)∏p

j=n+10(aj − Aj(bh + ν)/Bh)
(−1)νz(bh+ν)/Bh

ν!Bh
. (A2)

Applying integral transforms to a givenH -function results in very convenient relations
which only affect the occurring parameters (Glöckle and Nonnenmacher 1993).

To get an explicit expression for the Fourier transform on fractals one can rewrite the
definition of a sphericalN -dimensional (N ∈ N) Fourier transform by use of the surface of
the corresponding unit-hypersphere

F(N){f (r); q} = (2π)−N/2SN(1)
∫

dr rN−1f (r)
sinqr

qr
(A3)

where SN(R) = 2πN/2RN−1/0(N/2) is well known from statistical mechanics. For
a fractal hypersphere this relation is now—heuristically—generalized (Takayasu 1984)
and usually written asSf(R) = 2πdf /2Rdf−1/0(df /2) so that a fractal volume element
dVf = 2πdf /2rdf−1/0(df /2) dr is recovered. Thus, the fractal Fourier transform is defined
as

Ff{f (r); q} = (2π)−N/2 2πdf /2

0(df /2)
q−1FS

{
rdf−2f (r); q} . (A4)

The fractal Fourier transform can be expressed by an ordinary Fourier sine transform.
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