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Abstract

The dynamics of a free–falling body in complex materials such as a polymer fluid is phenomeno-
logically modeled using a fractional generalization of the Riccati equation. The solution exhibits
a rich behavior in its parametric dependence, and unlike normal free–fall there is no terminal
velocity, instead a power–law increase in time is obtained. Within this approach the fractional
order allows to tune the resulting equation.

1. INTRODUCTION

Every person who has jumped from an aeroplane
with a parachute recognizes that he reaches a ter-
minal velocity after falling for some interval of time.
The hydrodynamic drag of the air being quadratic
in the speed of the jumper eventually balances the
attractive force of gravity, and the jumper descends
at constant speed. This phenomenon is described
by the Riccati equation.1

Riccati–type equations play a prominent role in
the mathematical modeling of non–linear phenom-
ena. They arise, for example, in the context of

ecological systems and chemical reactions, in ad-
dition to jumping from aeroplanes. Many non–
linear partial differential equations — via similar-
ity reductions — can be mapped on a Riccati–
type equation.2 Because of its simple structure and
widespread applications, the Riccati equation rep-
resents one of the most often studied non–linear
differential equations.

Suppose, however, that we wanted to study
bungee cord jumping rather than parachuting. One
thing we would want to know is whether the cord
would exceed its elastic limit and “creep” to an
increased length. For this phenomenon we would
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expect to see a modification of the quadratic ve-
locity dependence observed in the Riccati equation.
Herein we use the fractional calculus to generalize
the Riccati equation.

The fractional calculus has become a pow-
erful tool in mathematical physics, generaliz-
ing well–known standard linear equations like
the relaxation,3,4 diffusion5–7 or wave equations.5

There, the involved convolution in time significantly
enriches the class of solutions to be appropriate
to describing dynamics in complex systems.8 Also,
non–linear Abel–Volterra type equations have been
discussed recently.9

Here, we study the purely phenomenological in-
troduction of a fractional operator into the Riccati
equation. However, we do not solve a non–linear
equation of fractional order. Instead, it is possible
to generalize the ordinary differential equation, onto
which the Riccati equation can be mapped, to frac-
tional order, and solve it. The introduced fractional
order is a kind of a tuning parameter that allows the
transition from the description of parachuting over
plastic creep to the free fall problem.

2. FALL IN RESISTANT MEDIUM

For the motion of a body of mass m free–falling in
a homogeneous potential, exerting a constant ac-
celeration g on the body, in a medium where the
resistance varies as the square of the velocity with
the proportionality constant K, the equation of
motion is

m
d2s(t)

dt2
= mg −K

(
ds(t)

dt

)2

. (1)

The distance coordinate is s(t) and Eq. (1) is usu-
ally called the Riccati equation. In terms of the
particle velocity, Eq. (1) can be re–written:

m
dv(t)

dt
= mg −Kv(t)2 . (2)

The solution to Eq. (2) is readily obtained in the
form

v(t) = V
v∗0 + tanh rt

1 + v∗0 tanh rt
(3)

where V =
√
mg/K, r = g/V and v∗0 = v0/V is the

limit speed of the body for large t.1

We are now interested in generalizing the Ric-
cati equation [Eq. (2)] to account for the anomalous
dynamics caused by the structure of the material

through which the body is possibly falling. Follow-
ing a purely phenomenological approach we do this
through the introduction of a fractional differential
operator. To accomplish this generalization we re–
write Eq. (2) in a reduced form

v̇(t) + v(t)2 = M (4)

where M = mg/K, and the factor m/K before v̇ is
incorporated into a scaled time.

Consider now the well–known transformation

w(t) = exp y(t) (5)

so that the combination of Eq. (5) with the ordinary
differential equation

ẅ(t)−Mw(t) = 0 (6)

is equivalent to Eq. (4) with the identification

v(t) = ẏ(t) or y(t) =
d−1v(t)

dt−1
. (7)

By use of this, Eqs. (6,7) can then be generalized
by the introduction of a fractional operator

y(t) =
d−αv(t)

dt−α
(8)

for α ∈ (0, 1), see also the Appendix. Thus for α =
1 we have the standard Riccati equation [Eq. (4)],
and the corresponding fractional Riccati equation,
obtained by substituting Eq. (5) into Eq. (6) and
using the generalization Eq. (8), reads:

d2−αv(t)

dt2−α
+

(
d1−αv(t)

dt1−α

)2

= M . (9)

Equation (9) is of a purely phenomenological na-
ture. The interpretation as a Newton equation with
a quadratic force term is no longer valid. However,
we show in the subsequent discussion that it pro-
vides an interesting description of the anomalous
creep region in between the known Riccati approach
to resistive fall, and the standard free fall problem.

3. SOLUTION OF THE
FRACTIONAL RICCATI
EQUATION

The solution of Eq. (9) can be obtained by first
solving Eq. (6) in terms of

w(t) = A exp
√
M t+B exp−

√
M t (10)
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and recovering y(t) = logw(t). Thus, to obtain the
velocity of the falling body, one inverts Eq. (8) and
is confronted with the task of computing

v(t) =
dα

dtα
log
(
A exp

√
Mt+B exp−

√
Mt
)
. (11)

By factoring Eq. (11) we arrive at the three separate
terms

log
(
A exp

√
Mt+B exp−

√
Mt
)

= logB −
√
Mt+ log

(
1 +

A

B
exp 2

√
Mt

)
. (12)

We now use the property of fractional derivatives,

dα

dtα
tγ =

tγ−α

Γ(1 + γ − α)
, (13)

to write the velocity in Eq. (11) as

v(t) =
logB

Γ(1− α)
t−α −

√
M

Γ(2− α)
t1−α

+
dα

dtα
log

(
1 +

A

B
exp 2

√
Mt

)
(14)

which cannot be reduced to a closed form. Taking
into account the chain rule for fractional derivatives
(see the Appendix) one arrives at the formal result

v(t) =
logB

Γ(1− α)
t−α −

√
M

Γ(2− α)
t1−α

+
∞∑
k=0

(
α

k

)
tk−α

Γ(1 + k − α)
Λk(t) , (15)

where Λk(t) is defined via

Λk(t) =
dk

dtk
log

(
1 +

A

B
exp 2

√
Mt

)
,

k = 0, 1, 2, . . .

(16)

and the generalized binomial coefficient is defined
in the Appendix. Eq. (15) can be discussed in the
limiting cases of long times, i.e. t� 1/(2

√
M), and

short times, i.e. t � 1/(2
√
M). In between a nu-

merical evaluation shows excellent convergence.
In the limiting case t � 1/(2

√
M) an expansion

of the exponential functions in Eq. (11) to first or-
der in time, log(a+ bt) ∼= log a+ b/at, yields

v(t)∼ log(A+B)

Γ(1−α)
t−α+

(A−B)
√
M

(A+B)Γ(2−α)
t1−α . (17)

We require a non–diverging expression for t → 0
so that the coefficients must satisfy the relation
A + B = 1. Thus the velocity at short times is
an algebraic function of time:

v(t) ∼ (A−B)
√
M/Γ(2− α)t1−α . (18)

On the other hand, for t � 1/(2
√

M) the argu-
ment of the logarithm is dominated by the expo-
nential and one finds

v(t) ∼ logA

Γ(1− α)
t−α +

√
M

Γ(2− α)
t1−α (19)

where the first term may be neglected in compar-
ison to the second as t → ∞. One thus observes
a power–law increase of the velocity in contrast to
the familiar case of approaching a maximum veloc-
ity for a free–falling body in air. The t1−α increase
(creep) in time is the fractional counterpart of the
standard stationarity behavior.

Comparing Eqs. (17) and (19) one observes a
transition from the power law

√
M(A − B)/Γ(2 −

α)t1−α to
√
M/Γ(2− α)t1−α which are both of the

same universality class — thus bear the same power
(1−α) — but have a different magnitude (see Fig. 1
for the complete solution). As B = 1−A the two co-
efficients differ by a factor 1 ≥ (2A− 1) ≥ 0. In the
special case A = 1 implying B = 0, one finds “frac-
tional stationarity”,10 i.e. v =

√
M/Γ(2 − α)t1−α

for all times t > 0.

Fig. 1 The velocity of the free–falling body v(t) given by
Eq. (15) with the parameter values M = 1, A = 0.8, B = 0.2,
α = 0.8 is graphed. The dashed lines indicate the asymptotes
given by Eqs. (17) and (19). Clearly, the solution [Eq. (15)]
interpolates between both of the power laws of the same
order.
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4. DISCUSSION AND
CONCLUSIONS

The case α = 1 reveals the standard Riccati equa-
tion discussed in Sec. 2 whereas α = 0 leads to the
equation

v̈(t) + v̇(t)2 = M (20)

for which the constant acceleration v̇(t) =
√
M is

a solution. Thus for B = 0 one recovers v(t) =
logA +

√
Mt, the case of a free falling mass with

normalized initial speed v0 = logA and normalised
acceleration

√
M . On the other hand, for A = 0 the

result is v(t) = logB −
√
Mt, the case of free fall

with an initial velocity opposite to the direction of
the gravitational force (rocket problem).

For α ∈ (0, 1) the fall is slower than a free falling
mass (α = 0) but still faster than in a medium
causing a v2–proportional counterforce (α = 1). It
is a characteristic issue that for α ∈ (0, 1), v does
not reach a limit value but is ever–increasing, as
a power law. For three different values of α the
solution [Eq. (15)] is displayed in Fig. 2. The frac-
tional order of the generalized Eq. (9) rotates and
stretches the standard tanh profile [Eq. (3)] to the
straight line of the free fall problem, in the log–log
plot of Fig. 2.

For the physical interpretation of above re-
sult [Eq. (15)], recall that in complex systems
like polymers, polymer solutions or bubble gum,
one often encounters “slow creep”, i.e. power-
law flows with the time dependence t−β, in
some time range.4 A gedanken example for a

Fig. 2 The velocity of the free–falling body v(t) given by
Eq. (15) with the parameter values M = 1, A = 0.8, B = 0.2,
is graphed for the three fractional parameters α = 0 (free fall,
dotted line), α = 3/4 (plastic creep, dashed line) and α = 1
(counterforce quadratic in v, full line).

process appropriate for Eq. (15) would be a heavy
mass affixed to a polymer woven cord that has ex-
ceeded its elastic limit. If the mass is heavy enough
it will cause a plastic flow of the material, like a too
heavy bungee cord jumper.

This is the first time, to our knowledge, that a
physical problem modeled by a fractional Riccati–
type equation of arbitrary order α ∈ (0, 1) has been
discussed and solved analytically. Starting off from
a standard Riccati equation a generalized equation
for the fall in a “fractionally” resisting medium has
been proposed, discussed and solved. In this ex-
ample the speed does not reach a limit value but
increases with a power–law tail. Therefore it would
be wise to prefer a parachute to a bungee cord if
your weight is too much.

Despite the relatively simple phenomenological
generalization of Eq. (4) to Eq. (9) by a fractional
differential operator d−α/dt−α the solution issues a
rather complicated behavior. The procedure similar
to the one developed herein should be possible for
other non–linear reduction transforms which reveal
ordinary linear differential equations with constant
coefficients.
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APPENDIX A: FRACTIONAL
CALCULUS

Fractional calculus ideas are by no means new;
they were exchanged in some letters between de
l’Hospital and Leibniz in 1695. Today’s definitions
are mainly based on the works of Liouville and Rie-
mann published in the last century.11

Herein, we use the Riemann–Liouville fractional
calculus defined as a generalization of Cauchy’s mul-
tiple integral with the lower limit t0 = 0:

0D
−p
t f(t) =

1

Γ(p)

∫ t

0
dτ

f(τ)

(t− τ)1−p (A.1)

for p > 0. A derivative of order q, q > 0, is then

established via the definition

dq

dtq
f(t) ≡ 0D

q
t f(t) =

dn

dtn
0D

q−n
t f(t) (A.2)

where n ≥ q, n ∈ IN is a natural number. Here,
also, we introduce the short–hand notation dq/dtq

used in the text.
The chain rule for differentiation involves an in-

finite summation11

dp

dtp
φ (g(t)) =

∞∑
k=0

(
p

k

)(
dp−k

dtp−k
1

)(
dk

dtk
φ (g(t))

)
(A.3)

where the generalized binomial symbol is given in
terms of Gamma functions(

p

k

)
=

Γ(1 + p)

Γ(1 + k)Γ(1 − k + p)
(A.4)

and the derivative of a constant c is readily recov-
ered to be (see 11):

dp−k

dtp−k
c =

ctk−p

Γ(1 + k − p) . (A.5)

Thus the problem is reduced to an infinity of stan-
dard chain rule problems.


