Physical Review E, 80(5), 057202p. (2009) DOI:10.1103/PhysRevE.80.057202

Dependence of intermittency scaling on threshold in chaotic systems

Y. Xiao, Y. Wang Y.-C. Lai

Numerical and experimental investigations of intermittency in chaotic systems often lead to claims of universal classes based on the scaling of the average length of the laminar phase with parameter variation. We demonstrate that the scaling in general depends on the choice of the threshold used to define a proper laminar region in the phase space. For sufficiently large values of the threshold, the scaling exponent tends to converge but significant fluctuations can occur particularly for continuous-time systems. Insights into the dependence can be obtained using the idea of Poincaré recurrence.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.