Review in Mathematical Physics, 21(8), 949–979p. (2009)

An Introduction to Quantitative Poincaré Recurrence in Dynamical Systems

B. Saussol

We present some recurrence results in the context of ergodic theory and dynamical systems. The main focus will be on smooth dynamical systems, in particular those with some chaotic/hyperbolic behavior. The aim is to compute recurrence rates, limiting distributions of return times, and short returns. We choose to give the full proofs of the results directly related to recurrence, avoiding as possible to hide the ideas behind technical details. This drove us to consider as our basic dynamical system a one-dimensional expanding map of the interval. We note however that most of the arguments still apply to higher dimensional or less uniform situations, so that most of the statements continue to hold. Some basic notions from the thermodynamic formalism and the dimension theory of dynamical systems will be recalled.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.