Chaos, 19, 023104p. (2009) DOI:10.1063/1.3117151

Recurrences determine the dynamics

G. Robinson, M. Thiel

We show that under suitable assumptions, Poincaré recurrences of a dynamical system determine its topology in phase space. Therefore, dynamical systems with the same recurrences are dynamically equivalent. This conclusion can be drawn from a theorem proved in this paper which states that the recurrence matrix determines the topology of closed sets. The theorem states that if a set of points M is mapped onto another set N, such that two points in N are closer than some prescribed fixed distance if and only if the corresponding points in M are closer than some, in general different, prescribed fixed distance, then both sets are homeomorphic, i.e., identical up to a continuous change in the coordinate system. The theorem justifies a range of methods in nonlinear dynamics which are based on recurrence properties.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.