Procedia Engineering, 199(), 772–777p. (2017) DOI:10.1016/j.proeng.2017.09.046

Determining periodic orbits via nonlinear filtering and recurrence spectra in the presence of noise

S. Oberst, S. Marburg, N. Hoffmann

In nonlinear dynamical systems the determination of stable and unstable periodic orbits as part of phase space prediction is problematic in particular if perturbed by noise. Fourier spectra of the time series or its autocorrelation function have shown to be of little use if the dynamic process is not strictly wide-sense stationary or if it is nonlinear. To locate unstable periodic orbits of a chaotic attractor in phase space the least stable eigenvalue can be determined by approximating locally the trajectory via linearisation. This approximation can be achieved by employing a Gaussian kernel estimator and minimising the summed up distances of the measured time series i.e. its estimated trajectory (e.g. via Levenberg-Marquardt). Noise poses a significant problem here. The application of the Wiener-Khinchin theorem to the time series in combination with recurrence plots, i.e. the Fourier transform of the recurrence times or rates, has been shown capable of detecting higher order dynamics (period-2 or period-3 orbits), which can fail using classical FouRiER-based methods. However little is known about its parameter sensitivity, e.g. with respect to the time delay, the embedding dimension or perturbations.

Here we provide preliminary results on the application of the recurrence time spectrum by analysing the Hénon and the Rössler attractor. Results indicate that the combination of recurrence time spectra with a nonlinearly filtered plot of return times is able to estimate the unstable periodic orbits. Owing to the use of recurrence plot based measures the analysis is more robust against noise than the conventional Fourier transform.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.