Physical Review E, 75(3), 036222p. (2007) DOI:10.1103/PhysRevE.75.036222

Recurrence analysis of strange nonchaotic dynamics

E. J. Ngamga, A. Nandi, R. Ramaswamy, M. C. Romano, M. Thiel, J. Kurths

We present methods to detect the transitions from quasiperiodic to chaotic motion via strange nonchaotic attractors (SNAs). These procedures are based on the time needed by the system to recur to a previously visited state and a quantification of the synchronization of trajectories on SNAs. The applicability of these techniques is demonstrated by detecting the transition to SNAs or the transition from SNAs to chaos in representative quasiperiodically forced discrete maps. The fractalization transition to SNAs – for which most existing diagnostics are inadequate – is clearly detected by recurrence analysis. These methods are robust to additive noise, and thus can be used in analyzing experimental time series.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.