Journal of Mechanics in Medicine and Biology, 12(5), 1240028p. (2012) DOI:10.1142/S0219519412400283

Automated identification of epileptic and alcoholic EEG signals using recurrence quantification analysis

E. P. Ng, T.-C. Lim, S. Chattopadhyay, M. Bairy

Epilepsy is a common neurological disorder characterized by recurrence seizures. Alcoholism causes organic changes in the brain, resulting in seizure attacks similar to epileptic fits. Hence, it is challenging to differentiate the cause of fits as epileptic or alcoholism, which is important for deciding on the treatment in the neurology ward. The focus of this paper is to automatically differentiate epileptic, normal, and alcoholic electroencephalogram (EEG) signals. As the EEG signals are non-linear and dynamic in nature, it is difficult to tell the subtle changes in these signals with the help of linear techniques or by the naked eye. Therefore, to analyze the normal (control), epileptic, and alcoholic EEG signals, two non-linear methods, such as recurrence plots (RPs) and then recurrence quantification analysis (RQA) are adopted. Approximately 10 RQA parameters have been used to classify the EEG signals into three distinct classes, i.e., normal, epileptic, and alcoholic. Six classifiers, such as support vector machine (SVM), radial basis probabilistic neural network (RBPNN), decision tree (DT), Gaussian mixture model (GMM), k-nearest neighbor (kNN), and fuzzy Sugeno classifiers have been developed to accomplish this task. Results show that the GMM classifier outperformed the other classifiers with a classification sensitivity of 99.6%, specificity of 98.3%, and accuracy of 98.6%.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.