Journal of Biomolecular Structure and Dynamics, 25(3), 289–297p. (2007)

Using Recurrence Quantification Analysis Descriptors for Protein Sequence Classification with Support Vector Machines

J. Mitra, P. K. Mundra, B. D. Kulkarni, V. K. Jayaraman

In this work, we integrate a non-linear signal analysis method, recurrence quantification analysis (RQA), with the well-known machine-learning algorithm, support vector machines for the binary classification of protein sequences. Two different classification problems were selected, discriminating between aggregating and non-aggregating proteins and mostly disordered and completely ordered proteins, respectively. It has also been shown that classification performance of SVM models improve on selection of the most informative RQA descriptors as SVM input features.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.