Signal Processing, 99, 171–184p. (2014) DOI:10.1016/j.sigpro.2013.12.032

Recursive hidden input estimation in nonlinear dynamic systems with varying amounts of a priori knowledge

U. Güntürkün, J. P. Reilly, T. Kirubarajan, H. deBruin

Estimation of additive driving-forces (e.g., hidden inputs) in nonlinear dynamic systems is addressed with varying amounts of a priori knowledge on system models exemplified by three typical scenarios: (1) there is no sufficient prior knowledge to build a mathematical model of the underlying system; (2) the system is partially described by an analytic model; (3) a complete and accurate model of the underlying system is available. Three algorithms are proposed for each scenario and analyzed comprehensively. The adaptive driving-force estimator (ADFE) [1] and [2] is used for the retrieval of driving-forces using only the system outputs for the first scenario. A variational Bayesian and a Bayesian algorithm are established for the second and the third scenarios, respectively. All three algorithms are studied in depth on a nonlinear dynamic system with equivalent computational resources, and the Posterior Cramer-Rao Lower Bounds (PCRLB) are specified as performance metrics for each case. The results lead to a thorough understanding of the capabilities and limitations of the ADFE, which manifests itself as an effective technique for the estimation of rapidly varying hidden inputs unless a complete and accurate model is available. Moreover, the methods developed in this paper facilitate a suitable framework for the construction of new and efficient tools for various input estimation problems. In particular, the proposed algorithms constitute a readily available basis for the design of novel input residual estimators to approach the Fault Diagnosis and Isolation (FDI) problem from a new and different perspective.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.