Review of Modern Physics, 70(4), 1455–1529p. (1998) DOI:10.1103/RevModPhys.70.1455

Topological analysis of chaotic dynamical systems

R. Gilmore

Topological methods have recently been developed for the analysis of dissipative dynamical systems that operate in the chaotic regime. They were originally developed for three-dimensional dissipative dynamical systems, but they are applicable to all "low-dimensional" dynamical systems. These are systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space. Equivalently, the associated attractor has Lyapunov dimension dL<3. Topological methods supplement methods previously developed to determine the values of metric and dynamical invariants. However, topological methods possess three additional features: they describe how to model the dynamics; they allow validation of the models so developed; and the topological invariants are robust under changes in control-parameter values. The topological-analysis procedure depends on identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing mechanisms are represented by a caricature, a branched manifold, which is also called a template or a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation. This topological structure is identified by a set of integer invariants. One of the truly remarkable results of the topological-analysis procedure is that these integer invariants can be extracted from a chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values. These integers can be used to determine whether or not two dynamical systems are equivalent; in particular, they can determine whether a model developed from time-series data is an accurate representation of a physical system. Conversely, these integers can be used to provide a model for the dynamical mechanisms that generate chaotic data. In fact, the author has constructed a doubly discrete classification of strange attractors. The underlying branched manifold provides one discrete classification. Each branched manifold has an "unfolding" or perturbation in which some subset of orbits is removed. The remaining orbits are determined by a basis set of orbits that forces the presence of all remaining orbits. Branched manifolds and basis sets of orbits provide this doubly discrete classification of strange attractors. In this review the author describes the steps that have been developed to implement the topological-analysis procedure. In addition, the author illustrates how to apply this procedure by carrying out the analysis of several experimental data sets. The results obtained for several other experimental time series that exhibit chaotic behavior are also described.


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter