Renewable & Sustainable Energy Reviews, 27, 20–29p. (2013) DOI:10.1016/j.rser.2013.06.022

A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada

N. Bigdeli, K. Afshar, A. S. Gazafroudi, M. Y. Ramandi

In the recent years, by rapid growth of wind power generation in addition to its high penetration in power systems, the wind power prediction has been known as an important research issue. Wind power has a complicated dynamic for modeling and prediction. In this paper, different hybrid prediction models based on neural networks trained by various optimization approaches are examined to forecast the wind power time series from Alberta, Canada. At first, time series analysis is performed based on recurrence plots and correlation analysis to select the proper input sets for the forecasting models. Next, a comparative study is carried out among neural networks trained by imperialist competitive algorithm (ICA), genetic algorithm (GA), and particle swarm optimization approach. The simulation results are representative of the out-performance of ICA in tuning the neural network for wind power forecasting.

back


Creative Commons License © 2017 SOME RIGHTS RESERVED
The content of this web site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Germany License.

Please note: The abstracts of the bibliography database may underly other copyrights.

Ihr Browser versucht gerade eine Seite aus dem sogenannten Internet auszudrucken. Das Internet ist ein weltweites Netzwerk von Computern, das den Menschen ganz neue Möglichkeiten der Kommunikation bietet.

Da Politiker im Regelfall von neuen Dingen nichts verstehen, halten wir es für notwendig, sie davor zu schützen. Dies ist im beidseitigen Interesse, da unnötige Angstzustände bei Ihnen verhindert werden, ebenso wie es uns vor profilierungs- und machtsüchtigen Politikern schützt.

Sollten Sie der Meinung sein, dass Sie diese Internetseite dennoch sehen sollten, so können Sie jederzeit durch normalen Gebrauch eines Internetbrowsers darauf zugreifen. Dazu sind aber minimale Computerkenntnisse erforderlich. Sollten Sie diese nicht haben, vergessen Sie einfach dieses Internet und lassen uns in Ruhe.

Die Umgehung dieser Ausdrucksperre ist nach §95a UrhG verboten.

Mehr Informationen unter www.politiker-stopp.de.