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We study the vertical extent of propeller structures in Saturn’s rings (i) by extending the model of Spahn
and Sremčević (Spahn, F., Sremčević, M. [2000]. Astron. Astrophys., 358, 368–372) to include the vertical
direction and (ii) by performing N-body box simulations of a perturbing moonlet embedded into the
rings. We find that the gravitational interaction of ring particles with a non-inclined moonlet does not
induce considerable vertical excursions of ring particles, but causes a considerable thermal motion in
the ring plane. We expect ring particle collisions to partly convert the lateral induced thermal motion into
vertical excursions of ring particles in the course of a quasi-thermalization. The N-body box simulations
lead to maximal propeller heights of about 0.6–0.8 Hill radii of the embedded perturbing moonlet.
Moonlet sizes estimated by this relation are in good agreement with size estimates from radial propeller
scalings for the propellers Blériot and Earhart. For large propellers, the extended hydrodynamical
propeller model predicts an exponential propeller height relaxation, confirmed by N-body box
simulations of non-self gravitating ring particles. Exponential cooling constants, calculated from the
hydrodynamical propeller model agree fairly well with values from fits to the tail of the azimuthal height
decay of the N-body box simulations. From exponential cooling constants, determined from shadows cast
by the propeller Earhart and imaged by the Cassini spacecraft, we estimate collision frequencies of about
6 collisions per particle per orbit in the propeller gap region and about 11 collisions per particle per orbit
in the propeller wake region.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Planetary rings are one of the most remarkable and beautiful
cosmic structures. They are natural dynamical laboratories
(Burns and Cuzzi, 2006), exemplifying the physics of cosmic disks,
such as accretion or galactic disks, which are much larger and
much farther away from Earth. An exciting example is the presence
of small moons embedded in Saturn’s rings, henceforth called
moonlets, which have their analog in planetary embryos orbiting
within a protoplanetary disk (Artymowicz, 2006; Papaloizou,
2007).

The fact that spacecraft cameras (even Cassini’s) do not have
sufficient resolution to image these moonlets directly, brought up
the idea of investigating moonlet-induced putative structures in
the rings (Lissauer et al., 1981; Henon, 1981; Spahn, 1987; Petit
and Henon, 1988; Spahn and Wiebicke, 1989), with the hope that
these features could be captured by the spacecraft cameras or
instruments. This then led to predictions of ‘propeller’-shaped
structures (Spahn and Sremčević, 2000; Sremčević et al., 2002)
which are carved in the rings by the moonlet. Subsequent
numerical particle experiments (Seiß et al., 2005; Sremčević
et al., 2007; Lewis and Stewart, 2009) clarified the fingerprint of
such gravitational perturbers and confirmed the spatial scaling of
the propeller structure. Depending on its size, an embedded
ring-moon either induces a partial gap (sizes below a few km) or,
alternatively, opens up a complete circumferential gap (for sizes
above a few km, e.g. the ring-moons Pan and Daphnis). Both struc-
tures are decorated with density wakes, completing the structural
picture. Up to this stage, analytical study of propellers has focused
exclusively on structure within the ring plane.

More than 150 propellers have now been detected (Tiscareno
et al., 2006; Tiscareno et al., 2008; Sremčević et al., 2007) and
among them a few which are large enough to be seen on several
snapshots taken by Cassini’s cameras at different times, confirming
in this way their orbital motion. Those propellers were nicknamed
after famous aviators, e.g.: Blériot, Kingsford Smith, Earhart
(Tiscareno et al., 2010).

In the summer of 2009, at Saturn’s equinox (the sunset at
Saturn’s rings), the perfect opportunity arose to detect any vertical
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1 The granular temperature is a measure of the random motion of the (macro-
scopic) ring particles and should not be confused with the thermodynamic
temperature.
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structure deviating from the mean ring plane by observing shad-
ows cast on the rings. At this time the density structures around
the largest propeller moonlets, as well as those around the ring-
moon Daphnis, created prominent shadows. These can be assigned
to the wakes and in the case of the propeller moonlets also to excit-
ed regions of the propeller, where the moonlet induces two partial
gaps. The shadows were much longer than the moon’s size itself,
leading to the conclusion that moonlet-induced vertical excursions
of ring particles can be in the range of several kilometers in the
case of Daphnis or several hundred meters in the case of the large
propeller moonlets. These very facts directly indicate the necessity
to investigate the vertical stratification of moonlet-induced struc-
tures, which has not been the focus of former models of the moon-
let’s fingerprint.

Our study of the vertical extend of moonlet-induced propeller
structures is organized as follows: In Section 2 the extended hydro-
dynamical propeller model is presented. In Section 2.2 we calculate
the mass flow through the scattering region by a probabilistic
approach and determine values of the moonlet-induced thermal
velocities, which we use later as initial conditions for the hydrody-
namical equations describing the long term relaxation of the
moonlet-excited structures. Section 2.3 gives the hydrodynamical
balance equations, which we use to model the diffusion of mass
into the induced gap and the relaxation of the granular ring tem-
perature. In Section 3 the azimuthal relaxation of the propeller
height is calculated. Section 4 describes N-body box simulations
of propeller moonlets embedded into the rings. These are used to
verify assumptions made in the derivation of the extended pro-
peller model and to compare results. Finally, we present and dis-
cuss the application of our results to observed propeller features
in Saturn’s rings in Section 5.

2. Extended model of gravitational scattering

2.1. The scattering region

The first step in the formulation of our model is to divide the
planetary ring, composed of the ring particles and one moonlet,
into two regions:

(i) the rather small scattering region,
(ii) the rest of the ring.

In this work we consider moonlets on circular and planar orbits,
i.e. with zero eccentricity and zero inclination. The scattering
region is the small area (volume) around the moonlet where trajec-
tory changes due to the moonlet’s gravity predominantly take
place. This region of the embedded moonlet’s gravitational influ-
ence is of the order of a few times the Hill radius

h ¼ a0
mm

3ðmm þmsÞ

� �1=3

; ð1Þ

where a0 is the semimajor axis of the moonlet, mm its mass and ms

the mass of Saturn. Compared to the moonlet’s semimajor axis the
Hill radius is usually very small. For large propellers, like Blériot or
Earhart, the ratio h� ¼ h=a0 is approximately 10�6 (Tiscareno et al.,
2010). This low ratio naturally allows the splitting of the rings into
the two regions, and further, it allows to regard the azimuthal extent
of the scattering region to be zero, i.e. the approximation of the
scattering region by a scattering line (Spahn and Wiebicke, 1989).

For the rest of the ring, where the moonlet’s gravity is negligi-
ble, the moonlet-induced structures are assumed to relax due to
inelastic collisional cooling and viscous diffusion (Spahn and
Sremčević, 2000; Sremčević et al., 2002). The ring is regarded as
a fluid and described with hydrodynamical balance equations,
where the granular temperature1 T ¼ c2=3 is used to describe the
energy balance of the ring (Schmidt et al., 2009) and c denotes the
velocity dispersion of the ring particles.

2.2. Encounter with the moonlet – gravitational scattering

We describe the encounter of ring particles with the moonlet in
a corotating frame, rotating about Saturn with the Keplerian fre-

quency X0 ¼ ðGms=a3
0Þ

1=2 of the moonlet. The dynamics of ring par-
ticles in the corotating frame is given by the equation

€rþ 2X0 � _rþX0 � ðX0 � rÞ ¼ �$Us � $Um; ð2Þ

where r is the position vector of the ring particle relative to Saturn’s
center, X0 is aligned with the planetocentric angular momentum of
the moonlet and has magnitude X0, and Us and Um are the gravita-
tional potentials due to Saturn and the moonlet (assumed to be
point masses, Us ¼ �Gms=r, Um ¼ �Gmm=s, where s denotes the dis-
tance of the ring particle to the moonlet).

Hereby, for simplicity, we neglect Saturn’s oblateness, which
would result in slightly different mean motion, epicyclic frequency
and vertical frequency (less than one percent difference for the
semimajor axis of Earhart, respectively). It would also result in a
moving pericenter and ascending node of the ring particle orbits,
effects, which would be averaged-out in the calculation of the scat-
tering operator in Section 2.2.2.

The ring particles are on orbits with low eccentricity and incli-
nation and the mass of the moonlet is very small compared to
Saturn’s mass mm=ms � 1. Because we are interested in the ring
particle motion in the vicinity of the moonlet, we fix the origin
of the corotating frame to the mean orbital location of the moonlet.
In the vicinity of the moonlet the equations of motion of ring par-
ticles are well approximated by Hill’s equations (Hill, 1878; Hénon
and Petit, 1986).

We assume that the x axis points radially outward, the y axis
points into the azimuthal direction in which the moonlet is moving
and the z axis is normal to the ring plane in such a way that the
axes form a right-handed coordinate system. With the scaled coor-
dinates ~x ¼ x=h; ~y ¼ y=h;~z ¼ z=h and scaled time t0 ¼ X0t, Hill’s
equations then read

€~x ¼ 2 _~yþ 3~x� 3~x=~s3

€~y ¼ �2 _~x� 3~y=~s3

€~z ¼ �~z� 3~z=~s3;

ð3Þ

where ~s2 ¼ ~x2 þ ~y2 þ ~z2 is the scaled distance of the ring particle to

the moonlet and _~x ¼ d~x=dt0. These equations are point symmetric
about the position of the moonlet (~x ¼ ~y ¼ ~z ¼ 0), and quite com-
fortably, they do not depend on the moonlet mass anymore. All
information of the moonlet mass is contained in the scaling length
h.

When the ring particles are not in the vicinity of the moonlet,
i.e. 1=~s3 ! 0 and therefore j$Umj ! 0, their trajectories are well
described by the solutions to the homogeneous Hill’s equations

~xðt0Þ ¼ ~a� ~e cosðt0 þ wÞ

~yðt0Þ ¼ C � 3
2

~at0 þ 2~e sinðt0 þ wÞ

~zðt0Þ ¼ ~ı sinðt0 þ fÞ:

ð4Þ

The semimajor axis, eccentricity and inclination are scaled accord-
ing to
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~a ¼ a� a0

h
; ~e ¼ ea0

h
; ~ı ¼ ia0

h
: ð5Þ

The phases w and f are the longitude of pericenter and the longi-
tude of the ascending node, respectively.

2.2.1. Test particle integrations
In order to quantify the action of the moonlet gravity on the ring

particles, we integrate the equations of motion numerically for a
set of test particles using a 5th order embedded Runge–Kutta
scheme with adaptive step size control (Press et al., 1992). The
moonlet and Saturn are assumed to be point masses. The integra-
tions start upstream of the moonlet at an azimuthal distance of
1000 Hill radii to the moonlet and are terminated when the test
particle’s downstream azimuthal distance exceeds 1000 Hill radii.
These limits ensure that the region of interaction is well character-
ized by the integrations.

We take the initial semimajor axis of the test particles to be uni-
formly distributed in the range of �20 to 20 Hill radii radial dis-
tance to the moonlet. The initial eccentricities and inclinations of
the test particles are chosen to be Rayleigh distributed

f ð~e;~ıÞ ¼
~e
~c2

x
exp �

~e2

2~c2
x

� �
~ı
~c2

z
exp �

~ı2

2~c2
z

� �
; ð6Þ

with uniformly distributed initial phases w and f. This is a fair
assumption for many kinds of disks (Petit and Hénon, 1987; Ida
and Makino, 1992; Lissauer, 1993; Ohtsuki and Emori, 2000;
Sremčević et al., 2002).

This distribution of orbital elements corresponds to a triaxial
Gaussian velocity distribution

f ð~vx; ~vy; ~vzÞ ¼
1

p~c2
x

exp �
~v2

x þ 4~v2
y

2~c2
x

 !
1ffiffiffiffiffiffiffiffiffiffiffi

2p~c2
z

p exp �
~v2

z

2~c2
z

� �
ð7Þ

with a diagonal velocity dispersion tensor T, where Txx ¼ ~c2
x , Tyy ¼

ð~cx=2Þ2 and Tzz ¼ ~c2
z . The scaled quantities ~cx, ~cz are related to the

unscaled ones by

~cx ¼ cx=ðX0hÞ; ~cz ¼ cz=ðX0hÞ: ð8Þ

We choose the quasi-equilibrium ratio for thermal velocities in the
dense rings ð~cz=~cxÞeq ¼ 0:65, which is consistent with the above
triaxial Gaussian velocity distribution (Goldreich and Tremaine,
1978) and which is a reasonable value if self-gravity is neglected
(Salo et al., 2001).

During the trajectory integrations, the test particles, the moon-
let and Saturn are assumed to be point masses and the minimal
distance of the test particles to the moonlet is recorded. For sim-
plicity, we ignored particles which would collide with a spherical
moonlet of finite size in further calculations. However, we also per-
formed numerical calculations with a finite moonlet size and found
no significant influence on the results discussed here.

2.2.2. Mass transfer
We use the approach of Spahn and Wiebicke (1989) to describe

the mass transfer through the scattering region. Motivated by the
chaotic behavior of single particle trajectories near the moonlet
(Petit and Hénon, 1986), the encounter of ring particles with the
moonlet is modeled by a probabilistic Markov chain model. The
results of the test particle integrations are used to calculate transi-
tional probabilities between initial (~x;~z) and final (~x0;~z0) positions
of the test particles at the azimuthal boundary of the scattering
region.

These probabilities define a scattering operator A, where
Að~x0;~z0j~x;~zÞd~xd~z is the probability that matter is scattered from
ð~x; ~xþ d~xÞ � ð~z;~zþ d~zÞ to ð~x0; ~x0 þ d~x0Þ � ð~z0;~z0 þ d~z0Þ. The primes
denote values after the scattering.
We assume that the scattering region can be approximated by
the ~x–~z plane at ~y ¼ 0, which connects Saturn and the moonlet
and is analogous to the scattering line as defined in Spahn and
Wiebicke (1989). In our model, the complete action of the moonlet
on the ring particles happens at this scattering plane. The scatter-
ing operator relates the azimuthal mass flux entering the scatter-
ing region to the azimuthal mass flux leaving the scattering region

J~yð~x0; ~y0 ¼ 0�;~z0Þ
�� �� ¼ ZZ d~xd~z Að~x0;~z0j~x;~zÞ J~yð~x;~z; ~y ¼ 0�Þ

�� ��: ð9Þ

Mass conservation is expressed as a condition for the scattering
operatorZZ

d~x0d~z0 Að~x0;~z0j~x;~zÞ ¼ 1: ð10Þ

In this formulation particle accretion by the moonlet is ignored
here.

For the numerical calculation of the scattering operator we
divide the radial and the vertical direction into bins. The bin ðj; kÞ
describes the region ð~xj; ~xjþ1Þ � ð~zk;~zkþ1Þ; j being an index in the
radial direction and k one in the vertical direction. In the following,
primed bin indices refer to the situation after the scattering by the
moonlet and unprimed ones to the situation before.

The discretized scattering operator is then calculated by

Aðj0; k0jj; kÞ ¼ Nðj0; k0; j; kÞ
Nðj; kÞ ; ð11Þ

where Nðj; kÞ is the number of test particles starting in bin ðj; kÞ. We
use an averaging procedure to calculate the number of test particles
Nðj0; k0; j; kÞ starting in bin ðj; kÞ and ending in bin ðj0; k0Þ. For each
radial end bin j0, describing the interval ð~xj0 ; ~xj0þ1Þ, the time per orbit,
the test particle will stay in this radial end bin is calculated (Spahn,
1987)

pðj0Þ ¼ 1
p

arccos
~a� ~xj0þ1

~e

� �
� arccos

~a� ~xj0

~e

� �����
����: ð12Þ

Nðj0; k0; j; kÞ is then calculated by

Nðj0; k0; j; kÞ ¼
X

n

pðnÞðj0ÞdðnÞðk0ÞdðnÞðj; kÞ; ð13Þ

where the sum is over all test particles. dðj; kÞ is 1 for test particles
starting in bin ðj; kÞ and is 0 otherwise. dðk0Þ, on the other hand, is 1
for test particles ending in bins with vertical bin index k0 and is 0
otherwise. The superscript ðnÞ denotes values of these functions
for the nth test particle.

Outside the scattering region we describe the ring using hydro-
dynamical equations. We assume that the fluid parcels entering
and leaving the scattering region have a Keplerian azimuthal mean
velocity ~u~yð~xÞ ¼ �3~x=2. The azimuthal mass flux at the scattering
plane is then (Spahn and Wiebicke, 1989)

J~yð~x; ~y ¼ 0�;~zÞ ¼ qð~x; ~y ¼ 0�;~zÞ ~u~yð~xÞ; ð14Þ

where q denotes the mass density. The mass transfer through the
scattering region is thus calculated by

qðj0; k0Þ ¼ 1
j~u~yðj0Þj

X
j;k

Aðj0; k0jj; kÞ qðj; kÞ ~u~yðjÞ
�� ��: ð15Þ

We assume the ring to be in a quasi-equilibrium state before
the encounter with the moonlet. In the following, all quantities
of the unperturbed ring have the subscript 0. The surface mass
density R0 shall be constant, so that the mass density for a thin
but multilayered disk is given by

q0ð~x; ~y;~zÞ ¼
R0=hffiffiffiffiffiffiffiffiffiffiffiffi
2p~c2

z0

q exp �
~z2

2~c2
z0

� �
ð16Þ
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Fig. 1. (a) Mass density q scaled by the unperturbed surface mass density over the Hill scale R0=h. This contour plot shows the mass density as a function of the radial
coordinate x and the vertical coordinate z after scattering by a moonlet with a Hill radius of 300 m. The velocity dispersion of the unperturbed ring is choosen to be
c0 ¼ 3:9 mm/s, corresponding to ~cz ¼ 0:052. The contour lines are for q1 ¼ 1:15q0ð~z ¼ 0Þ, q2 ¼ q0ð~z ¼ ~czÞ and q3 ¼ q0ð~z ¼

ffiffiffi
3
p

~czÞ, where q0ð~zÞ, given by Eq. (16), is the mass
density before the scattering by the moonlet. Clearly seen is the less dense gap region between 1:5 6 j~xj 6 4. The border of the almost unchanged horseshoe ringlet region is
marked by the density peak at j~xj 	 1 (Spahn and Wiebicke, 1989). (b) Ring thickness as function of the radial coordinate x after the scattering by the same moonlet measured
by: standard deviation ~rz of the vertical mass density profile, root mean square ~zrms of the vertical excursions, and vertical thermal velocity ~cz , all at ~y ¼ 0þ. All three are
within a few percent of the values before the scattering by the moonlet, illustrating that the moonlet’s gravity alone (without collisions between ring particles, which will
partly transfer lateral induced thermal motion into the vertical direction, see Section 2.3) does not induce considerable vertical excursions of ring particles.

2 If ~zðt0Þ is a solution of the Hill Eqs. (3), then �~zðt0Þ is also a solution. For a
distribution of initial conditions like Eq. (6), which is invariant under the transfor-
mation z! �z, the vertical displacement has to be zero.
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(Simon and Jenkins, 1994; Schmidt et al., 1999).
The two plots in Fig. 1 are made for a moonlet with 300 m Hill

radius and the orbital parameters of Earhart (Tiscareno et al.,
2010). We have chosen the velocity dispersion of the unperturbed
ring to be c0 ¼ 3:9 mm/s, which is a reasonable value for Saturn’s A

ring (Sremčević et al., 2008). Using c2
0 ¼ c2

x0 1þ ðcy0=cx0Þ2þ
n

ðcz0=cx0Þ2g and the ratios cz0=cx0 ¼ 0:65 and cy0=cx0 ¼ 0:5, this value
of c0 corresponds to the scaled velocity dispersion components
~cx0 ¼ 0:08, ~cy0 ¼ 0:04 and ~cz0 ¼ 0:052. Because of the point
symmetry of the Hill Eqs. (3), we show only values for ~x 6 0 in
the plots.

Fig. 1a shows the mass density q scaled by R0=h after the scat-
tering by the moonlet. The mass density in the regions j~xj < 1 and
j~xj > 5 is nearly unchanged, whereas the gap region 1:5 < j~xj < 4
has a considerably lower mass density than the ring before the
scattering by the moonlet. There are two regions of high mass
density around j~xj ¼ 1 and j~xj ¼ 4:25. The solid line (/ ¼ 0) in
Fig. 3b shows the corresponding surface mass density.

Also shown are three contour lines, corresponding to character-
istic values of the unperturbed mass density q0 given by Eq. (16).
The first contour line is for q1 ¼ 1:15 � q0ð~z ¼ 0Þ, i.e. 15 percent
larger than the maximal value of q0. The second contour line is
for the mass density value q2 ¼ q0ð~z ¼ ~cz0Þ. For low optical depths
~cz is a good estimate of ~zrms, the root mean square value of the
vertical excursion of the ring particles. The third contour line
shows the mass density q3 ¼ q0ð~z ¼

ffiffiffi
3
p

~cz0Þ, where z ¼
ffiffiffi
3
p

~cz is half
of the effective geometric thickness of the ring. The effective
geometric thickness Heff ¼

ffiffiffiffiffiffi
12
p

~zrms 	
ffiffiffiffiffiffi
12
p

~cz of the ring corre-
sponds to the total thickness of a uniform vertical mass density
profile with the same standard deviation as a Gaussian one.

Fig. 1b shows different measures of the ring thickness after the
scattering by the moonlet. To calculate the ring thickness from
the mass density, we use an expression of the mass in bin ðj0; k0Þ
divided by the total mass in bins with bin index j0

qðj0; k0Þ ¼ qðj0; k0ÞP
k0qðj

0
; k0Þ

; ð17Þ

where we assumed uniform bin sizes. As a quantity, q describes the
distribution of mass in the vertical direction and formally behaves
like a probability, i.e. 0 6 qðj0; k0Þ 6 1 and

P
k0qðj

0
; k0Þ ¼ 1.
The vertical displacement of the ring plane from ~z ¼ 0, calculat-
ed from the mass density, is then given by

~lz;j0 ¼
X

k0

�zk0 qðj
0
; k0Þ; ð18Þ

with �zk0 being the midpoint of the vertical interval ð~zk0 ;~zk0þ1Þ. The
vertical displacement should be zero2 for the unperturbed mass
density q0 and the values after the scattering by the moonlet do
not differ significantly from zero.

We now express the vertical scale height of the ring by the stan-
dard deviation of the vertical mass density profile

~rzðj0Þ ¼
X

k0

�zk0 � ~lz;j0
� �2qðj0; k0Þ

 !1=2

: ð19Þ

As a second measure of ring thickness, we calculated the root
mean square value of the vertical excursion of ring particles direct-
ly from the results of test particle integrations. With the averaging
procedure of Eq. (12), ~zrms is given by

~zrms;j0 ¼
P

npðnÞðj0Þ ½~zðnÞ � h~zij0 

2P

npðnÞðj0Þ

 !1=2

; ð20Þ

with

h~zij0 ¼
P

n
~zðnÞ pðnÞðj0ÞP

npðnÞðj0Þ
: ð21Þ

Further, the vertical velocity dispersion ~cz (Section 2.2.3) is a third
measure of the ring thickness.

For the unperturbed mass density q0, both ~rz0 and ~zrms0 equal
~cz0. The values after the scattering by the moonlet shown in
Fig. 1b are within 6 percent of the values of the unperturbed ring.
Calculations for moonlets with different Hill radii from 50 m to
500 m confirm that the difference of the unperturbed values to
the ones after the scattering by the moonlet are small, e.g. a few
percent. However, this picture changes drastically if a moonlet
on an inclined orbit is considered, which is a topic of ongoing work.
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Because the moonlet does not induce considerable vertical
excursions of ring particles, we will restrict the hydrodynamical
description in Section 2.3 to the ring plane (using vertically aver-
aged equations) and model the vertical propeller structure by the
granular ring temperature T ¼ ð~c2

x þ ~c2
y þ ~c2

z Þ=3.

2.2.3. Velocity dispersion
In this subsection we determine values of the moonlet-induced

thermal velocities after the scattering by the moonlet, which are
later used as initial conditions for the hydrodynamical equations.
We calculate the thermal speed components ~cx; ~cy and ~cz by taking
the weighted sample standard deviation of ~vx; ~vy � 3~x=2 and ~vz for
the set of integrated test particles. For ~cx, for example,

~cxðj0Þ ¼
P

npðnÞðj0Þ ½~v ðnÞx � h~vxiðj0Þ

2P

npðnÞðj0Þ

 !1=2

; ð22Þ

where j0 denotes the post-encounter radial bin number.
Due to the averaging process (12) our model does not describe

moonlet wakes, which are moonlet-induced coherent motions of
ring particles (Showalter et al., 1986; Spahn et al., 1994). In our
averaged description of the wake region, we might overestimate
~cx and ~cy with Eq. (22), because the averaging process destroys
the coherent phase relations and systematic motion looks partly
like thermal motion.

Nevertheless our model describes the gap region, in which the
maximal propeller heights are reached, quite well. Test particles
ending in this region are often on trajectories which are very sen-
sitive to initial conditions (Hénon and Petit, 1986), and their phases
are mixed up. Furthermore, wake structures start to dissolve when
nearby streamlines cross. For the gap region this happens very fast,
i.e. for the middle of the gap at j~xj ¼ 2:5 after 0.4 orbits.

Fig. 1b shows ~cz and ~zrms, which do not deviate much at ~y ¼ 0þ.
In Fig. 2a we compare the mean thermal velocities after the scat-
tering by the moonlet of Fig. 1. The maximal excitation in each case
lies near the inner edge of the moonlet-induced gap at a radial
position of about j~xj ¼ 7=4.

Fig. 2a also shows that the moonlet induces much more thermal
motion in the ring plane than in the vertical direction. Values of the
vertical component of the thermal velocity after the scattering by
the moonlet are within a few percent of the values before the
scattering (see Fig. 1b, where ~cz is plotted on a different scale),
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Fig. 2. Moonlet-induced thermal velocities as functions of the radial coordinate ~x at
gravitational scattering by a moonlet with 300 m Hill radius. The moonlet induces much m
values of the thermal velocities before the encounter with the moonlet are ~cx0 ¼ 0:08; ~cy0

moonlet, these values are obtained in the radial region jxj < 0:75h, because the ring partic
so that there is no considerable induced thermal motion. The ~cz curve is also plotted in F
scattering by moonlets with different Hill radii. In the gap region �4 6 ~x 6 �1:5 the ra
above).
resulting in a ratio cz=cx after the scattering, which is several times
smaller than the equilibrium value ðcz=cxÞeq ¼ 0:65. The ratio of the
horizontal components cy=cx, however, is close to the equilibrium
value ðcy=cxÞeq ¼ 0:5, as expected if the particle orbits after the
scattering are well described by Eq. (4). Therefore, although the
gravitational interaction with the moonlet induces some thermal
motion in vertical direction, it is negligible compared to the ther-
mal motion induced in the ring plane for moonlets on non-inclined
orbits.

The considerable thermal motion induced in lateral direction
will be shown to be the reason for the attained propeller heights
in Section 3. Collisions among ring particles transfer the thermal
motion into the vertical direction until the quasi-equilibrium ratio
ðcz=cxÞeq is established, which will happen on collisional time scales
after a few collisions per particle (cf. Section 4.1).

Fig. 2b shows the x-component of the velocity dispersion, scaled
by X0h, at ~y ¼ 0þ after the scattering by moonlets with Hill radii of
50–500 m. For the larger moonlets, with a Hill radius above 100 m,
the x-component of the velocity dispersion in the gap region, espe-
cially the maximal value of ~cx, scales well with the Hill radius of the
moonlets.

2.3. Hydrodynamic flow

Outside of the scattering region we describe the ring with
hydrodynamical equations (Seiß and Spahn, 2011; Schmidt et al.,
2001; Spahn et al., 1997). We model the thickness of the ring
through the granular ring temperature, and use vertically averaged
balance equations. The mass and momentum balance are given by

@R
@t
þr � ðRuÞ ¼ 0 ð23Þ

@u
@t
þ ðu � rÞu ¼ f � 1

R
r � P: ð24Þ

Here R;u; f and P are the surface mass density, the mean velocity,
external volume forces, and the pressure tensor. The pressure ten-
sor is given in Newtonian form

P ¼ pI� 2RmD� Rfðr � uÞI; ð25Þ

where I is the unit tensor. The vertically integrated pressure, kine-
matic bulk and shear viscosity are denoted by p; f and m. The trace-
less shear tensor D is given by
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ore thermal motion in the ring plane than in vertical direction. For comparison, the
¼ 0:04 and ~cz0 ¼ 0:052, corresponding to c0 ¼ 3:9 mm/s. After the scattering by the

les are on horseshoe orbits and their minimal distance to the moonlet remains large,
ig. 1b on a different scale. (b) Comparison of the radial thermal velocity ~cx after the
dial thermal velocity scales well with X0h for the larger moonlets (h ¼ 100 m and



3 Ring particles move jyorbitj ¼ 3pjxj per orbit downstream away from the moonlet,
where x denotes the radial distance to the moonlet. For particles at jxj ¼ 2h and the
ring parameters used in Fig. 3, the characteristic azimuthal length scale of the viscous
diffusion is a0K ¼ 27jyorbitj.
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D ¼ 1
2
r � uþ u � rð Þ � 1

3
ðr � uÞI; ð26Þ

where ðr � uÞjk ¼ rjuk and ðu � rÞjk ¼ rkuj.
With these closures the energy balance of the ring particle’s

random motion reads

3
2

R
@T
@t
þ ðu � rÞT

� �
¼ �P : ��r � Q � C; ð27Þ

where T ¼ ðc2
x þ c2

y þ c2
z Þ=3 is the granular ring temperature and

Q ¼ �jDrT the heat flow in the ring with heat conductivity jD.
The friction term P : � with the shear tensor � ¼ ðr � uþ u � rÞ=2
describes the viscous heating of the ring, and C accounts for the
energy loss due to inelastic collisions.

2.3.1. Mass and momentum balance
The gravitational scattering by the moonlet opens a gap. The

diffusion of the ring particles, described by the nonlinear viscous
diffusion equation

@R
@t
þ XðrÞ �X0ð Þ @R

@u
� 3

r
@

@r

ffiffiffi
r
p @

@r

ffiffiffi
r
p

mR
� �� 	

¼ 0 ð28Þ

for the surface mass density R, tends to smooth out the induced
structures (Spahn and Sremčević, 2000; Sremčević et al., 2002).
Here, the radial coordinate r describes the distance to Saturn’s cen-
ter and u denotes the azimuthal coordinate in the corotating frame.

In order to solve Eq. (28) we apply the following simplifications,
already used by Sremčević et al. (2002): Let r1 ¼ R� R0, where R0

is the equilibrium value of the surface mass density of the unper-
turbed ring. We assume the propeller to be a stationary structure
(@r1=@t ¼ 0) in the co-moving frame. In the special case of con-
stant kinematic viscosity m0 and without curvature terms, which
is consistent with the Hill approximation of the gravitational scat-
tering, Eq. (28) reduces to a linear partial differential equation

K~x
@r1

@u
¼ � @

2r1

@~x2 ; ð29Þ

where the constant K is given by

K ¼ X0a2
0

2m0

h
a0

� �3

ð30Þ

and defines by a0K a characteristic azimuthal length scale of the vis-

cous diffusion. The diffusion timescale is tdiff ¼ h2
=m0, where we use

the Hill radius h as characteristic radial length scale. During that
time, ring particles with radial distance h to the moonlet, move
the azimuthal length ydiff ¼ 3a0K away from the moonlet.

Eq. (29) is point symmetric with respect to the position of the
moonlet (~x ¼ ~y ¼ ~z ¼ 0). For the region defined by ~x < 0 and
u > 0, with boundary conditions

r1ð~x < 0;u ¼ 0þÞ ¼ r1;ini ð31Þ
r1ð~x! �1;uÞ ¼ 0 ð32Þ
r1ð~x;u!1Þ ¼ 0; ð33Þ

Sremčević et al. (2002) derived several Green’s functions for differ-
ent constraints at ~x ¼ 0;u > 0. The Green’s function that matched
their numerical solution best is an equally weighted superposition
of Green’s functions for the two cases

r1ð~x ¼ 0;uÞ ¼ 0 ð34Þ
@r1

@~x
ð~x ¼ 0;uÞ ¼ 0: ð35Þ

We use this Green’s function, given by

Gð~x;/Þ ¼
ffiffiffi
3
p

2
ð�~x0Þ 3/ð Þ2=3 exp

~x3
0 þ ~x3

9/

� �
Bi ð3/Þ2=3~x0~x

 �

; ð36Þ
with the scaled azimuth / ¼ u=K, and the Airy function BiðzÞ, to cal-
culate the surface mass density via

r1ð~x;/Þ ¼
Z 0

�1
d~x0 r1;inið~x0ÞGð~x;/; ~x0Þ: ð37Þ

As initial surface mass density r1;ini we use the vertically integrated
mass density calculated with the scattering operator (15), shown in
Fig. 3b as solid line, and numerically integrate Eq. (37). The two
plots in Fig. 3 are again made for a moonlet with 300 m Hill radius
and the orbital parameters of Earhart.

We used the value m0 ¼ 0:011 m2=s for the kinematic viscosity,
which is reasonable for the central part of Saturn’s A ring
(Tiscareno et al., 2007). Here, we used this value for the ring in
the vicinity of Earhart, because measured viscosity values between
the Encke and Keeler gaps are still sparse (Colwell et al., 2009;
Tiscareno et al., 2007), and this value is consistent with the chosen
velocity dispersion c0 ¼ 3:9 mm=s (using Eq. (44)).

Fig. 3a shows the surface mass density after the scattering by
the moonlet as function of x and / ¼ y=ða0KÞ. White contour lines
represent surface mass density values below R0, showing the evo-
lution of the gap. Black contour lines enclose regions of enhanced
surface mass density compared to R0. To illustrate the gap-closing,
we plotted the surface mass density as a function of the radial
coordinate x for different longitudes /, shown in Fig. 3b.

The azimuthal extent of the moonlet-induced partial gap scales
with a0K. The value of the scaling constant K for a moonlet with
300 m Hill radius, Earhart’s semimajor axis and with a kinematic
viscosity of m0 ¼ 0:011 m2=s is

K ¼ 1:15

� 10�3 h
300 m

� �3 0:011 m2=s
m0

� �
133797:84 km

a0

� �5=2

; ð38Þ

resulting in a0K ¼ 515h, and thus, / ¼ y=ða0KÞ ¼ 1 corresponds to
y ¼ 515h.

Because K / h3, the importance of the mass diffusion process, in
the first few orbits3 after the scattering by the moonlet, depends
strongly on the Hill radius of the moonlet. For large moonlets, e.g.
h ¼ 500 m, the value of the surface mass density remains similar
to the value at / ¼ 0 much longer downstream than for small
moonlets.

2.3.2. Energy balance
In this subsection we will consider the relaxation of the moon-

let-induced thermal heating by dissipative particle interaction,
expanding on the approach used in Hoffmann et al. (2013).
Although the vertically ineffective gravitational interaction of ring
particles with the moonlet cannot explain the vertical height of
propeller structures, the moonlet induces a considerable amount
of thermal (random) motion in the lateral direction.

Due to mutual collisions between ring particles, the thermal
motion induced in the lateral direction will be converted to vertical
thermal motion till the ratio cz=cx reaches its local equilibrium val-
ue. This asymptotic value of cz=cx is established very quickly, after
a few collisions per particle (Hämeen-Anttila and Lukkari, 1980;
Hämeen-Anttila and Salo, 1993), which is also demonstrated with
N-body box simulations later. Therefore, we use the granular tem-
perature T to model the evolution of the vertical propeller struc-
ture, inferring the thickness of the ring from T and the
equilibrium value of cz=cx.



(a) (b)

1.1
1.05
0.95
0.9
0.8

0.0

5.0

10.0

15.0

20.0

−8 −7 −6 −5 −4 −3 −2 −1
0.4

0.6

0.8

1

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

−8 −7 −6 −5 −4 −3 −2 −1 0

Fig. 3. (a) Contour plot of the surface mass density downstream of a moonlet with 300 m Hill radius and the orbital parameters of Earhart. The contour plot shows the mass
density as a function of the radial coordinate x and the scaled azimuthal coordinate / ¼ y=ða0KÞ (see Eq. (30)). White contour lines represent surface mass density values
below R0, showing the evolution of the gap. Black contour lines enclose regions of enhanced surface mass density compared to R0. (b) Surface mass density as a function of
the radial coordinate x for different scaled longitudes /, illustrating the gap-closing. The solid line shows the surface mass density after the scattering by the moonlet.
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The thermal energy balance equation in the corotating frame
reads

3
2

R
@T
@t
þ ðX�X0Þ

@T
@u
þ ur

@T
@r

� 

¼ �P : ��r � Q � C: ð39Þ

Regarding the relaxation of the induced thermal motion, there
are three relevant timescales involved: (i) the local equilibrium
value of cz=cx is reached on collisional timescales tcoll ¼ x�1

c , where
xc is the collision frequency. According to xc ¼ 3Xs, where s is the
dynamical optical depth

s ¼
Z 1

0
pR2 nðRÞdR; ð40Þ

with the particle radius R and particle size distribution nðRÞ, there
are about 10 collisions per particle per orbit in Saturn’s A ring where
we used s ¼ 0:5. The resulting timescale is thus smaller than an
orbital period. (ii) The exponential decay of the granular tem-
perature takes a few orbits, in the case of a moonlet with 300 m Hill
radius about 20 orbits. (iii) Stochastic diffusion processes, like the
gap-closing or heat conduction, operate on the mass diffusion time-

scale tdiff ¼ ðDrÞ2=m. For a moonlet with 300 m Hill radius, for exam-
ple, the gap-closing takes hundreds of orbits (Sremčević et al.,
2002).

Especially for large moonlets we expect these three timescales
to separate clearly, and thus, to decouple. In the following, we
neglect heat conduction and consider, for simplicity, only viscous
heating and the energy loss due to inelastic collisions (granular
cooling), because we are mainly interested in the exponential
decay of the granular temperature and heat conduction operates
on the slower diffusive timescale tdiff .

Furthermore, we assume the propeller to be a stationary struc-
ture in the co-moving frame (@T=@t ¼ 0), thus obtaining

3
2
ðX�X0Þ

@T
@u
¼ 9

4
mX2

0 � k3X0sð1� e2ÞT; ð41Þ

where we used P : � ¼ �9mX2
0R=4 for the friction term, regarding

just the dominant Kepler shear. For the cooling term we used
C ¼ k3X0sð1� e2ÞRT with a constant coefficient of restitution
e ¼ 0:4 and with k3 ¼ 1:5, corresponding to an energy loss rate

_Ecoll ¼ �
xc

6
ð1� e2ÞRc2 ð42Þ

(Morishima and Salo, 2006), with collision frequency xc ¼ 3Xs
(Schmidt et al., 2009), and granular temperature c2 ¼ 3T.
We apply a kinematic viscosity of the form m ¼ m� þ ml, where, m�
is assumed to be independent of the granular ring temperature,
whereas the local viscosity ml given by

mlðs; TÞ ¼ bðsÞ3T ¼ k1s
X0ð1þ s2Þ3T ð43Þ

(with k1 ¼ 0:15, Goldreich and Tremaine, 1978) depends on the ring
temperature. With this viscosity and the constant coefficient of
restitution, viscous heating and collisional cooling balance at a local
equilibrium temperature

TeqðsÞ ¼
9m�ðsÞX0

4k3ð1� e2Þs� 27bðsÞX0
; ð44Þ

which depends on the local optical depth, or assuming equally sized
ring particles with particle radius Rp and mass mp, via s ¼ pR2

pR=mp,
on the surface mass density R. The temperature of the unperturbed
ring before the encounter with the moonlet is denoted by
T0 ¼ Teqðs0Þ.

With these assumptions Eq. (41) becomes a linear ordinary dif-
ferential equation in ~y. Because of the neglected curvature, Eq. (41)
becomes also point symmetric to the origin of the coordinate
frame. In the following we describe the case ~y > 0 and ~x < 0 which
is, because of the point symmetry, no restriction. With
ðXðrÞ �X0Þ@=@u ¼ �3=2X0~x@=@~y, Eq. (41) then reads

j~xj @T
@~y
¼ m�ðsÞX0 �

4
9

k3sð1� e2Þ � 3bðsÞX0

� �
T: ð45Þ

The solution of this equation can be written in the form

Tðj~xj; ~yÞ ¼ T iniðj~xjÞe�cðj~xj;~yÞ þ e�cðj~xj;~yÞ
Z ~y

0
f ðj~xj; ~y00Þecðj~xj;~y00 Þ d~y00; ð46Þ

with the functions

cðj~xj; ~yÞ ¼ 1
j~xj

Z ~y

0

4
9

k3sð1� e2Þ � 3bðsÞX0

� �
d~y0 ð47Þ

f ðj~xj; ~yÞ ¼ m�ðsÞX0

j~xj :

The plots in Fig. 4 show the downstream temperature relax-
ation. Again they are made for a moonlet with 300 m Hill radius
and the orbital parameters of Earhart. For simplicity, we assume
m� to be constant on timescales relevant to the exponential decay
of the temperature. In order to match the chosen velocity disper-
sion c0 ¼ 3:9 mm=s we calculated m� ¼ 0:004 m2=s using Eq. (44).
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This plot illustrates how the timescales for the stochastic diffusion causing the gap
closing and the exponential decay of the temperature decouple for large moonlets.
As orientation the dashed line marks the value of 0:07 km�1, measured for the
propeller Earhart (Hoffmann et al., 2013).

H. Hoffmann et al. / Icarus 252 (2015) 400–414 407
This results in a total quasi-equilibrium kinematic viscosity of
m ¼ 0:011 m2=s of the unperturbed ring (reasonable for the central
part of Saturn’s A ring, Tiscareno (2007)), which we use here for the
ring in the vicinity of Earhart. Important for the exponential tem-
perature decay is the value of ml, the temperature dependent part
of the viscosity.

Fig. 4a shows a contour plot of the ring temperature T scaled by
the unperturbed ring temperature T0, illustrating the azimuthal
temperature decay for different radial regions. Ring particles with
jxj < 0:75h are on horseshoe orbits and their minimal distance to
the moonlet is large, so that there is no considerable thermal exci-
tation. The gap region, on the other hand, is highly excited for quite
an azimuthally extended range. Fig. 4b shows the azimuthal tem-
perature evolution downstream of the moonlet, at fixed radial
position x ¼ �2h. Also, the local equilibrium temperature Teq is
shown as function of the surface mass density. For about 20 orbits,4

the ring temperature decreases exponentially to the local equilibri-
um temperature. Afterwards, the viscous heating and the collisional
cooling are balanced and the ring temperature evolves as a function
of the surface mass density of the ring. In this case the temperature
gets within a margin of 10% of Teq in about 18 orbits.

The influence of the mass diffusion on the temperature decay
depends on the Hill radius of the moonlet. For large moonlets, close
in size to ring-moons able to open a circumferential gap, the ther-
mal excitation vanishes much faster than the propeller gap, and
thus, the perturbed optical depth stays nearly constant during this
cooling process. In this case the solution (46) can be simplified to

Tapproxð~x; ~yÞ ¼ ðT ini � TeqðsÞÞe�kð~xÞ~y þ TeqðsÞ: ð48Þ

with cð~x; ~yÞ ¼ kð~xÞ~y. The decay constant k can then be written in the
form

kð~xÞ ¼ 2xcð1� e2Þ
9Xj~xj � 3bX

j~xj : ð49Þ

Fig. 5 illustrates the decoupling of the timescales for the stochastic
mass diffusion and the exponential decay of the granular ring tem-
perature. Shown are values calculated from Eq. (49) with optical
depths sini taken directly after the scattering by the moonlet (open
squares) and values taken from fits of Eq. (48) to temperature
4 Ring particles move jyorbit j ¼ 3pjxj per orbit downstream away from the moonlet,
x denoting the radial distance to the moonlet. For particles at jxj ¼ 2h and the ring
parameters used in Fig. 4, 20 orbits corresponds to / ¼ 20jyorbitj=ða0KÞ ¼ 0:73 in
Fig. 3.
curves calculated from Eq. (46). As orientation the dashed line

marks the value of 0:07 km�1, measured for the propeller Earhart
(Hoffmann et al., 2013).
3. The vertical height of propellers

For a thin but multilayered disk and with the assumption that cz

is independent of z, the vertical profile of the mass density can be
described well by a Gaussian with standard deviation cz=X0

(Stewart et al., 1984; Simon and Jenkins, 1994; Schmidt et al.,
1999). We use the effective geometric thickness Heff as a measure
of the ring thickness and determine the height H of the propeller
structure as half the effective geometric thickness of the ring

H ¼
ffiffiffi
3
p cz

X0
: ð50Þ

To determine cz as a function of the temperature T, we use the
local equilibrium values of the ratios cz=cx and cy=cx. The collision
frequency in the propeller gap region of Earhart, where we expect
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dashed line), the averaged propeller height is about 0.84 Hill radii or 250 m. Propeller heights for moonlets with Hill radii from 50 m to 500 m are listed in Table 1.

Table 1
Heights for moonlets with different Hill radii from 50 m to 500 m. Hmax is the height
at ~x ¼ �2:0 and ~y ¼ 18:9, corresponding to one orbit downstream of the moonlet. Hgap

is the height averaged over the gap region at azimuthal position ~y ¼ 23:6 (one orbit
downstream of the moonlet at radial position ~x ¼ �2:5). Fig. 6 shows the downstream
relaxation of Hmax and Hgap for a moonlet with 300 m Hill radius.

h ðmÞ 50 100 200 300 400 500

Hmax ðhÞ 0.99 1.03 1.07 1.08 1.09 1.10
Hgap ðhÞ 0.86 0.81 0.83 0.84 0.84 0.85
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the largest excitations, is estimated to be about xc=X ¼ 1:0, corre-
sponding to about 6 collisions per particle per orbit (cf. Hoffmann
et al., 2013). This leads, with xc ¼ 3Xs (Schmidt et al., 2009), to an
optical depth of s ¼ 0:3 in the density-depleted gap region of the
propeller, which seems reasonable compared to s ¼ 0:5 of Saturn’s
unperturbed A ring. Therefore, we assume in the following, that the
equilibrium values of cz=cx and cy=cx are established after one orbit
(corresponding to about 6 collisions).

With the relaxed ratios ðcz=cxÞeq ¼ 0:65 and ðcy=cxÞeq ¼ 0:5, we

regard T ¼ ðc2
x þ c2

y þ c2
z Þ=3 as a function of only one of the compo-

nents cx; cy; cz, for example

3T ¼ c2
x 1þ ðcy=cxÞ2eq þ ðcz=cxÞ2eq

n o
: ð51Þ

Using cz ¼ ðcz=cxÞeq � cx, the z component of the velocity dispersion
in terms of T is given by

czðTÞ ¼
cz

cx

� �
eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T

1þ ðcy=cxÞ2eq þ ðcz=cxÞ2eq

s
: ð52Þ

The two plots in Fig. 6 are made using the same parameters as
were taken for Fig. 4, i.e. a moonlet with 300 m Hill radius, the
orbital parameters of Earhart and a velocity dispersion
c0 ¼ 3:9 mm=s of the unperturbed ring. In Fig. 6a, the height of
the propeller structure as a function of the radial coordinate ~x is
plotted for different values of ~y. The largest heights are reached
in the region between ~x ¼ �4 and ~x ¼ �1, the maximum being at
about ~x ¼ �2 for ~y ¼ 10 and slowly moving to the radial gap mini-
mum at ~x ¼ �2:5 (for ~y ¼ 350).

The azimuthal relaxation of the height of the propeller struc-
ture, for ~x ¼ �2, is shown in Fig. 6b. After one orbit at radial posi-
tion ~x ¼ �2, corresponding to ~y ¼ 18:9, the height is about 1.08 Hill
radii or 330 m. Furthermore, Fig. 6b sketches the propeller height
radially averaged over the gap region. We choose the approximate
middle of the gap at ~x ¼ �2:5 as a reference, and in that case one
orbit corresponds to ~y ¼ 23:6. At that position the gap-averaged
propeller height is 0.84 Hill radii or about 250 m.

Table 1 shows propeller heights for moonlets with different Hill
radii. Hmax is the height taken one orbit downstream of the moonlet
at radial position ~x ¼ �2. Hgap is the height averaged over the gap
region taken one orbit downstream of the moonlet at the approx-
imate middle of the gap. The maximal heights are close to one Hill
radius for the tested moonlet sizes. The values of the gap averaged
height for the moonlets are between 0.81 and 0.86 Hill radii.

For large moonlets, where the optical depth s within the gap
stays nearly constant on the timescale of the exponential decay,
the approximate solution Eq. (48) can be rewritten to lead to a pro-
peller height of the form

Hð~yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2

max þ H2
0Þ expð�k~yÞ þ H2

0

q
; ð53Þ

where Hmax /
ffiffiffiffiffiffiffi
T ini
p

and H0 /
ffiffiffiffiffiffiffi
Teq

p
. This is a suitable equation to be

fitted to propeller shadows seen in images taken by the Cassini
spacecraft (Hoffmann et al., 2013).
4. Comparison to N-body simulations

In order to verify the assumptions made in the derivation of the
extended propeller model and to compare results, we performed
N-body box simulations of propeller moonlets embedded in plane-
tary rings.

The method of N-body box simulations, in which a co-moving
ring patch with periodic boundary conditions is simulated, was
introduced by Wisdom and Tremaine (1988) and subsequently fur-
ther developed (e.g. Salo, 1991, 1995). In our simulations we use
the version by Salo et al. (2001). This code, which was also applied
in the propeller simulations of Seiß et al. (2005) and Sremčević
et al. (2007), has an option to include a perturbing moonlet in
the center of the calculation region and to replace the periodic azi-
muthal boundaries with a constant inflow of fresh particles.

The simulations were performed under simplifying assump-
tions like a constant coefficient of restitution (except for X12 and
X13 where the Bridges et al. (1984) dependence on the impact
velocity is used) and mono-sized, non-gravitating ring particles



Table 2
Parameters of N-body box simulations with an embedded moonlet. Rmoon denotes the radius of the moonlet, h its Hill radius and qmoon its mass density. The results of the
simulations can be scaled to other planetocentric distances amoon, provided the ratio h=Rm / amoon q1=3

moon is kept constant (Seiß et al., 2005). All simulations use mono-sized
particles of radius Rp . The unperturbed ring patch (without the moonlet) has geometrical optical depth s0 and the box dimensions are 2Lx � 2Ly . The normal coefficient of
restitution e is mostly chosen to be constant, except for X12 and X13 where the Bridges et al. (1984) dependence on the impact velocity is used. N denotes the number of ring
particles in the simulation box.

Simulation number Rmoon (m) h (m) qmoon (g cm�3) amoon (km) Rp (m) s0 e Xz=X Lx (m) Ly (m) N

C1 10 13.0 0.9 100,000 1.0 0.08 0.5 3.6 180 4000 72,000
C2 15 19.5 0.9 100,000 1.0 0.08 0.5 3.6 270 6000 162,000
C3 20 26.1 0.9 100,000 1.0 0.08 0.5 3.6 240 8000 190,000
C4 25 32.6 0.9 100,000 1.0 0.08 0.5 3.6 300 10,000 300,000
C5 30 39.1 0.9 100,000 1.0 0.08 0.5 3.6 360 12,000 432,000
C6 40 52.1 0.9 100,000 1.0 0.08 0.5 3.6 480 16,000 768,000
C7 55 71.7 0.9 100,000 1.0 0.08 0.5 3.6 660 22,000 1,450,000
D8 12 15.6 0.9 100,000 1.0 0.09 0.5 3.6 144 1728 28,000
D9 12 15.6 0.9 100,000 1.0 0.16 0.5 3.6 144 1728 50,000
D10 12 15.6 0.9 100,000 1.0 0.32 0.5 3.6 144 1728 100,000
X11 20 26.1 0.9 100,000 1.0 0.08 0.5 1.0 240 8840 216,000
X12 20 26.1 0.9 100,000 1.0 0.08 Bridges 1.0 240 8840 216,000
X13 20 29.6 0.6 130,000 1.67 0.5 Bridges 1.0 500 3000 344,406
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Fig. 7. Azimuthal evolution of the velocity dispersion ratio cz=cx at radial position
x ¼ �2:4h in the propeller gap region, taken from simulation C5 (moonlet with
30 m radius). After a steep decline of c =c right after the scattering with the
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in order to provide a good base for the comparison with the hydro-
dynamic propeller model. Table 2 shows the simulation labeling
and parameters.

The core set of simulations (C1–C7) consists of runs for different
moonlet radii ranging from 10 m to 55 m. We use a low optical
depth of 0.08 so that simulations with large moonlets become
computationally feasible. In order to reliably fit Eq. (53) to the tail
of the azimuthal height decay, the simulations are made for a
rather long azimuthal extent and the height decay is accelerated
by an enhanced collision frequency (which is due to an enhanced
vertical frequency Xz of the particles5).

Additional simulations check the influence of different optical
depths of the unperturbed ring (D8–D10, X13) and effects of the
enhanced vertical frequency of the particles (C3, X11).

4.1. Ratio of thermal velocity dispersion components

An important assumption of the hydrodynamic propeller model
is that the asymptotic value of the velocity dispersion ratio cz=cx is
established after a few collisions per particle, thus enabling the
description of the propeller height decay with help of the granular
temperature T and the equilibrium values ðcz=cxÞeq.

Fig. 7 shows the evolution of the velocity dispersion ratio cz=cx

in the propeller gap region determined from simulation C5 of a
moonlet with Rmoon ¼ 30 m. The azimuthal distance y to the
moonlet is given in number of orbits it takes a ring particle with
Keplerian orbital speed to get to that azimuthal position. The
shown cz=cx values are radially averaged over the interval
x 2 ½�2:7h;�2:0h
 and the asymptotical ratio is emphasized by
the thin gray horizontal line.

The evolution of cz=cx is characterized by the superposition of
the moonlet-induced wake motion and the collisionally induced
relaxation of the velocity dispersion ratio. Shortly after the encoun-
ter with the moonlet, the ratio cz=cx drops considerably to a value
of about 0.2, supporting that the moonlet induces much more ther-
mal motion in the ring plane than in vertical direction. The level of
the asymptotic ratio is then reached quickly after less than half an
orbit. Afterwards, the ratio cz=cx performs damped oscillations
about the asymptotic value till it is reached after a few orbits
downstream of the moonlet.

Adapted to the respective collision frequencies, these findings
are confirmed by all other simulations for the gap as well as for
the wake region. Thus, using a constant value ðcz=cxÞeq for the fits
5 An enhanced vertical frequency of the particles is often used to describe the effect
of the vertical self-gravity component (see e.g. Wisdom and Tremaine, 1988).
to the tails of the propeller height decay is justified fairly well.
On the other hand, the maximal propeller heights are reached dur-
ing the first orbits after the encounter with the moonlet, and
because of the somewhat decreased velocity dispersion ratio
cz=cx between the first and second orbit after the encounter with
the moonlet, the propeller heights may be overestimated by about
20–25% in the hydrodynamic propeller model.

4.2. Azimuthal height relaxation

Enhanced vertical frequencies lead to decreased ring heights (cf.
Wisdom and Tremaine, 1988). To properly compare propeller
heights between local box simulations with enhanced vertical fre-
quencies and the hydrodynamical propeller model, we compensate
for this effect of the enhanced vertical frequencies and calculate
the propeller heights by

H ¼ Xz

X

ffiffiffiffiffiffiffiffiffiffiffiffi
3 hz2i

q
: ð54Þ

Although this relation is simplified (cf. Salo et al., 2001) and usually
used for a steady state situation, our simulations without enhanced
vertical frequencies, like X11, give similar maximal and averaged
heights.

Fig. 8 shows the azimuthal evolution of the propeller height H at
radial positions (a) x ¼ �2:5h in the propeller gap region and (b)
z x

moonlet, the ratio reaches the asymptotic level (shown as faint gray horizontal line)
after less than half an orbit and subsequently performs damped oscillations around
that value.
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Fig. 8. Azimuthal evolution of the propeller height (compensated for the enhanced vertical frequencies for proper comparison with Section 3) at radial positions (a) x ¼ �2:5h
in the propeller gap region and (b) x ¼ �4:0h in the propeller wake region, taken from simulation C5 (moonlet with 30 m radius). The dashed horizontal line marks the height
of the unperturbed ring before the encounter with the moonlet. The vertical line labels the begin of the fit of Eq. (53) to the tail of the decaying height, which is shown as black
solid line.
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Fig. 9. Comparison of fitted and calculated values of the exponential decay constant k for (a) the propeller gap region and (b) the propeller wake region for different moonlet
sizes (simulations C1–C7). The filled circles mark values of k fitted to Eq. (53), whereas the open squares are calculated with Eq. (55). The calculated values fit fairly well
differing by 25–45% from the fitted ones.
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x ¼ �4h in the propeller wake region for a moonlet with radius
Rmoon ¼ 30 m (simulation C5). The dashed horizontal line marks
the height of the unperturbed ring before the encounter with the
moonlet. The vertical line labels the point where we began the fit
of Eq. (53) to the tail of the decaying height, which is shown as
black solid line.

The exponential decay constants determined from these fits are

kfit ¼ 0:3 km�1 in case of x ¼ �2:5h and kfit ¼ 0:23 km�1 in case of
x ¼ �4h. In order to compare these values determined from
simulations with enhanced vertical frequency with Eq. (49), we
replace the optical depth s by the collision frequency xc

k ¼ 2xcð1� e2Þ
9Xjxj � k1 ðxc=XÞ

jxj 1þ 1
9 ðxc=XÞ2


 � ð55Þ

and calculate the collision frequency with xc ¼ 3Xzseff , where we
use an averaged value seff for the optical depth. For example,
seff 	 0:75s0 in the gap region and seff 	 1:1s0 in the wake region
of simulation C5 (moonlet with 30 m radius).

The values of the exponential decay constant calculated in that

way are kcalc ¼ 0:16 km�1 for x ¼ �2:5h and kcalc ¼ 0:18 km�1 for
x ¼ �4h, which differ by 47% and 22% from the ones determined
from the fits. This difference might be partly due to the neglect
of heat conduction, which we expect to be of importance for small
moonlets with radii of a few tens of meters, but which should be of
minor importance for large moonlets like Blériot and Earhart with
radii of a few hundred meters.

In Fig. 9, average exponential decay constants for different
moonlet sizes (simulations C1–C7) are shown. We radially aver-
aged the values of the propeller height over x 2 ½�3h;�1h
 in the
propeller gap region (Fig. 9a) and over x 2 ½�6h;�4h
 in the pro-
peller wake region (Fig. 9b). Filled circles denote values from fits
to Eq. (53), whereas open squares denote values calculated from
Eq. (55).

The calculated values agree fairly well with the fitted ones, dif-
fering by 25–45%. Furthermore, the calculated values are smaller
which is expected for smaller moonlets like the ones we simulated
due to the neglect of heat conduction.

These findings are confirmed by simulation X13 whose para-
meters are close to the situation in Saturn’s A ring. We determined

an exponential decay constant of kfit ¼ 0:93 km�1 for x ¼ �2:4h
from the fit and calculated an exponential decay constant of

kcalc ¼ 0:62 km�1 from Eq. (55), where we used e ¼ 0:4 to approxi-
mate the Bridges et al. (1984) dependence of the restitution coeffi-
cient on the impact velocity. Here, the calculated value kcalc differs
by 34% from kfit, determined from the fit.



Table 3
Heights for different sized moonlets from simulations C1–C7. For proper comparison
with the hydrodynamical propeller model, the heights are multiplied by Xz=X. Hmax is
the maximal height at x ¼ �2:0h. Hgap is the height radially averaged over the radial
region x 2 ½�3h;�1h
 and Hwake is the height radially averaged over the radial region
x 2 ½�6h;�4h
.

Rmoon ðmÞ 10 15 20 25 30 40 55

Hmax ðhÞ 0.78 0.74 0.72 0.71 0.68 0.67 0.65
Hgap ðhÞ 0.69 0.62 0.62 0.61 0.60 0.58 0.55
Hwake ðhÞ 0.57 0.51 0.48 0.48 0.47 0.45 0.43

Table 4
Propeller heights for a moonlet with Rmoon ¼ 12 m and different optical depths of the
unperturbed ring (simulations D8–D10). For proper comparison with the hydrody-
namical propeller model, the heights are multiplied by Xz=X. Hmax is the maximal
height at x ¼ �2:0h. Hgap is the height radially averaged over the radial region
x 2 ½�3h;�1h
 and Hwake is the height radially averaged over the radial region
x 2 ½�6h;�4h
.

s0 0.09 0.16 0.32

Hmax ðhÞ 0.78 0.80 0.84
Hgap ðhÞ 0.68 0.65 0.58
Hwake ðhÞ 0.57 0.49 0.43
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4.3. Propeller heights

In the N-body simulations, the maximal propeller heights are
reached in the propeller gap region at about x ¼ �2h, as was the
case in our model in Section 3. Table 3 shows propeller height val-
ues6 for the simulations C1–C7 with different sized moonlets. Apart
from the maximal height Hmax, taken at x ¼ �2h, averaged heights
are listed. Hgap is radially averaged over x 2 ½�3h;�1h
 in the pro-
peller gap region, and Hwake is radially averaged over
x 2 ½�6h;�4h
, a region where moonlet wakes are of importance.

We find the difference between the height values of the pro-
peller gap and wake regions to be less pronounced than they were
in Fig. 6a. The gap averaged values from Table 3 are on average
about 27% smaller than the ones determined from our model in
Table 1. This is likely because the maximal propeller heights are
reached during the first orbits after the encounter with the moon-
let, where the velocity dispersion ratio cz=cx is somewhat
decreased (cf. Section 4.1) which would explain the difference.

Therefore we use values determined from the local N-body
simulations to estimate moonlet sizes from measured propeller
heights. Maximal and averaged propeller heights are similar for
simulations with and without enhanced vertical frequencies, if
the heights of the former are calculated with Eq. (54) to compensate
for the height decreasing effect of enhanced vertical frequencies.
For definiteness, we employ a propeller height of 0:65h, a value
between Hmax and Hgap (cf. Table 3), to estimate moonlet sizes.

There seems to be a modest trend to smaller relative height val-
ues H=h for larger moonlets (see Table 3). This might be due to the
fading influence of the initial velocity dispersion of the ring for
increasing moonlet sizes (cf. Table 1).

We also analyzed simulations for higher optical depth. In
simulations D8–D10, the geometrical optical depth was varied
for a small moonlet with a radius of 12 m. Table 4 shows the max-
imal, gap averaged and wake averaged heights. The maximal
height values are slightly higher than the ones from Table 3 and
we suspect a modest trend to smaller gap and wake averaged
height values with increasing optical depths.

Simulations made with the Bridges et al. (1984) dependence of
the restitution coefficient on the impact velocity (X12 and X13)
lead to smaller relative heights, for example, the gap averaged
heights for X12 and X13 are 0:51h and 0:53h. On average, more
energy is lost per collision, an approximate constant coefficient
of restitution leading to these height values would be between
e ¼ 0:3 and e ¼ 0:4. The maximal height Hmax in simulation X12
is found to be about 0:7h.

Concluding, we found a relation connecting propeller heights to
moonlet sizes. Further, a fair agreement between the relaxation
process in the hydrodynamic model and N-body simulations is
found, enabling us to make predictions for large propeller moon-
lets, where N-body simulations are not feasible with common
computational resources.
6 Propeller heights are compensated for the effects of enhanced vertical frequencies
to properly compare them to our model of the vertical propeller height from
Section 3.
5. Results and discussion

5.1. Maximal propeller heights

The gravitational interaction of the ring particles with a non-in-
clined moonlet alone is not sufficient to induce considerable verti-
cal excursions of ring particles. However, the moonlet excites a
substantial amount of thermal motion in the ring plane and subse-
quent collisions of ring particles are an efficient and quick mechan-
ism to partly convert the lateral induced thermal motion into
vertical motion.

The maximal propeller heights are reached in the propeller gap
region around the radial position jxj ¼ 2h. However, in case of the
local N-body simulations, we find the difference between the
height values of the propeller gap and wake regions to be less pro-
nounced than they were in the hydrodynamical propeller model.
The extended hydrodynamical propeller model predicts gap-aver-
aged maximal heights of about 0.8–0.85 Hill radii, values which
we find to be quite robust with respect to changes to the moonlet
Hill radius. The local N-body simulations predict somewhat small-
er values of about 0.5–0.7 Hill radii for the gap-averaged maximal
heights.

The difference between the height predictions of the extended
propeller model and the N-body simulations is dominated by the
decreased velocity dispersion ratio cz=cx during the first few orbits
downstream of the moonlet, in which the maximal propeller
heights are reached. Additionally, the hydrodynamical propeller
model neglects inelastic collisions in the scattering region. These
inelastic collisions would reduce the energy of the ring particles,
which might be especially relevant for ring particles which come
close to the moonlet and gain, thereby, high eccentricities and
inclinations. Furthermore, accretion and erosion of ring particles
at the moonlet (Lewis and Stewart, 2009) are further processes
which certainly can affect the propeller height.

For local N-body simulations with increasing optical depth we
find a modest trend to smaller averaged heights in the gap and
wake regions, deserving further investigation in the future. Fur-
thermore, the effect of a particle size distribution on the maximal
propeller heights is of great interest, though we leave it for future
work.

Table 5 shows Hill radii of the four shadow-casting propellers
estimated with the relation h ¼ H=0:65 of Section 4.3 and with pro-
peller heights taken from Tiscareno et al. (2010). For comparison,
Hill radii estimated from the radial propeller scaling are shown.
These are calculated from Dr ¼ ð9� 1Þh relating the radial offset
Dr of the leading and trailing propeller lobes to the moonlet’s Hill
radius h (Sremčević et al., 2007). We use radial offset values from
Tiscareno et al. (2010), Fig. 2, which measure the radial offset of
the bright propeller lobes in lit side images of Saturn’s rings
(labeled Lit Side, Relative-Bright in Tiscareno et al. (2010)).

The values of both approaches to estimate the Hill radius agree
quite well for Blériot and Earhart. For Santos-Dumont, however,
the Hill radius estimate calculated from the propeller height is
2.7 times smaller than the estimate calculated from the radial



Table 5
Hill radii for the four shadow casting propellers that were imaged by Cassini.
Propeller height values are taken from Tiscareno et al. (2010) and the corresponding
Hill radii are calculated from h ¼ H=0:65 from Section 4.3. For comparison, Hill radii
calculated from the radial offset Dr of the leading and trailing propeller lobes are
shown. Values of Dr are taken from Tiscareno et al. (2010) (from Fig. 2, labeled Lit Side,
Relative-Bright) and the Hill radii are calculated from Dr ¼ ð9� 1Þh (Sremčević et al.,
2007).

Propeller Height
(m)

Hill radius
(from height)
(m)

Hill radius
(from radial scaling)
(m)

Blériot 430 660 600 ± 80
Earhart 260 400 560 ± 80
116-006-A 160 250 –
Santos-Dumont 120 180 480 ± 60

7 We used e ¼ 0:4 and k1 ¼ 0:15 (Stewart et al., 1984) for the estimation of the
collision frequency with Eq. (55).
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offset of the propeller lobes, which is nevertheless on the same
order of magnitude.

Estimates of the radius of Blériot range from 83 m, determined
from UVIS measurements made during the occultation of f Orionis
(Baillié et al., 2013), to about 1 km, calculated from the radial pro-
peller scaling with the relation Dr ¼ 4h (Tiscareno et al., 2010). The
UVIS measurement serves as a lower bound, because it is very
unlikely that the propeller was scanned at the azimuthal position
where its radial width was largest (Baillié et al., 2013). The size
estimates from the propeller height, on the other hand, are in favor
of interpreting the bright propeller lobes as being caused
dominantly by the propeller wake region, confining Blériot’s radius
to less than 500 m. Further progress, with more precise estimates
will require photometric modeling of the propeller structure along
the lines presented in Halme et al. (2010).

5.2. Azimuthal relaxation of the propeller height

In our extended propeller model, the azimuthal relaxation of
the propeller height is modeled by the disturbed balance of viscous
heating and granular cooling using the hydrodynamical energy
balance equation of the ring particle’s thermal motion. This
approach assumes that the velocity dispersion of the ring particles
can be described by a scalar value. However, in a planetary ring the

velocity dispersion is described by a tensor TrT̂ and the eigenvalues
of this tensor are different in general, corresponding to different
granular temperatures in different directions. Also, the lateral prin-
cipal axes of the velocity dispersion tensor do generally not align
with the radial and azimuthal direction, a fact which will have to
be addressed in future model extensions.

On the other hand, the local equilibrium ratios of the diagonal
elements of the velocity dispersion tensor, ðcy=cxÞeq and ðcz=cxÞeq,
are established quickly after a few collisions per particle (Sec-
tion 4.1, Hämeen-Anttila and Lukkari, 1980; Hämeen-Anttila and
Salo, 1993). Thus, after these equilibrium ratios are established,
for our purposes the velocity dispersion can be described with a

scalar value, i.e. with the granular temperature T ¼ TrT̂=3, and with
the equilibrium values of cy=cx and cz=cx.

Because of the vertically inefficient gravitational interaction of
the moonlet with the ring particles, we have restricted our descrip-
tion to the ring plane and assumed a Gaussian vertical mass distri-
bution (cf. Simon and Jenkins, 1994; Schmidt et al., 1999). The
vertical propeller structure is then completely described by the
granular ring temperature T and by ðcy=cxÞeq and ðcz=cxÞeq.

We have neglected the temperature decrease due to heat con-
duction, based on the grounds that the relaxation of the ring tem-
perature due to the disturbed balance of viscous heating and
granular cooling is much faster for large propeller moonlets. For
a moonlet with a 300 m Hill radius the exponential decay of the
granular temperature takes about 20 orbits, whereas stochastic
diffusion processes, like the gap-closing or heat conduction, oper-

ate on the mass diffusion timescale tdiff ¼ ðDrÞ2=m. The gap closing,
for example, takes hundreds of orbits for a moonlet with 300 m Hill
radius (Spahn and Sremčević, 2000; Sremčević et al., 2002). How-
ever, heat conduction as well as viscous diffusion could become
important for small moonlets, an issue to be addressed in future
work.

In the extended propeller model, we further used a ring vis-
cosity m ¼ mI þ ml, where mI is assumed to be temperature inde-
pendent on timescales relevant to the exponential decay of the
granular temperature. The local viscosity ml, on the other hand, is
assumed to be proportional to the granular temperature
(Goldreich and Tremaine, 1978). This assumed form of the tem-
perature dependence of m is a simplification, but allows an analyti-
cal solution (Eqs. (48) and (53)) in case of large moonlets, for which
we expect the timescale of the exponential temperature decay and
the timescale of the mass diffusion to clearly separate.

The temperature independent part mI can accommodate a part
mnl which is due to the momentum transfer over particle diameters
in collisions as well as a part mgrav which is due to gravitational tor-
ques exerted by self-gravity wakes (Araki and Tremaine, 1986;
Daisaka et al., 2001). A more general model of the kinematic vis-
cosity would be

m ¼ m0
R
R0

� �b r
a0

� �c T
T0

� �a

ð56Þ

(e.g. Spahn et al., 2000), which, however, will make it most likely
necessary to solve the energy balance equation numerically.

We fitted our analytical solution (53) to results of local N-body
simulations, which were made with simulation boxes of rather
large azimuthal extent (showing, for example, about 16 orbits
downstream of the moonlet at radial distance jxj ¼ 2h). The
simulations were made for rather small moonlets (radii between
10 m and 55 m) due to limited computational resources. Consider-
ing the neglect of heat conduction in the derivation of our analyti-
cal solution (53), which we expect to be of greater importance for
small moonlets, calculated values of the exponential decay con-
stant agree fairly well with the values from the fits to the simula-
tion results. The calculated values differ by 25–45% from the fitted
ones, which holds for values radially averaged over the gap region
as well as for values radially averaged over the wake region. This
agreement is remarkable considering that we used steady state
relations for the viscosity, the collision frequency and the energy
loss due to inelastic collisions to describe the highly perturbed ring
around the moonlet.

Two days after Saturn’s equinox, Cassini took two images show-
ing the Earhart propeller casting a pronounced shadow, 350 km
long, offering the opportunity to witness how the ring height,
excited by the propeller moonlet, relaxes to an equilibrium state.
By assuming that the azimuthal evolution of the propeller height
vertically limits the light-blocking region of the propeller,
Hoffmann et al. (2013) determined the exponential cooling con-
stant of the propeller height relaxation from the shape of the shad-
ow cast by Earhart (Fig. 10). Using Eq. (53) to describe the propeller
height, the best match between the projected curve and the shad-

ow boundary was found for k ¼ 0:07� 0:02 km�1, leading to a pro-
peller height halving after about 20 km.

Using Eq. (55), the above value of the exponential cooling con-
stant suggests7 a collision frequency of xc=X ¼ 1:0 in the propeller
gap region at the radial position jxj ¼ 2h, corresponding to about 6
collisions per particle per orbit. In the wake region at the radial



(a)

(b)

Fig. 10. (a) Calculation of the shadow boundary by projecting the height difference DHðyÞ between propeller and surrounding ring material onto the ring plane, using the
elevation angle of the sunlight B and the longitude of the Sun u. (b) Image of the propeller Earhart near Saturn’s equinox (N1628846513), taken by Cassini’s narrow angle
camera on August 13, 2009. The shadow cast by the propeller is 350 km long. The azimuthal evolution of the height difference between propeller and surrounding ring
material is projected into the image as an estimate of the shadow boundary using Eq. (53). An exponential cooling constant of k ¼ 0:07� 0:02km�1 was found (Hoffmann
et al., 2013). From Eq. (55) we estimate a collision frequency of xc=X ¼ 1:0 in the propeller gap region and xc=X ¼ 1:7 in the propeller wake region. This corresponds to about
6 collisions per particle per orbit in the gap region and about 11 collisions per particle per orbit in the wake region.

H. Hoffmann et al. / Icarus 252 (2015) 400–414 413
position jxj ¼ 4:5h, we find a collision frequency of xc=X ¼ 1:7 or
about 11 collisions per particle per orbit.

Using xc ¼ 3Xs, an often-used estimate of the collision fre-
quency for dilute rings (cf. Schmidt et al., 2009; Shu and Stewart,
1985), we find optical depths of s ¼ 0:3 for the gap region and
s ¼ 0:6 for the wake region. These values are quite consistent with
mean optical depths in the gap and wake regions of a propeller in
the A ring.

On a sub-km scale, Saturn’s A ring is populated by self-gravity
wakes, transient trailing density enhancements, which are the
result of the opposing gravitational accretion of ring particles and
Keplerian shear. The radial spacing between self-gravity wakes is
close to Toomre’s critical wavelength kcrit (Toomre, 1964), which
is about 50–100 m in Saturn’s A ring, depending on the surface
mass density and the distance to Saturn.

The hydrodynamical propeller model of Section 2.3 should be a
good coarse-grained description of the propeller relaxation, as long
as the Hill radius h of the moonlet (the characteristic radial length
scale of the propeller) is much larger that the critical wavelength
kcrit, and parameters like the ring viscosity and the velocity disper-
sion are chosen accordingly.

For the propellers Earhart and Blériot, with Hill radii of several
hundred meters, h� kcrit constitutes a fair assumption. Also, the
induced radial velocity dispersion in the vertical excited region of
big propellers will be much larger than the critical radial velocity
dispersion below which self-gravity wakes form. However, for
smaller propellers, with Hill radii similar to the critical wavelength,
a more detailed description will be important, which is subsequent
work in progress.

Another quite challenging future task arises from the physical
similarities between planetary rings and protoplanetary disks
around young stars (Burns and Cuzzi, 2006). Although proto-
planetary disks are composed of a turbulent gas-dust mixture in
contrast to the icy particles in Saturn’s rings, the similarities are
nevertheless manifold. In that analogy the propeller moonlets in
Saturn’s rings correspond to planetary embryos in protoplanetary
disks and future work should address the prediction of extended
structures in those disks carved in by planetary embryos.
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