0. Exercise (21.10.19)

Problem 0.1

The Cartesian coordinates of the plane x, y are given by the (polar) elliptic coordinates u, v as

$$
\begin{equation*}
\binom{x}{y}=c\binom{\cosh u \cos v}{\sinh u \sin v}, \tag{1}
\end{equation*}
$$

where $u \in[0, \infty), v \in[0, \pi)$ and c is a constant.
(a) Find the unit vectors \vec{e}_{u} and \vec{e}_{v} and show that the are orthogonal.
(b) Show, that the coordinate lines of u and v are ellipses and hyperbolas. What is the meaning of c ?

Problem 0.2

Let x_{i} be Cartesian coordinates and $x_{i}=x_{i}\left(q_{\nu}\right)$, with curvilinear coordinates q_{ν} and $i, \nu=1,2,3$.
Show that $\nabla=\frac{\vec{e}_{\nu}}{g_{\nu}} \frac{\partial}{\partial q_{\nu}}$.
Find $\nabla \cdot \vec{A}$ in spherical coordinates, where \vec{A} is a vector field.
Remember: The differential operator 'nabla' ∇ can be expressed as $\nabla=\left(\partial / \partial_{x}, \partial / \partial_{y}, \partial / \partial_{z}\right)^{T}$ and the scale factor is $g_{\nu}=\left\|\frac{\partial \vec{r}}{\partial q_{\nu}}\right\|$

Problem 0.3

Imagine a metal ring with a small body sliding frictionless along the wire. The ring is rotating (along an axis lying within the rings plane and through its center of gravity) with a constant angular velocity ω. Gravity shall be acting downwards along the rotation axis.
What forces are acting on the body? Find the equations of motion for the body's position \vec{r}. Describe the motion of the body.

Additional 'brain twisters': At which positions on the ring could the body be at rest? What would happen, if the body's initial
 conditions lie close to that 'fixed points' (small velocity / small displacement)?

