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Abstract

We present a kinetic model of a disk of solid particles, orbiting a primary and experiencing inelastic collisions. In distinction to other
collisional models that use a 2D (mass—semimajor axis) binning and perform a separate analysis of the velocity (eccentricity, inclination)
evolution, we choose mass and orbital elements as independent variables of a phase space. The distribution function in this space contains full
information on the combined mass, spatial, and velocity distributions of particles. A general kinetic equation for the distribution function is
derived, valid for any set of orbital elements and for any collisional outcome, specified by a single kernel function. The firstimplementation of
the model utilizes a 3D phase space (mass—semimajor axis—eccentricity) and involves averages over the inclination and all angular elements.
We assume collisions to be destructive, simulate them with available material- and size-dependent scaling laws, and include collisional
damping. A closed set of kinetic equations for a mass—semimajor axis—eccentricity distribution is written and transformation rules to usual
mass and spatial distributions of the disk material are obtained. The kinetic “core” of our approach is generic. It is possible to add inclination
as an additional phase space variable, to include cratering collisions and agglomeration, dynamical friction and viscous stirring, gravity of
large perturbers, drag forces, and other effects into the model. As a specific application, we address the collisional evolution of the classical
population in the Edgeworth—Kuiper belt (EKB). We run the model for different initial disk's masses and radial profiles and different impact
strengths of objects. Our results for the size distribution, collisional timescales, and mass loss are in agreement with previous studies. In
particular, collisional evolution is found to be most substantial in the inner part of the EKB, where the separation size between the survivors
over EKB's age and fragments of earlier collisions lies between a few and several tens of km. The size distribution in the EKB is not a
single Dohnanyi-type power law, reflecting the size dependence of the critical specific energy in both strength and gravity regimes. The net
mass loss rate of an evolved disk is nearly constant and is dominated by disruption of larger objects. Finally, assuming an initially uniform
distribution of orbital eccentricities, we show that an evolved disk contains more objects in orbits with intermediate eccentricities than in
nearly circular or more eccentric orbits. This property holds for objects of any size and is explained in terms of collisional probabilities.
The effect should modulate the eccentricity distribution shaped by dynamical mechanisms, such as resonances and truncation of perihelia by
Neptune.
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1. Introduction Kuiper disk, main asteroid belt, interplanetary dust cloud
in the Solar System, circumstellar debris disks, planetary
Many astronomical objects can be classified as collision- rings, and many others. The difference in mass, spatial, and
ally-evolving Keplerian disks. These include the solar neb- time scales in all these systems is huge, as are differences
ula and protoplanetary disks of other stars, the Edgeworth—in dynamical and physical processes that govern them. For
instance, purely gravitational dynamics and predominantly
msponding author. On leave from: Astronomical Institute, St. Pe- catastrophic and cratering collisions in the asteroid belt can
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tems do have much in common. They all consist of solid stant or depends on masses in a simple way, analytic solu-
particles orbiting a massive primary in orbits that can be ap- tions have been found (s&afronov, 1969; Dohnanyi, 1969;
proximated (at least adiabatically) with Keplerian ones. The Dorschner, 1970; Silk and Takahashi, 1979; Wetherill, 1990
particles experience frequent collisions which, depending on and references therein). Otherwise, the equation is integrated
the masses, mechanical properties of colliders, as well asnumerically. The coagulation equation alone is sufficient to
their relative velocities, can result either in full or partial describe diffuse media, for instance growth of dust grains in
disruption, restitution, or agglomeration of both particles. the interstellar spag@®ort and van de Hulst, 194@énd frag-
Collisions represent an important source as well as a sinkmentation of collapsing molecular cloudSilk and Taka-

for the disk material and reprocess mass, spatial, and ve-hashi, 1979)

locity distributions of particles. Depending on the system, In any disk system, however, the spatial extent of the sys-
especially on the preponderant collisional outcomes, differ- tem makes collisional rates among the bodies and their rel-
ent types of collisional evolution may occur: growth of larger ative velocities dependent on the distance from the primary.
bodies (protoplanetary disks), gradual depletion of the disk A classical technique originally proposed to study the evo-

(asteroids), and adiabatic steady-state (planetary rings). lution of a planetesimal swarm (e.§reenberg et al., 1978;
The systems described above have been studied by a vaWetherill, 1990 is to approximate the disk with a set of con-
riety of methods. A straightforwardy-body approach-to centric semimajor axis annuli and a set of mass batches in

follow dynamics of many individual objects and to perform each of those. Every semimajor axis zone is then treated
true collision simulations—remains important for studying with a particle-in-a-box method: to quantify random veloc-
“difficult” cases where many other methods fail, such as the ities between the particles in a given semimajor axis zone,
final stages of planet formation (e.tda and Makino, 1993;  one introduces mean values of eccentrigigy and incli-
Kokubo and Ida, 1998; Charnoz et al., 2001; Charnoz and nation (i), pre-calculates collisional rates, and then solves
Brahic, 200). It can also be useful when the dynamics are the coagulation-type equation for the mass distribution. Both
complex, whereas any collisional event can be treated in a({e) and (i) are constant input parameters, which may or
simple way (sed.ecavelier des Etangs et al., 1996r an may not be different for different mass bins and spatial an-
application to debris disks). However, this method cannot nuli. Models of this type were developed and applied to
treat more than~ 10* objects and has an intrinsic prob- the accumulation of planetesim&lSreenberg et al., 1978;
lem in detecting collisions during the integration, which re- Nakagawa et al., 1983; Wetherill and Stewart, 1989)-
stricts its applicability. An alternative method is to replace lisional evolution of asteroids (e.gGampo Bagatin et al.,
particles themselves with their distribution in an appropri- 1994; Davis and Farinella, 199And Edgeworth—Kuiper
ate phase space. Common methodssam@othed particle  belt (EKB) objects (e.g.Stern, 1995, 1996; Stern and Col-
hydrodynamic§Monaghan, 1992andtrue hydrodynamics  well, 1997; Durda and Stern, 2000and for circumstellar
(Lynden-Bell and Pringle, 1974; Pringle, 1981; Kley, 1999; debris disks (e.gKrivov et al., 2000; Dominik and Decin,
Srentevic et al., 2002) Both deal with several lowest mo- 2003; Thébault et al., 2003
ments of the distributions and therefore are very efficientin ~ To achieve a reasonable degree of fidelity, especially for
describing formation of density structures due to diffusion systems that are very sensitive to velocities (evolution of pro-
effects or gravity of embedded perturbers, but are not suit- toplanetary disks and formation of planets), the evolution
able for collision-dominated systems. Finally, most general of the mass distribution must be considered simultaneously
is thekinetic methoaf statistical physicéBoltzmann, 1896;  with the velocity evolution (see, e.gLissauer and Stew-
Chapman and Cowling, 1970; Résibois and de Leener, 1977;art, 1993 for a review). Equations for the random velocities
Spahn et al., 2004hat considers the distribution functions or equivalently, for{(e) and (i) may include modification
themselves. The kinetic method can also be combined with of velocities by physical collisions, dynamical friction, vis-
the single-particle dynamics. For example, the state of the cous stirring, etc. (see, e.getherill and Stewart, 1993;
art in calculations of planetesimal evolution at the runaway Stewart and Ida, 200@nd references therein). Taken alone,
growth stage is the so-called “two-groups approximation” these equations can already be useful in some applications.
(Weidenschilling et al., 1997; Goldreich et al., 2004) For example, in the theory of dense planetary rings where
which kinetic equations for numerous small planetesimals direct N-body simulations and hydrodynamics are preferred
are solved together wittV-body-type equations for a few methods, the Boltzmann-type kinetic equations for velocity
large protoplanets. have been used to study the vertical structure of the rings
In many astronomical problems, the kinetic method has (Frezzotti, 2001) A more common approach, however, is
been applied to derive a mass (or size) distribution and its to integrate the velocity equations simultaneously with the
evolution from the so-called coagulation equation, or Smolu- coagulation equation for the mass distribution. Another sub-
chowski equation(Smoluchowski, 1916; Chandrasekhar, stantial improvement recently made to the models was to
1943) Note that the term “coagulation equation” is actu- use multiannulus codes, in which the particles belonging to
ally used regardless of whether the colliding particles merge, different semimajor axis zones can collide and produce frag-
fragment, or just change their velocities. In particular cases ments that may go into other zonéSpaute et al., 1991;
when the coalescence (or fragmentation) coefficient is con- Weidenschilling et al., 1997Multiannulus models taking
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full account of the velocity evolution may also include a proach. The assumptions of the first kind are as follows:
multitude of additional effects, such as gas drag, Poynting— (i) the system is not too dense to ensure that finite-size ef-
Robertson drag, and gravitational perturbations by massivefects are absent, the packing factor is negligible, triple and
objects(Kenyon and Luu, 1998, 1999a, 1999b; Kenyon and multiple collisions are unimportant etc.; (i) no energy is
Bromley, 2002, 20044a, 2004b) partitioned into rotational degrees of freedom of the ob-
All these methods, being very powerful and providing ac- jects; (iii) the largest bodies considered are still numerous
curate results, are “hybrid” in the sense that they consider enough to be represented by a continuous distribution, which
the velocity evolution and orbital dynamics, separately from is a principal limitation inherent to the coagulation equation
the mass and/or spatial distribution of the material. An in- (Tanaka and Nakazawa, 1994)
dication for that is that all of these approaches consider two ~ We now list the assumptions of the second kind: (1) the
groups of equations, one for the masses and semimajor axednclination distribution does not evolve with time; (2) ap-
and another one for the eccentricities and inclinations (or sides and nodes of particles’ orbits are distributed uniformly
the velocity components). In this paper, we propose a dif- and therefore, the disk is rotationally symmetric; (3) between
ferent version of the kinetic approach, which relies on the collisions, all particles move in Keplerian orbits; (4) these
simple idea that orbital elements of the disk particles con- orbits are bound, i.e., elliptic; (5) long-range interactions
tain full information on their position and velocity. We thus (dynamical friction, viscous stirring, distant perturbations
consider mass and orbital elements of the particles as inde-etc.) are absent; (6) any collision with a sufficiently high im-
pendent, and equally important, variables and systematicallypact energy leads to full destruction of both colliders and
formulate all parts of the theory, including the coagulation generation of smaller debris; (7) there is no direct supply of
equation, equations for collisional rates and the velocity evo- material into the system. Assumptions (1)—(2) can, in princi-
lution equations, in terms of these variables. This results in a ple, be lifted by adding inclination and/or angular elements
single set of kinetic equations with respect to one mathemat-to the list of phase space variables and by treating them in
ical object, a phase space distributig(m, orbital elements).  the same way as semimajor axis and eccentricity. This step is
Moreover, the equations are written in a covariant form, straightforward as far as derivation of formulas is concerned,
allowing one to choose orbital elements in a flexible way but would result in a model very demanding to the com-
(Keplerian elements, Delaunay variables etc.) and to reduceputer resources. We estimate that adding one more variable,
the number of degrees of freedom (e.g., by using averag-but no more, would still yield a model that delivers results
ing over some of the elements). The first implementation of in reasonable time. In contrast, lifting assumptions (3)—(7)
the model presented here uses a 3-dimensional phase spacejould require additional effort, but would not pose any se-
comprising the particle mass, orbital semimajor axist, vere computational limitations. It should be possible to in-
and eccentricitye and involving averages over the inclina- clude radiation pressure and drag forces, or add a population
tion i and all angular elements. A new version of the model of hyperbolic particles, include coagulation and restitution
with a (m, a, e, i)-phase space will follow. regime, or add distant interactions and supply terms. Thus
We believe that this approach is simpler conceptually our approach is generic enough and can potentially serve
than the methods outlined above. It automatically enablesas a basis for, say, a planetary accretion code or a code for
a study of the simultaneous evolution of mass, spatial, andmodeling dilute circumstellar debris disks with Poynting—
velocity distribution of particles. It does not involve any sep- Robertson transport and radiation pressure removal of small
aration between the arguments wofn, a, e, i, ...), which dust grains.
makes the method ideal for detection of possible combined In Section?2, we introduce basic variables and distri-
effects. Further, it does not assume an a priori functional bution functions. In Sectior3, integro-differential kinetic
form of the distribution of orbital elements (for instance, equations for the phase space distribution are derived. Sec-
a uniform distribution in eccentricities as Bpaute et al.  tion 4 discusses probabilistic and kinematic terms in the ki-
(1991) Weidenschilling et al. (199F)which has a bonus  netic equations. In Sectios the model of a single impact
for dynamically hot disks with broad ranges of semimajor event is compiled. Sectio® applies the model to the colli-
axes and orbital eccentricities. A multiannulus treatment is sional evolution of the EKB. Sectiohcontains a summary
an intrinsic property of our approach. Of course, our method and discusses possible extensions of the mégaiendix A
is not free of disadvantages. Particular physical effects onepresents a numerical method for solving the kinetic equa-
may wish to incorporate have to be described in terms of or- tions and its computer implementatioAppendix B pro-
bital elements, which would require additional effort. Also, vides an explanation of a new effect in the combiited:)-
the model is more demanding with respect to computing distribution of a collisionally evolving disk.
resources, because it deals with a multidimensional phase
space.
To render the problem tractable, we are forced to make 2. Distribution functions
many simplifying assumptions. It is important, however, to
distinguish between principal limitations and those that can  The system considered here is a disk of “particles” mov-
be lifted without changing the conceptual “core” of our ap- ing in Keplerian orbits around a primary and experiencing
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destructive collisions. By “particles” we mean solids that are with different lists of arguments. These are treateditier-
large enough not to be affected by non-gravitational forces, ent functions. The quantity:(x, y, ...) always has the fol-
such as radiation pressure. This sets the lower bound on thdowing meaningn(x, y,...)dxdy ... is the total number of
particle sizes te~ 1 mm. The upper bound is limited by the particles in the disk with argumentts, x +dx], [y, y +dy],
requirement (jii) in the Introduction and may be as large as .... Integration ofn(x, y,...) over some of its arguments
hundreds of kilometers for systems like the EKB. In this sec- gives again a function without those arguments. The quan-
tion, we consider variables that characterize a particle’s statetity n without arguments is simply the total number of parti-
and distribution functions that describe the ensemble of par-cles in the disk:

ticles. The assumption (i) in the Introduction implies that we
use the so-called single-particle distribution to describe the /'-.n(x, y,..)dxdy...=n. (2.1)
ensemble, meaning that each distribution function will have % 5

state variables of only one particle in its argument list. (2) We will also use distribution functions denoted by

¢(...). In contrast tou(...), these have a unit normalization:

Apart from masses of particles, their radius vectors ffm(ﬂ(x, Yo )dxdy... =1
and velocitiess are the most natural state variables one can * ¥
use to describe collisional processes. For instance, a condiObviously, eachi-distribution with several arguments is a
tion that two particles collide is just the coincidence of their product of then-distribution with a subset of arguments
radius vectorsry =r. The results are also best understood and theg-distribution of the remaining arguments. Each

2.1. Configuration space
(2.2)

in terms of these variables. For example, the number density,-distribution with several arguments is a product ¢of
of particles or the surface mass density at a certain distancegistributions with subsets of arguments. For instance,

from the primary are usual quantities of interest. Unfortu-
nately, in terms of coordinates and velocities, it is not easy

to get rid of unnecessary degrees of freedom and to use nat-

ural symmetries of the problem. Below we shall see that this
can be easily done by using orbital elements.

2.2. Orbital element space

The orbit of each particle in the disk may be described by
six Keplerian elements: the semimajor axiseccentricity
e, inclination i, longitude of the ascending node, argu-
ment of pericentew, and the mean anomaly. We assume
a rotationally symmetric disk with semi-opening angle
(Fig. 1). This implies that the distribution of botfe and
w is uniform, and that & i < e. We will also assume that

each orbit is densely populated by particles, so that the fast

variable—mean anomaly/—has a uniform distribution as
well. Denote byp = (a, ¢, i) the three positional elements
and byq = (2, w, M) the three angular elements. Dimen-
sion: [p] = [a][e][i] = cm, [q] = [2][w][M] = 1. The an-
gular elementsy will be eventually averaged out and will
not appear in the final equations.

2.3. Notation conventions

(1) Below we will introduce several distribution func-
tions, which will be denoted by one and the same leiter

Fig. 1. Geometry of the disk seen edge-on.

n(x,y,z)=nex,y,z) =nx)e(y,z) =nx)e(y)e(z)
=n(x,y)p(z) etc. (2.3)

Of course, these rules can only be applied if the distributions
are independent.

(3) The quantityV stands for the number density of parti-
cles, i.e., for the number of particles per unit spatial volume.
The exact meaning aV with different arguments is given
below.

(4) The distributions:(...), ¢(...), andN(...) are func-
tions of time. For brevity, the argumentvill be omitted (but
is always implied). When defining each function, we indicate
its dimension and show how the total number of particles in
the disk can be expressed through that function.

2.4. Distributions in orbital element space

2.4.1. Phase space distribution functietmn, p, q)

Central to our treatment is the distribution function
n(m,p, q) sothata(m, p, q) dm dpdq is the number of par-
ticles with[m, m +dm], [p, p+dp], [d, q+dq] (at a certain
instant of timer). Dimension{n(m, p, )] = g~tcm™1. The
total number of particles in the disk is

n:///n(m,p,q)dmdpdq.

m p q

(2.4)

2.4.2. Averaged phase space distribution function, p)
Another important quantity is a distribution function

n(m, p) integrated over the angles:

n(m,p):/n(m,p,q)dq, (2.5)

q
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with the dimensiofin (m, p)] = g~ cm~L. The total number
of particles in the disk is

n:/[n(m,p)dmdp.
mp

We assume a uniform distribution of the lines of apsides
and nodes:

(2.6)

n(m,p,q) =n(m,pP)e(Q) =n(m, P)e(2)p(@)e(M) (2.7)
with

9(82) = p(w) = (M) = 1/(27) = const (2.8)

2.5. Distributions in configuration space
2.5.1. Mass-coordinate-velocity distribution function

n(m,r,v)
The transformation between, v) and(p, q) is

drdv=Jdpdq, (2.9)
with the jacobian
a(r,v) 1\/7 .
= =V (GM)3aesini, 2.10
P, 2 (219
where M is the mass of the primary, giving
n(m,r,v)=n(m,p,a)J " =n(m, pe@)J . (2.11)

In subsequent sections we will derive an equation for
n(m,p). Once it is solved, Eq(2.11) can be used to cal-
culate the distribution in terms of coordinates and velocities.

2.5.2. Number density as a function of mass and
coordinatesN (m, r)

The mass-spatial distribution can be characterized by

N(m,r), the number density of particles with masses
[m, m + dm] at the pointr = (r, ¢, ), Where¢ is the “lati-
tude” andh is the “longitude.” DimensionN (m, r, ¢, A)] =

g~ Lcm 3. The total number of particles in the disk is

/2 2w
n:fdm/ f /N(m,r,¢,k)r2drco&])d¢dk. (2.12)
m r —m/2 0

The functionN (m, r) can be found by integrating E(R.11)
over velocities. The result is a classitédug’s (1958)inte-

gral
1 T 3/2
W///n(m,a,e,z) -
a e i

~1/2
4,2
X|:2 p r(l E):I

1

N@m,r,¢,A) =

x ————dadedi, (2.13)
J/co2¢p — cogi
where the integration domain is
a(l—e)<r<a(l+e), cogi §CO§¢. (2.14)

109

2.5.3. Number density as a function of mass and distance
N(m,r)

We define the functionV(m,r) to be the vertically-
averaged number density of particles with madsesn +
dm] at the pointr:

I5, & N(n,r, ¢, 1) cospdg di
[5 2 cospdpdr

Dimension: [N (m,r)] = g~tcm 3. The total number of
particles in the disk is

e 2n
n:/dm[//N(m,r)rzdrCOququdk.

r —e 0
In most of the applications, the distribution of inclinations
can be assumed independent of the distributioru 0&:
n(m,a,e, i) =n(m,a,e)p(i), where the distribution of in-
clinations is non-zero withirf0, ¢] and is normalized to
unity:

N(m,r)=

(2.15)

(2.16)

&

/(p(i)di =1 (2.17)
0
Then, inserting2.13)into (2.15)leads to:
1 1 r\¥?
Nom,ry= m—s// "“"’“’e)(;)
-1/2
x [2— L_2a- ez)i| dade,  (2.18)
a r

where the integration domain is (sEig. 2)
al—e)<r<a(l+e). (2.19)

Equation(2.18)holds for any distribution of inclinations
@ (i) within [0, e]—in particular, for a uniform distribution
sini

. 2.20
1-—cose ( )

(i) =

a

0 1 e

Fig. 2. Integration domain for E¢2.18)in the (¢, a)-plane. The filled area
corresponds to particles that contribute to the number density at a distance
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Note that Eq(2.18) has an integrable singularity at one of master equation
the borders of the integration domain, namely at the “peri-

centric” curvea(l — e) = r. This fact should be taken into 47 m, V) = (d_” ) (m, 1, V).

account in the numerical implementation. Another potential dt dt loss

difficulty in the numerical evaluation of the integrél.18) (3.1)

is a curtailment of the integration domain for small val- Assume now that there are no physical sources and sinks
ues ofe, i.e., for near-circular orbits, which is typically a of the material in the system, other than mutual collisions

densely populated part of the phase space. One can copéhat eliminate the original particles (loss) and simultaneously

with the problem by applying the transformation of variables create collisional fragments (gain). Then the terms in the

dn
) (m,r,v) —(
gain

dt

(a,e) = (x,e), where
1—e+2ey

T 1—e2
which replaces Eq2.18)by

a(x.e.r)=r (2.21)

e

1—e2
x (1—e+2ex) L 7edxde, (2.22)
V x(1—=x)

where the integration domain is a unit rectangle gng 0
andy = 1 are integrable singularities.

2.5.4. Disk’s parameters as functions of distance
Having calculated the vertically-averaged number density

right-hand side of Eq(3.1) can be found by “counting” the
particles destroyed and generated per unit time in a unit vol-
ume at a positiom (Spahn et al., 2004)

( ) (m,1,v) = /f F(rymp,Vp,me, Ve, m, V)
gain

mp N pime,Vy

dn

dt

X n(mp’ r, Vp)n(mf’ r, Vf)
X Vimp(r', Vp, Vy)o (mp, m;)

X dmp de dm, dV,,

=n(m,r,v) // n(mp,r,vp)

mp,Vp

(3.2)

(dn

o (m,r,Vv)

loss

)

X Vimp(r, Vp, VYo (mp, m)dm, dv,.
(3.3)

Hereafter subscriptp and: refer to a projectile and a tar-

N(m,r) as a function of mass and distance, one can easily got particle, and we assume that these are the smaller and

obtain a number of other quantities of interest. Different au-
thors use distributions of different physical quantities (e.g.,

number density, cross section density, mass density) with

different arguments (particle mass or size) and of different
type (differential, cumulative, per unit logarithmic size bin,
etc.). In this paper, two specific distributions will be used:
mass density per unit logarithmic size interval (size decade),
Nim,105(s, 7) = 3N 10)m?(s)N (m(s), r) (2.23)

(s is the radius of a particle), and surface mass density

E(r):ZrSiﬂe/mN(m,r)dm. (2.24)

3. Thekinetic equation

In this section, we derive integro-differential equations
for the averaged phase space distribution function, p).
We start with the kinetic equation in standard form, then
rewrite it in terms of orbital elements, and finally average

larger of the two colliders, respectivelyr, < m,. Other
quantities in Eqs(3.1)—(3.3)are: o is the collisional cross
section:o (m,, m;) = n(s§ + stz), wheres is the radius of
a particle;,vimp(r, v, Vi) =V, (r) — v;(r) is the relative ve-
locity of two particles colliding at the point. The function
F(r;mp,Vp;ms, Ve m, V) that appears in the gain term de-
scribes the outcome of a binary collisioR{...)dmdv is
the number of fragments wiflw, m + dm], [v, v+ dV], pro-
duced by a collision of particles wittwn ,, v,) and(m;, v;)
at the pointr. Dimension:[F(r;mp,Vp; m;, Vi m, V)] =
g lsfem3.

In the particular case when and other functions in the
integrands are independent of the velocities, E84)—(3.3)
reduce to the Smoluchowski equation. Similarly, when the
masses are absent, E§3.1)—(3.3)transform to the Boltz-
mann equation. In that case, if the keretlescribes elastic
collisions, the equation takes the form originally obtained by
Boltzmann (1896)

3.2. Derivation of the kinetic equation in orbital elements

over some of the elements to make use of symmetries and to

reduce computational complexity of the problem.

3.1. The kinetic equation in coordinates and velocities

Neglecting transport mechanisms such as drag forces, thed_n(m, r,v) =

time evolution of the phase space distribution function in

The kinetic equationg3.1)—(3.3)will be expressed in
terms of the orbital elements. According(@.11), the left-
hand side of Eq(3.1)transforms in a straightforward way:

d
d—r;(m, p,q)J L (3.4)

terms of coordinates and velocities is given by an obvious where the jacobiad is given by(2.10)
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We now consider the gain ter(8.2). Using the identity Vimp(r, Vp, Vi) With vimp(Pp, dp; Pr, 9r), Which is the rela-

tive speed of two particles with orbital elements given by the

G(r,v) = / G, V)8 —r"ar, (3.5) arguments, at the collision point. The transformation rule for
the functionf is the same as for the distribution functien

valid for any functionG, results in
d Smp, vy, Vpsmy, £, V;m, 1, V)
n
<E>ga-n(m’r’v) = f(mp,Pp,Ap; M, Pr, Ar; m, P, aQJ L (3.9)
I
and the jacobian i3.9) cancels with that i§3.4). We there-
= / - / E(r5mp, Vp; my, Ny m, V) fore get the following expression for the gain term:
My, L pNpime, e,V dn
X8(r —rp)8(r —rn(mp, v p,Vp)n(m:, ry, V) <Z>gain(m’ p,a)
// f(mpsppsqp;mtsp[sqt;mvpsq)

X Vimp(r, Vp, Ve )o (mp, my) dmp dr , dV, dm, dr, dv;.
(3.6) =

Instead of the functio, we introduce another form of the
fragment-generating functionyf (mp, r,, Vp; ms, U, Vi m,
r,v) such thatf(...)dmdr dv is the number of fragments
with [m, m +dm], [r,r +dr], [v,V+dVv] produced by a col-
lision of particles with(m p,, r ,, v,) and(m,, r,, v;). Dimen-

mp,Pp,Ap;ms,Pr, e
X n(mpa ppa qp)n(ml‘a pfa qt)vimp(ppa q]h pl‘ﬂ ql)
X 8[r(Pp. Ap) — 1 (Pr, A o (mp, 1)

x dmpdppdq,dm,dp,dq;. (3.10)

sion:  [f (mp.,Tp,Vpime T Vism, 1,V)] = g tsPem®. The transformation of the loss term is done in a similar way,
Note an essential difference betwegnand f: the former 5.4 s even easier because the fragment-generating functions
does not involve radius vectors of the emerging fragments, . o, f are absent. The final form of the balance equation in
while the latter does. Notwithstanding normalizing con- tarms of the orbital elements is:

stants, both functiong and f are conditional probabilities. dn dn dn

The functionF is proportional to the conditional probability  — @, p, q) = <_> (m,p,q) — <_> (m,p,q)

of generating a particle withn, m + dm], [V, v + dv] out of dt dt ) gain dt ) oss

two particlesm,,, v, andm,,Vv,, provided that both collid- (3.11)
ers are located at Similarly, the functionf is proportional with

to the conditional probability of generating a particle with /4,
[m,m +dm], [r,r +dr], [v,v + dv] out of two particles <E>gain(m, p.q)

mp, ¥ p,V, andm;, 1y, Vv, provided that the colliding parti-
cles are at the same point in space. This interpretation gives // F(mp. Py s My, Prs i 1, P, Q)
mp,Pp,Apim,Pr, e

a relation between both functions:
X n(mpa ppa qp)”(mt, pfa qt)vimp(ppy qp7 pl‘ﬂ ql)

x 8[r(Pp. dp) — 1 (Pr. Ao (mp, my)
x dm,dp,dq,dm,dp, dq;,

f(mp, rpvvp;mta rlvvt; m, r,V)8(rp - r[)
=F(r;mp,Vp;mg, Ny m, VS — 1 )8 —1y). (3.7)
It is worth noting that the functiory is the only quan-

tity in the kinetic equations that determines the collisional /4,
outcome(Spahn et al., 2004)Jsing appropriate definitions <Z>| (m,p,q)
0Ss

of that function, one can easily generalize the equations to
include coagulation and restitution. For instance, setting =n(m,p,q) /// n(mp,pp,dp)
mp,Pp,dp

X Vimp(Pp Ap: P, DS[F (Pp. Ap) — 1 (P, D ]o (m ), m)

(3.12)

JFmp, U, Vpsme, T Ny m, 1,8, — 1)
= 8[”1 — (my +mt)]5(r —TIp)8(r =18V —Ve), (3-8)

wherev, = (m Vv, +m;V;)/(m,+m;) is the center-of-mass xdmpdppdqp. (3.13)
velocity, corresponds to the coagulation case when two col-  Note that thes-functions in both Eqs(3.12) and (3.13)
liding particles coalesce. In this paper, however, we restrict represent a collisional condition and are essential. They en-
ourselves to the fragmentation case. sure that the gain and loss terms are being considered in one
We now return to Eq(3.6) and replace the integration and the same volume of the “physical” space and thus pro-
over (r,,V,; Iy, V) with that over(p,, q,; ps, 0;). As a re- vide a link between the collisional processes that take place
sult of the transformation of differentia(2.9), the jacobian in the “physical” space and distributions in a space of or-
J appears twice in the equation and, accordind2d 1) bital elements. Furthermore, the presence ofstfienctions
can be grouped with the's in the integrand, making these  ([8(r ---)] = cm3) automatically ensures correct dimen-
n’s functions of the new variables. The impact velocity is sionality of the equations: both sides of the equations have
a scalar of the transformation; hence we simply replace dimension cmis1g~1.
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= (f/ Vimp(Pp- Ap- Pr» A)S[T (Pp. p) — T (Pr. G1) ]
dpQ:

target (t) X w(qu(q,)dquqz)

x (//5[r(pp,qp) — (i, a0 ]e(@,)

q,Q:

-1
Lg 4 X ¢(@) dap th> (3.15)

and

f(mpa p[];mtv pl‘;ma p)

Fig. 3. Representation of colliding particles with rings formed by spreading N d
along the orbits and rotation of lines of nodes and apsides. The rings are = <f>q,,,q, q

shown pole-on. q
3.3. Averaging over angular elements Ef(/ f(mp, pp; dpmye, Pr, Qs m, P, d)
a g
The next step in the derivation is to eliminate from the
equations all angles, i.e., variablgs, q,, andg. This can x 8[r(pp, dp) = 1 (Pr, AN ] (@p)p (@) da dqf)
be done by integrating all terms in the equations over these
variables. Before doing that, it is important to explain the X (f/é[r(p,,,q,,) —r(p;, q,)]<p(q,,)
physical meaning of the procedure. An integration aygr ara
andg; would mean that we “spread” both the projectile par- _1
ticle and the target particle along their orbits and rotate their x ¢(qr) dq, dq:) dq. (3.16)
lines of nodes and apsides over 3§6ig. 3). Thus we re-
place each particle with a ring that extends frat — ¢) to The meaning ofimp is obvious, andf(m,,, D . Py m,

a(1+ e) radially and from—e to ¢ latitudinally. For brevity,
we will call the rings corresponding to a projectile and a tar- [p.p + dp], produced by a collision of particles with
get particle p-ring and t-ring, respectively. The same is true (m . pp) and(m,. py).

for the collisional debris generated during the impact (not o integral that appears in the denominators,

shown inFig. 3). They can each be thought of as a ring swept

by an elliptic orbit with the rotating nodal and apsidal line. _ _

This “ring approach” is justified by the fact that in real cos- A®p. P = // QUCEERECRR)

mic disks there are mechanisms that efficiently randomize G

the orientation of nodes and apsides. The job can be done by X ¢(dp)e(a:) dap dar, (3.17)

the oblateness of the primary (important for planetary rings), nas the following geometrical interpretation: it d@prox-

by gravity of larger perturbers and, even in non-perturbed imately the volume of the intersection between the p-
disks, by c_olli;io_ns and gravitational encounters. The “ring ring and the t-ring divided by the volumes of both rings.
approach”is similar to that employed Bpaute etal. (1991)  (approximately—because a strict calculation of the integral

p)dmdp is the number of fragments withn, m + dm],

We now integrate both the gain and loss E(B12)- | take into account that the motion of particles in elliptic
(3.13)overq and substitut€2.7). The left-hand side of either o ppits is not uniform and therefore, automatically “weight”
equation just loses thg-argument: the volumes.) Accordingly, the dimension[ia] = cm™3.

dn dn The transformation of the right-hand side of the gain term
/(E)Oﬂ p.q)dq= / @(Q)(d—>(m, p)dq gives:
t
q q dn
= (—n>(m, p). (3.14) dt ) gain
dt
Before transforming the right-hand sides, we introduce the =/dq // J(mp, Pp, Ap; Mz, Pr, Grs m, P, Q)
following averages: q M p,Pp.Up;
me,Pr,qe
Ui_mp(ppa p:) X n(mpv pp)ﬁo(q;))n(mtv pr)@(qr)vimp(pps Ap; Pr» ar)

= (Vimp)a,.ar x 8[r(Pp.ap) — 1 (Pr. ) ]o (mp, my)
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x dmpdp,dq,dm,dp,dq;. (3.18)

We nowmake a simplificationreplace the impact velocity
Vimp With vimp given by(3.15) resulting in

dn
R ( ) )
(dt)gainm g

%/\dq// f(mpﬂp]?’qp;mt’ptvqt;mvpsq)

q mp,Pp,dp:
mg,Pr,qr

x 8[r(Pp. dp) — F(Pr. A @ (@p)@@)n(m . Pp)
X n(m¢, Pr)Vimp(Pp, Pr)o (mp, my)
x dmpdp,dq,dm;dp; dq; (3.19)

or, using(3.16)

dn _ . .
<E) ' (m,p)= /f/ fmp,pp;my, pr;m, p)
gain

M., Pp,Pr

x n(mp, Pp)n(me, Pr) imp(Pp, Pr)
X A(Pp, Pr)o (mp, my)
x dm,dm;dpp,dp;. (3.20)

The right-hand side of the loss term transforms without
any simplifications:

dn

R ( ) )
<dt)lossm P

= [ danon.pro@ [[[ a0,

q mp»Pp,Qp
X Vimp(Pp. Ap: P, DS[F (Pp, Ap) — 1 (P, D]o (mp, m)

x dmpdp,dq, (3.21)
or, using(3.15)
(d”) (m.p)
- m,
dt loss
=n(m,p) // n(mp, Pp)Vimp(Pp. P) APy, P)
mp,Pp
xo(mp,mydm,dp,. (3.22)

Collecting together Eqg3.11), (3.14), (3.20), and (3.22)
the equations take the final form:

dn dn dn
E(m’ p) - (E)gain(m’ p) - (Z>Ioss(m7 p)7 (3.23)

dn = ] _
<E . (ms p)z /:/// f(mp7 ppvm[» plvmv p)
gain

mp,m¢,Pp,Pr
X n(mpa pp)n(mt» pt)vi—mp(pp’ Pr)
X A(ppv pl)g(mps ml)

x dm,dm; dppdp;, (3.24)

113
dn L
<d_> (m, p) =n(m,p) // n(m,, Pp)Uimp(Pp, P)
1 Jioss
mp,Pp
x A(pp, p)o(mp,m)dmpdp,. (3.25)

The reciprocal of the integral in E¢3.25)is the collisional
lifetime of particles with masa and orbital elementg,
which we denotd (m, p). One can introduce an average col-
lisional lifetime of particles of masa by

Jo T Hm, pIn(m, p)dp}—l
Jon(m,p)dp

Tm) = [ (3.26)

3.4. Additional averaging over inclination

Equationq3.23)—(3.25)determine the 4-argument phase
space distribution function(m, p) = n(m, a, e, i). For the
sake of speeding up the calculations, and taking into account
that in many applications the evolution bfis of less im-
portance than that af and e, we will further reduce the
dimension of the phase space by performing averaging over
the inclination. Such a “thin-disk” approximation involves a
phase space distribution with 3 argumeni@,, a, ¢). Luck-
ily, no additional derivation is required to obtain equations
for n(m, a, e)—it is sufficient to redefine vectong andq
in the equations already obtained. We now puk (a, e)
andq = (i, £2, w, M). Then the whole derivation given in the
previous subsection can be repeated without any changes for
this set of elements, yielding the same H§s23)—(3.25)

Throughout the rest of the paper, we will assume ghat
(a,e). However, it is important to know that Eq3.23)—
(3.25)have a covariant form. Instead of Keplerian elements,
one can use any other set of 6 quantities that fully deter-
mine the particle’s state—for instance, Delaunay or Poincaré
variables. “Splitting” of those six betwegmandq is also
arbitrary. For example, setting = a and averaging over
gq= (e i, 2,0, M) would result in a model focused on
the mass-distance distribution of material. Regardless of the
choice ofp anddg, the system is described by E¢8.23)—
(3.25)

3.5. Corrections for the gravitational interaction of
particles

For larger objects, it may be necessary to take into ac-
count their mutual gravitational interaction before collision.
Gravity enhances the collisional cross section (Safronov’s
factor) and increases the impact velocity. Then, the product
o (mp, ms)Vimp(Pp, Py) iN EQs.(3.24) and (3.25fhould be
replaced with

P 3/2

v

O'(mpvmt)m(ppa pl)<l+ g) ) (327)
Uimp

where

2G
Vesc= , | 4@11’ * m,)' (3.28)
sp + St
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The mutual gravity will also affect integration domains in model, we cannot ignore the third spatial dimension related
the equations discussed below, because an increase in th& particles’ orbital inclinations and nodes. There is no sim-
impact velocity changes the minimum mass of the shatter- ple scaling for probabilities of collisions and relative veloci-
ing projectile,m.,, and the mass of the largest collisional ties for disks with different semi-opening angkes
fragment,n,, discussed in Sectidh
4.1. The integralA
3.6. Argument ranges and integration domains
We now consider the integrés.17)
The range ofm, p) = (m, a, ) in EQs.(3.23)—(3.25)s:

O<m<oo. O<a<oo, O<e<i (3.29) A(pp,p,)E//S[r(pp,qp)—r(pz,qt)]

. . .. . . q,Q:
The integration domain in the gain ter(®.24)is: % 9(Ap)e () dap da. (4.1)
O<mp<mp<oo,  0<ap,a<oo, In the 2D case (disk semi-opening angle= 0), the A-
0<ep, e <1 (3.30) integral can be reduced to a single integral over a function

of the true anomaly of one of the two particles. Including the

third dimension € > 0) further complicates the integral. In

any event, the resulting integral is not elementary and must

be calculated numerically, which would slow down the cal-

culations drastically. Thus we have to use an approximation.
As noted above, the integral is approximately the volume

ap(l—ep) <ar(l+e) and a,(l+ep)>a(l—e), of Fhe intersection between the_ p-ring and the t-riAg;,

(3.31) divided by the volumes of both ring4,, and A;:

(note the conditionn,, < m,), to which two additional re-
guirements are added: the particles should be in collisional
orbits and the projectile should carry enough energy to dis-
rupt the target. The first condition means an overlap between
the p- and t-rings and reduces to

while the second can be written as Ape
A(Pp, Pr) ~ A (4.2)
Mer < Mp, (3.32) pAit

Denote byA (rmin, rmax) the volume of the disk between the
distance$min andrmax (rmin < rmax):

wheren-(mp, m:, Vimp(Pp, P;)) is the minimum mass of a
projectile that destroys the grain of maggs

Similarly, the integration domain in the loss tefth25 4 .
is: g ° ©:29) A(rmin, rmax) = én(rr?]ax— r3n) sine. (4.3)
0<m,<oo, 0<a,<oco, O0<e,<1 (3.33)  Obviously,
with additional conditions Ap=Alap(1—ep),ap(l+ep)),
ap(l—ep) <a(l+e), ap(l4+ep)>a(l—e) (3.34) A,:A(a,(l—e,),a,(1+e,)) (4.4)
and and it only remains to findi ;.
All possible cases are sketchedHig. 4. If the rings over-
Mer <My, (3.35) lap, Eq.(3.31) we set
wherenc, =m, (mpv m, vi_mp(pp, p). Tmin = max{ap(]_ — ep), a,(1— et)]’

4. Probability and kinematics of a binary collision ERBEEEE PPy r

t-ring
Equations (3.24) and (3.25)contain two functions, _p-ring

A(pp, pr) and vimp(Pp. Pr), Which depend solely on the p- ‘Tr
and t-rings representing two colliding particles. The first )
function, A, basically determines the probability of colli- ‘ﬂr
sion for a pair of crossing Keplerian orbits (& in Eq. (5) t-ring

of Spaute et al., 1991 The second functiornyimp, tells us p-ring

how strong the collision will be. Neither of them “cares” .—”mg AAAAAA r

about the outcome of that collision, however. This is why

both quantities are independent of the masses of the collid- p-ring

ers. . """ R '
A complication of calculating the quantities in question

stems from the fact that here, unlike in other parts of the Fig. 4. Location of p- and t-rings.
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Fig. 5. TheA integral for different combinations of the semimajor axes and eccentricities of two colliding pardigles, az, e>. (Top) a1 = ap, (bottom)
a1 = 1.6ay (see legend for other parameters). We show the results for one value of the disk’s semi-openirg=a2dle The results for other values look
similar. For each set afq, e1, ap, ez, two values are shown: “exact” (obtained with time-consuming Monte Carlo evaluation gf-thiegral, a thick line)
and approximate (our geometrical approximation, @), a thin line of the same style).

rmax=Min[a,(1+e,), ar(1+¢/)] (4.5) 4.2. Impact velocityimp
and Consider two “rings”(a,, ¢,) and(a, ¢,) crossing each
Ay = AGmin. Fmad) (4.6) other, i.e., satisfying Eq3.31) We are interested in the av-

pt— R min. fmax’ ' eraged impact veloCityimp(P,. P:), given by Eq(3.15)
where the functionA is given by Eq.(4.3). For non- 1
overlapping rings, we have simply,; = 0 andA = 0. Vimp(Pp, Pr) = AP, /f Vimp(Pp> dp, Pr, dr)

Using an “exact” Monte Carlo evaluation of the integral poE a,qr

(4.1_), we checked the accuracy of the geometrlcal approxi- % 5[r(p,,, qp) — 1Py, q,)]
mation presented here. Typical results of this comparison are
shown inFig. 5. The geometrical approximation typically X ¢(Ap)e(G:)da, da;. (4.7)
provides a 10—-30% accuracy and only in some pathological According to this definition, a strict way to compute it would
cases underestimates the true value by a factor of two. be to calculate the integral twice—with and withoutvimp
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in the integrand—and taking the ratio. As noted above,
a direct evaluation of thet-integrals would be too cum-

A.V. Krivov et al. / Icarus 174 (2005) 105-134

racy of both Eq(4.8) and Eq.(4.9). Typical results of this
comparison are shown iRig. 6. The particle-in-a-box for-

bersome computationally, so we use approximate solutionsmula (4.8) still provides reasonable accuracy for moderate

again.
The simplest approximation is a “particle-in-a-box” for-

mula

2GM

—2
Vimp (ap» €p,as, er) = p
p

(€5 +¢f +sife),  (4.8)

+ a;

where M is the mass of the central body aads the semi-

eccentricities, but severely underestimates the impact veloc-
ity for high e. Our alternative, Eq(4.9), does an excellent

job, providing better than 10% accuracy in nearly all the

cases.

5. Impact mechanics

opening angle of the disk, so that the last term in parentheses

reflects the relative velocity coming from the orbital inclina-
tions of the particles.

A better approximation can be obtained in the follow-
ing way. Kholshevnikov and Shor (1994)plved a similar
problem in a 3D case, employing, however, an averaging
procedure which is not symmetric with respect to both col-
liding particles. In the spirit of their approach, one can obtain
(M. Srentevic, in preparation)
Ui—mp(pp, pr) = 1/2(UKS(ap» €p,dr, er)

+ vks(ay, e, ap, ep)), (4.9)

where

2
vis(a, e1, az, e2)

_GM[3_P_

== Lt e2— (2+e?)cosi |2
az
sinly — siniy

p1

)
]

pr1
Here,p1 = a1(1—e2) andp, = az(1—e3) are thesemilatera
rectaof the two orbits, and

pP1

D2

. (1.0 _cos

Ib—11
1 ,sin(2lp) —sin(2l;) —
_Ee% (2>2) @) —=

4.10
PR (4.10)

(E:/cosiqb(i)di
0

is the mean inclination, which for a uniform distribution of
inclinations(2.20)is simply

(4.11)

_ sinf e
CoSi = ——. 4.12
2(1—cose) ( )
The quantitied; andl, are given by
0 ifar(l—ey) = ax(l—ey),
_ 1
l1= 1 arcco$ & (s — 1]
otherwise
7 ifar(1+e1) <ax(l+e2),
— 1
l2= § arcco$d (gt — 1] @19
otherwise
Remember that we require that the two rings overlap,
Eq.(3.31)

As in the case of ther-integral, we used direct Monte
Carlo evaluation of the integrdl.7) to check the accu-

As explained above, the quantities analyzed in the pre-
vious section do not “care” about the outcome of a binary
collision. Now we focus on terms that describe the mechan-
ics of such a collision, assuming it to be destructive. These
are the minimum mass of the shattering impactor, the mass
of the largest collisional fragment, as well as the distribution
of masses and orbital elements of the collisional fragments.
These quantities appear both in integrands and integration
domains of Eqs(3.24) and (3.25)They rely on the so-called
critical energy for fragmentation, discussed immediately be-
low.

5.1. The critical specific energy

As a conventional “threshold” between the cratering col-
lisions (which we do not consider here) and disruptive ones
(which are of central interest for this work), one usually con-
siders the case where the mass of the largest particle left after
the impact is half the target mass; = 0.5m; (see, e.g.,
Paolicchi et al., 1996; Durda et al., 1998; Benz and Asphaug,
1999. The kinetic energy of the projectile per unit target's
mass, required for such a “marginally disruptive” impact, is
called thecritical specific energyand denoted)7,. By de-
finition, this quantity includes the energy needed for both
disruption of the target (work against strength) and disper-
sal of the collisional fragments to the “local infinity” (work
against gravity)—se®urda et al. (1998)Later we shall
see that knowledge aP7, is required to calculate both,,
andm,.

The critical specific energy is known to be a function
of the target radius; (or its massm,), essentially con-
sisting of two power laws (see, e.davis et al., 1985;
Holsapple, 1994; Paolicchi et al., 1996; Durda and Der-
mott, 1997; Durda et al., 1998; Benz and Asphaug, 1999;
Kenyon and Bromley, 2004b

Q% (51) = Ays? + Ags)®. (5.1)

The first one, with a shallow negative slope, dominates in
the strength regime at smaller sizes. The second one con-
trols the fragmentation of larger objects and has a positive
index between 1 and 2, reflecting the growth of gravita-
tional binding energy of large objects with their size. Ab-
solute values of constants in E¢.1) can be found in

the papers cited above. For a visual comparison of differ-
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Fig. 6. The average impact velocitymp for different combinations of the semimajor axes and eccentricities of two colliding partigles;, a2, e2. The
figure is organized similarly t&ig. 5 expect that we compare three and not two different computation methods here. For eaeh set,afp, ep, we show:
“exact” results (obtained with time-consuming Monte Carlo evaluation ofttietegral, solid lines), results from Eg@l.9)—(4.10)dashed lines), and those
from Eqg.(4.8) (dotted lines).

ent curves see, e.g., Figs. 1 and 5D0aorda et al. (1998) 5.2. The minimum projectile mass,

Fig. 8 in Benz and Asphaug (199%nd Fig. 1 inkKenyon

and Bromley (2004b)Most of the studies report a mini- Consider a collision of two graingm ,, p,) and(m,, p;).

mum of 07, to lie at radius~ 0.1km. However, for a given ~ From the definition of the critical specific energy, the mini-
size, material, and impact speed, the absolute values re-mum mass of a projectile that destroys the target satisfies the
ported differ by at least one order of magnitude. Besides, equation

actual values for astronomical objects, such as EKBOs, may
deviate from those found in laboratory or by hydrocode
simulations, due to the objects’ complex internal structure 7t + Mecr 2
and porosity. From the available literature, we have chosenHere, the left-hand side is the available impact energy (see
two model materials, a weaker one (“ice”) and a stronger Eqg. (5.13) below), assumed to be entirely spent for disrup-
one (“rock”), for which Q7, and constants are depicted in tion and dispersal, and the right-hand side is the energy
Fig. 7. needed to disrupt and disperse both colliders. Taking into

mimer  Vimp

= my Qg(mt) + mer Q*D(mcr) (5-2)
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Fig. 7. Dependence of the critical specific energy for fragmentation on the target particle’s radius. Solid curve: weaker material (“ice”),tidasjerd: s
material (“rock”).

account that usually., < m;, Eq.(5.2)can be replaced by  5.4. Production of collisional fragments: the functign

mcrvi_mpz

2
For objects in the strength regime and impact velocities of
order 1kms?, the minimum projectile mass (size) is 3 (1)
order(s) of magnitude less than that of the target. Obviously,
Mer = Mer(My, Ui—mp(pp» p:)) = mcr(pp; mg, Pr).

Consider the functionf that appears in the gain term
(3.24) As noted above,f(mp,pp;mt,p,;m,p)dmdp is
the number of fragments witlw, m + dm], [p, p+dp], pro-
duced in a collision of particles witén ,, p,) and(m;, p;).

The functionf includes two distributions: the mass dis-
tribution of fragments and the distribution of their orbital
elements. Omitting for brevity the quantities with indiges
andz, we can write:

~ my Oy (my). (5.3)

5.3. The mass of the largest fragment
f(m,p)=g(m)h(m,p) (5.5)

and split f into that product in such a way thgtm) dm is
the number of fragments with masges m + dm], whereas
h(m,p)dp is the fraction (by number) of fragments with
massn that have element®, p + dp]. The normalizations
of g andh are

Consider again a collision of two grainén,,p,) and
(m;, py). In what follows, we will need to know the largest
fragment’s mass:,. An approximate scaling law fon, is
(e.g.,Paolicchi etal., 1996m, /m; o E,“, whereE), is the
kinetic energy of the projectile andis a constant close to
unity. In extended form,

My

My _ }[zﬂ MT, (5.4) /mg’(m)dm =mp+m (5.6)
m; 2 my, vi—mp2 0

where the normalization is consistent with H§.3). Of and

course, Eq(5.4) impliesm , > m,(m,), resulting inm, < B

(1/2)m,. For the two materials used in our modeling, we /h(m, p)dp =1, (5.7)

assumec = 0.91 for “ice” (Arakawa, 1999)andc = 1.24 b

for “rock” (Paolicchi et al., 1996)The larger the impact en- _
ergy, the smaller the fragments. For two objects of the sameWhence the normalization of is
size (in the strength regime), for impact velocities of the or- ,,,
der of 1kms?, the largest fragment’s mass is a factor of = . - -
thousand smaller than the original mass of either collider. /fmf(m’ P)dmdp _/mg(m)[/h(m’ p)dp] dm
The functional dependence of, is: m, = m,(m,,m;, op 0 P

Tmp(Dp- Pr)) = M (m . Pps iy, D). =mp+m. (5-8)

my
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5.5. Mass distribution of collisional fragments: the applying the energy integral we obtain
functiong GMm, _omy GMm, m; GMm,
For the mass distribution function, we adopt 2ac me  2ap me 2
_ o + 2o [v,, v — 2%}, (5.14)
g(mp, Pp; my, Pr; m) me r
=G(mp,Pp;ms, P)m™ ", 0<m < my (5.9) wherer is the distance at which the collision occurs. Here,

the left-hand side is proportional to the total mechanical
energy of the fragment cloud. The expression in brackets
Gy, Dy s D) depends on the mutual orientation of theandz-orbits at
prEp T e the collision point. In the 2D approximation, which is rea-
=@-n(m,+m)ml=2 (n<2). (5.10) sonable for a disk with a small semi-opening angle¢he
scalar product term is a function of one variable (e.g., the
true anomaly of one of the colliders). By letting this vari-
able vary over the admissible range, E§.14)can be used
to find a range of possible semimajor axes [amin, dmaxl-
Taking the cross product of E¢p.12)and the radius vector
of the collision point,, results in the conservation law for
the angular momentum. Expressing the result through orbital
elements, we get

_ mc,/ac(l—eg)%mp,/ap(l—e%)
To write the function:, we need to know the orbital ele-

ments of collisional fragments. We start with a few general + Mgy /a,(l - e,z), (5.15)

expressions coming from theoretical mechanics. As a colli- h h dthat th lug )
sion is a brief event, the particles involved in it represent a where we have assumed that In€ average values cos p,

closed system. Therefore, the total mass and the momenturr?OSif are equa_l, which accounf[s for the appro>$|r_nate equal-
are conserved during the collision: ity sign. Equation(5.15) determines the eccentricity as a
function ofa,.

my +my szi =m,, (5.11) Thus, in the(a, e)-plane, the orbital elements of the

- collisional fragments form a curve.(a.), extending from
(@min, emin) 10 (dmax, eémax), Where emin = e.(amin) and
mpVp + MmNy = Zmivi =meVe, (5.12) emax = ec(amay). Examples of these curves for different

i combinations of parameters are shownFig. 8 As ex-

wherem; andv; are the masses and velocities of collisional pected, when one of the colliders is much heavier than
fragmentsy.. is the velocity of their center of mass, and all the other, the curves transform to short dashes close to the
velocities are in the reference frame of the central body. The position of the heavier particle. And vice versa, for equal
kinetic energy before the collision can be expressed throughmasses the curves are the longest, indicating an apprecia-

with

Plausible values off from impact experiments arefl ...,
2.0; a “classical” value is 116 = 1.83 (corresponds to a
differential size distribution with the index 3.5). Equation
(5.10) ensures correct normalization: E&.6) is satisfied.
The functionG depends on thp’s becausen, does.

5.6. Orbital distribution of collisional fragments: the
functionh

1

the relative velocity of the collidersijmp =V, —v;, as ble dispersion of fragments. The resultiags never exceed
maxa,, a;}, the same is true for the.'s. In some cases

1 2 n }m,vz _1 V24 Mo (5.13)  either the semimajor axis of some fragments, their eccen-

2 PP T T e T gy TIMP tricity, or both, are smaller than those of both impactors.

This is a clear indication of energy dissipation in the system.

but the kinetic energyafter the collision depends on the A H
The functionk we have sought is given by

physics of the impact that has to be specified.
An approximate, yet reasonably accurate, way to calcu- h(m, p) = h(m, a, e)

late the orbital elements of the fragments is to assert that all 1

of them follow the trajectory of the center of mass= v, =———6[e—ec(a)|H[a — amin]

for all i. This implies that all the kinetic energy of the col- @max — 4min

liders in the center-of-mass reference frame, the last term in x Hlamax—al, (5.16)

Eq. (5.13) is expended in destroying and heating the par- where H denotes the Heaviside step function equal to 1 for

ticles, diminishing the mechanical energy of the cloud of positive arguments and to 0 otherwise, and we have dropped

fragments in the reference frame of the primamglifsional the p- and¢-arguments for brevity.

damping. In reality, botha ande are somewhat dispersed around the
We are now able to compute the orbital elements of the center-of-mass values, so that the cuevé:.) transforms

fragmentsa; ande; which, asv; = v, coincide with those to an elongated 2D-area. Such a scatter occurs because, al-

of the center of masg, ande.. By squaring Eq(5.12)and though nearly all impact energy goes to comminution and
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Fig. 8. Orbital elements of two colliding particles and the resulting collisional fragments in the center-of-mass model, depicted an-filane. Different
panels are for several combinations(afe) of the two colliders, as listed in the legend. The semimajor axis is in arbitrary units. In each panel, two bold dots
represent colliders and 5 curves of increasing thickness are collisional fragments for different mass ratios of the colliders: 10, 3, 1, 0.3, and 0.1.

heating, a small fraction still goes to the kinetic energy of e When setting initial conditions, we assume a set of fully
the individual fragments. This fraction, that causes relative formed EKBOs, either in sit(Stern and Colwell, 1997;
changes im ande at each collision, is of the order of a few Kenyon and Luu, 1998, 1999a, 1999w) transported
percent(Fujiwara and Tsukamoto, 19805 the eccentrici- to the present location by dynamical interactions in
ties of the particles in a certain system are larger, whichthey  the early Solar Systeifi.evison and Morbidelli, 2003)
typically are, then the “center-of mass” model is accurate Therefore, we neither endeavor to “build” the early EKB
enough. As an exception, we mention planetary rings, where  nor find out how the early EKB might look by tracing the
the orbits are nearly circular, so that the scattering effect may evolution backward in time.
cause appreciable, diffusive changes in semimajor axes and ¢ We confine our analysis to the classical, dynamically
eccentricities. The inclination terms (3D corrections) omit- cold, population of the EKB and do not simulate its col-
ted in our analysis of Eq$5.14)—(5.15will cause a similar lisional interaction with the dynamically hot population
effect, spreading the fragments over a larger area in the or- (S, Charnoz, personal communication).
bital element space. This effect can only be important for e We do not include distant interactions of bodies, es-
disks with large opening angles and is not included in the  pecially on crossing orbits (viscous stirring, dynamical
current model either. friction). because they are not of importance for the (al-
ready formed) EKBOs in the size range under study.
Indeed, simple estimates that we made on the base of

6. Application of the model to the Edgeworth—-Kuiper Stewart’s stirring equations (see, e.g., Appendix B of
belt Weidenschilling et al., 1997show that both viscous
stirring and dynamical friction, whose timescales are
6.1. Objectives roughly proportional to(e/s)® (e—orbital eccentrici-
ties, s—object sizes), may lead to substantial effects at
The kinetic model described in the previous sections will radii above several hundred km, which we do not con-
now be applied to the collisional evolution of the EKB. Our sider.

calculations pursue mostly illustrative purposes: we wishto e We ignore cratering impacts, rebounds and merging
demonstrate that our model is able to reproduce some salient  (Kenyon and Bromley, 2002)Accordingly, we do not
features of this collisional system found earlier with other touch upon highly debated topics of impact resurfacing
methods. We start with an overview of the simplifying as- and color modification of EKBOs (see, e.ghébault
sumptions and limitations of our simulations: and Doressoundiram, 2008nd references therein).
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e \We do not consider the effects of resonant, secular, andTable 1
short-period perturbations by giant planets, most no- Parameters for numerical runs

tably Neptune, which may substantially modify the dis- Run Initial disk Initial slope Material
tribution and therefore the collisional evolution of the identificatof mass Mg] in n(a)
disk (Kenyon and Bromley, 2004b) nd-dmb-i 033 -2 Ice
e We do not model stochastic fluctuations in the distrib- nd-dmb-r 033 -2 Rock
nd-cmb-i 033 -1 Ice

utions caused by individual collisions of larger bodies

nd-cmb-r 033 -1 Rock
(Durda and Dermott, 1997) |d-dmb-i a1 2 Ice
md-dmb-i 10 -2 Ice

Therefore, any conclusions abOUt, the rea,' EKB on the ba- 75 md—massive disk, nd—nominal disk, ld—low-mass disk; cmb—
sis of these runs should be made with caution. On the othercgnstant mass per-bin, dmb—declining mass per-bin; i—'ice,” r—
hand, we are not aware of any model that would take into “rock.”
accountall the effects listed above. Our model provides a
better treatment of orbital eccentricities and possible corre- the colliders belong, and the code will fail to simulate possi-
lations between distributions of masses, semimajor axes, andle diffusion-like effects. We have checked that 8 bing in
eccentricities, than other models. Besides, by considering anand 12 bins ire taken in most of the runs were sufficient to
idealized system it may be easier to reach a better under-avoid missing diffusion due to collisional damping.

standing of general properties of EKB-like systems. The disk was assumed to have a semi-opening angle of
0.3 radians £ 20°). Three different values of initial to-
6.2. The collisional code tal mass of the disk were taken:0Mg, (massive disk),

0.33Mg (nominal disk), and A Mg (low-mass disk). We
The programming implementation of the kinetic model considered both “icy” and “rocky” objects, as described
constructed in previous sections is describefippendix A above. The integration interval was 4.5 Gyr in all the cases.
We discuss discretization of the phase space, the integratioriThe runs are listed iflable 1
procedure including the stepsize control, and the so-called
small size-cutoff problem. 6.4. Size distribution

6.3. Description of the runs The evolution of the mass distribution in several runs is
illustrated byFig. 9. The upper and lower panels show the
We considered a system of objects with a bulk density distribution at 30 and 70 AU, respectiveligure 9demon-
of 1genm 2 and a mass (size) distribution extending from strates that, not unexpectedly, a system composed of “icy”
10-6¢g (60 pum) to 183g (300km), represented by 45 bins. objects is eroded more significantly than a similar system of
Of these, the lowest 15 bins (up to 8kg or the 12cm ra- “rocky” bodies. The difference between the runs with a dif-
dius) were in the smooth exponential cutoff with the control ferent initial spatial slope (cmb and dmb runs) is only minor.
parameterx = 1.30 (seeAppendix A.J. Thirty “real” bins In agreement with other modeling results and in ac-
provided results valid for sizes from about 1 m to 300km. cord with observations (e.gStern, 1995, 1996; Davis and
The mass ratio in successive bins Wass 4. We have made  Farinella, 1997; Durda and Stern, 2000; Pan and Sari,)2004
tests with a better mass binningj,(~ 2) and found no qual-  the resulting size distribution is not a Dohnanyi power law.
itative differences in any of the distributions that we have The reason is the size dependence of the fragmentation pa-
analyzed. Quantitative differences were moderate. For in- rameters, most notably the critical specific engigyt). The
stance, the mass density differed by not more than severalbroad dip in the distribution seen at radii of about Km is
tens of percent across the whole size range. A similar massa direct consequence of the minimum@f, (s;) there (see

binning has been used in many previous studigs= 4 Fig. 7). This also gives rise to a change in the slope of the dis-
(Stern, 1995, 1996)s,, = 3 (Davis and Farinella, 1997) tribution at a break radius of several kilometers. The change
3n = 2 (Stern and Colwell, 1997)The initial mass distri- in the slope, as well as the break radius depend of the critical
bution was taken to be the Dohnanyi power law. specific energy, initial disk’s mass, and the time elaf{feoh

The initial semimajor axis distribution was assumed to be and Sari, 2004; Kenyon and Bromley, 20048) detailed
a power law with sharp cutoffs at 30 and 70 AU. AsStern guantitative study of these features in the size distribution
(1995) two power law indices were used:2 (for zero ec- and reconciliation with new data on the EKBO size distrib-
centricities, it would correspond to the surface mass density ution require more realistic modeling, including stirring by
proportional to a reciprocal of distance, meaning a constant Neptung(Kenyon and Bromley, 2004byvhich is beyond the
mass per semimajor axis bin) andl (declining mass per  scope of this paper.
semimajor axis bin). The initial eccentricity distribution was In is interesting to note that the minimum @7, (s,)
uniform between 0.0 and 0.3. When choosing thee)- means that bodies of that size are easier to destroy than the
binning, we kept in mind that, if théz, ¢)-grid is too coarse,  others, which effectively acts as a moderately smooth cutoff
the fragments may be distributed into the same bins to which for larger sizes. Therefore, we should expect the phenom-
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Fig. 9. Size distribution of EKBOs at two different distances from the Sun: 30 AU (top) and 70 AU (bottom). Thin straight lines: initial state, vegkfioa
state. Different linestyles are for several runs, which are indicated in the legend and explaiabteit To alleviate comparison with other studies, we note
that a slope of the differential size distribution is the slope in the figure minus 4. For example, the initial (Dohnanyi’s) distributions in owezxatopa of
+0.5, which would correspond to a classical index-3.5.

enon discussed irppendix A.2—a wavy distribution of mass distribution curves: humps and dips are close to each
bodies above @ km. Indeed, a slight hump is seenfig. 9 other Figs. 9 and 1P This is understandable: maxima in
(top) at several km for ice and at 1 km for rock. What is the mass distribution correspond to more abundant parti-
more, for rock there is a second weak maximum at about cles, and that these are more abundant means that they live
~ 10km. A similar phenomenon was discussed for the colli- longer. The three solid lines of different thickness in each
sional evolution of the asteroidal belt Durda et al. (1998) panel are for disks with different initial mass (md-dmb-i,
nd-dmb-i, and Id-dmb-i runs). Their comparison confirms
6.5. Collisional lifetime that the instantaneous collisional lifetime is inversely pro-
portional the instantaneous disk’s mass, as follows directly
Figure 10depicts the average collisional lifetimes as a from Egs.(3.25)—(3.26)
function of the particle mass—for the initial stage and af- A look at the absolute values shows that bodies larger
ter 4.5 Gyr. The average lifetimes increase in the course ofthat a few km in a 4.5 Gyr-old Kuiper belt must be primor-
evolution, following a gradual depletion of the disk. There dial, whereas smaller ones are most likely fragments from
is a correspondence between the lifetime curves and theearlier collisions. This falls in agreement with earlier con-
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Fig. 10. Average collisional lifetime of different-mass EKBOs, E326) for the initial state (top) and at the final state (bottom). Different lines are for several
runs, which are indicated in the legend and explainetiaible 1 The integration interval was 4.5 Gyr, and is shown with a horizontal straight line in both
panels.

clusions. For comparisorurda and Stern (2000fpund which their removal timescales refer. For larger EKBOs, the
that EKB objects (EKBOs) with < 2.5 km have collisional difference is probably due to the fact that Kenyon and Brom-
lifetimes less than 3.5 Gyr, where&@avis and Farinella  ley include accretion (their Eq. (10)), while we do not.
(1997)reported several tens of kilometers as the separation
size between primordial objects and collisional fragments.
Of course, the actual “critical” size depends on a number
of model parameters—for instance, on mechanical proper-
ties of EKBOs. For larger, 100 km EKB@3urda and Stern We have also traced the collisional mass loss by the
(2000)found the destruction time to range fromx310? to Kuiper disk. Recall that in our model the mass is lost through
8 x 102 years, which is in a good agreement with our re- small collisional fragments whose masses fall into bins<
sults, too.Kenyon and Bromley (2004b, their Fig. Bport N, SeeAppendix A.2 Figure 11shows that the mass loss
values close to ours for 1km objects, but much shorter rate is very high at the initial phase of evolution and slows
timescales for smaller EKBOs and much longer for larger down as the disk mass decreases. The mass loss rate is higher
ones. The difference for small objects traces back to their for more massive disks. During 4.5 Gyr, the disks with ini-
much larger disk's mass of M), at the initial moment to  tial masses from QMg to LOMg lost 6 to 13% of their

6.6. Mass loss
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Fig. 11. Mass loss by the Kuiper disk for the md-dmb-i, nd-dmb-i, and Id-dmb-i runs (thick lines). Bold dots on the curves show integration stegs assign
automatically on the base of E@p.4) with § = 0.1 (typically 100—300 in total, depending on the run). Thin solid lines depict the solution of&d$-(6.3)
with constants found from fitting of the middle curve.

initial mass, of which a half occurred during the first 0.5 to nearly constant one after that: the mass is lost rapidly until
1 Gyr. the population of small bodies is appreciably depleted and
We now seek a qualitative explanation of these results the loss and gain terms in Eq$.1) and (6.2come to bal-
from a simple physical argument. We try a rough two- ance. At that stage, the absolute mass loss @tME ~
component model that includes populations of “large” ob- CLMS ranges from 2« 10~*Mg Gyr~! (Id-dmb-i run) to
jects with total mass\; (1) and “small” ones with mass o 102Mg Gyr—! (md-dmb-i). Of course, this is less than
Ms5(1), so that the total disk massig(r) = M (1) + Ms (). theaveragemass loss rate ofst 103 to 3x 10~2Mg Gyr—t
Each population is assumed to gradually erode by mutual fo; the same runs.
collisions. Sinqutaneously, small_objects are gained as frag- |t is interesting to compare our mass loss model with
ments_ of CO||I§I0nS o_f large o_bjects. These processes areinat of Dominik and Decin (2003)They used a similar ap-
described by differential equations proach to describe collisional removal of planetesimals that
M;=—C; M%, (6.1) gct as sources of cirqumstellar dust in Vega-type systems,
. 2 " in an attempt to explain the observed decay of debris disks
Ms=+CLM} — CsMg, (6.2) with stellar age. They used a simpler, one component model
whereC; andCjy are positive constants. The right-hand side equivalent to our Eq(6.1) which, as pointed above, is a
terms are quadratic in mass, because our basic equationgood approximation after the initial rapid removal of smaller
(3.24)—(3.25pre quadratic in the phase space distribution ~ planetesimals. Thus our results, confirming the conclusion
Next, denote by the initial mass of the disk (at= 0) and of a nearly constant mass loss rate at later stages (see also,
by f (0 < f < 1) the initial fraction of mass in large objects. Kenyon and Bromley, 2003acan serve as an extension of
Thus the initial mass of large and small objects is their model to earlier stages of the disk evolution.

ML(0)= fMo and Ms(0) = (1~ f)Mo. (6.3) 6.7. Spatial distribution

Equationg6.1) and (6.2)with initial conditions(6.3) allow

an analytic solution in a closed form, but the solution is The same runs allow us to trace the evolution of the spa-
rather lengthy and is therefore not shown here. We used it totial distribution in the diskFigure 12shows the surface mass
fit the middle curve irFig. 11(the nominal value of the ini-  density profile for two models and two moments in time—
tial mass, BMg) and to determine the constanfs= 0.93, the initial one and after 4.5 Gyr of evolution. As expected,
CL = 0.024/\/163l Gyr !, andCg = 101/\/!631 Gyr L. Then the innermost part of the disk gets progressively depleted.
we applied the solution, without changing the constants, to This reflects the fact that the disk is denser towards the
two other curves. The results are also showrFig. 11 Sun and the collision velocities are larger there, so that the
Our simple model provides a reasonably good scaling of collisional evolution is more intensive in the inner region.
the mass loss rate for different valuesM§. Besides, it ex- This agrees with other studies (see, dgis and Farinella,
plains the high mass loss rate during the first Gyr and the 1997).
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Fig. 12. Evolution of the spatial distribution in the disk with time: surface mass densityZP4,) as a function of heliocentric distance. Shown are the results
of two runs with different initial slope ot (a): declining mass pet-bin (solid line) and constant mass pebin (dotted line). The double-headed arrow marks
the range of semimajor axes adopted.

6.8. Distribution of orbital elements a simply reflects more intensive collisional evolution closer
to the Sun, whereas predominant depletion at both smaller
We now look at the evolution of the full phase space dis- and highel stems largely from collisional probabilities be-
tribution of the Kuiper belt objects, which is perhaps the tween objects with different orbital eccentricities.
most interesting part of the analysis, because it is concerned Figure 14shows the distribution of smaller bodies (bins
with the combined evolution of all three phase space vari- 19-23, radii 1-7 m), but the panels from top to bottom have
ables; mass, semimajor axis, and eccentricity. For illustrative a different meaning than iRig. 13 Instead of showing black
purposes, we have chosen one of the runs, namely nd-cmb-rectangular areas ashiig. 13(top), we put in the upper pan-
—a disk with “nominal” mass, initially constant mass per els the state of the system right after the evolution started,
bin, and icy objects. The results are showrfigs. 13-14 att = 4 Myr. These panels illustrate the rapid depletion of
Each panel presents a distribution of objects in (he)- small objects at the early stage of the evolution and forma-
plane. The left-hand columns of either figure depict the total tion of the V-shape patterns discussed above. These patterns
masf the objects in differente, a)-bins and the right-hand  are still present after 4 Gyr of the evolutioRig. 14 (mid-
columns show the totalumberof objects. dle)). Note that the linear grey scale in the upper and middle
Figure 13presents the phase space distributions of large panels is now different. Finally, the lowest panels are the
objects (bins 38-43, radii 14—170km). From top to bottom, same as the middle ones, but drawn in the log scale. This
we plot the (e, a)-distribution of objects for different in-  scale “overexposes” the regien> 30 AU, but makes vis-
stants in time, starting from the initial state and ending at ible a new row of filled bins at: between 25 and 30 AU.
4 Gyr. The grey scale is fixed through each vertical column These bins, whose density increases towards smaller eccen-
of panels. The uppermost panels are uniformly black. The tricities, arise from the collisional damping (see Sectoh
uniformity reflects the facts that in a cmb-run both the total andFig. 8) that gradually relocates the material to regions
masses and numbers of objects inaalbins are initially the with smallera ande. The binary collision model of Sec-
same, and that our initiakdistribution is also uniform. That  tion 5.4 also ensures that initially empty bins with> 0.3
the uppermost panels are black means that the total mass anend/ora > 70 AU do not get filled.
number of objects are maximum at the beginning. It is due = There are a number of other features seen in the fig-
to the fact that the EKB is not replenished, and the loss termsures. For instance, a comparisonFofs. 13 and 14hows
supersede the collisional gain terms. The middle and lower that the population of meter-sized objects is depleted to a
panels all show that the collisional erosion leads to the for- much higher degree than that of the largest bodies. In fact,
mation of a clear V-shape pattern: the bins with largesnd most of the largest, 100 km-sized bodies beyen80 AU
intermediate retain the largest amount of material, whereas still remain intact over several Gyr of collisional evolu-
the bins with smallest and both low and high eccentric- tion.
ities are the most depleted. lppendix Bwe describe a The phase distributions for the other runs listedable 1,
series of numerical tests and provide an explanation of thenot shown here, allow a similar interpretation. For instance,
effect. Namely, we show that enhanced depletion at smallerthe dmb-runs where the low-bins initially contain more
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material than the high-bins, yield X-shape rather than V-
shape distributions: bins with low, regardless o#, still
contain a lot of objects after 4.5 Gyr—because they were
quite dense initially.

(1) The largest effect is a substantial depletion of small par-
ticles: the difference between the initial and final states
in the right panel is much larger than in the left panel.
Another effect is a stronger depletion of the inner rings,
i.e., a preferential loss of particles with smalterand
consequently, withy ~ vy < veire. This is seen as the
slight left-right asymmetry of dashed lines in the left
panel @y — veirc < 0 versusvg — veire > 0).

A V-shape pattern that appeardHigs. 13 and 14hould
correspond roughly to a smaller depletion of the middle-
sized ellipses. The effect is difficult to spot, but it is still
visible in the right panel for the smaller masses, both in
the lines and insets.

2
6.9. Velocity distribution

We finally look at the evolution of the velocity distrib-
ution. The results for the same nd-cmb-i run that we have
chosen in the previous section are showrFig. 15 The
left and right panels correspond to upper and low mass bins
used inFigs. 13 and 14respectively. Each panel depicts the
initial and final distributions of two velocity components, ra-
dial v, and azimuthaby, for a fixed heliocentric distance of
45 AU. Both components are scaled to the circular Keplerian
velocity veire = /G M /7. Besidesygir is always subtracted
from vy. Lines show marginal distribution ef andvy sepa-

rately, whereas insets contain 2D plotsib,, ve). Isolines In this paper we have employed the kinetic theory of
in the insets are close to ellipses with a classical ratio 2:1 statistical physics to describe a disk of solid particles or-
(see, e.gl.issauer, 1998 The smallest ellipses, looking like  piting a primary and experiencing inelastic collisions. As
black spots, correspond to,(~ 0, vy ~ vcirc) and therefore  distinct from other collisional models that use a 2D (mass—
to e ~ 0. Larger ellipses correspond to highkeand are get-  semimajor axis) binning and perform a separate analysis of
ting increasingly distorted. The complete grey “ellipse” is a the velocity (eccentricity, inclination) evolution, we choose
transformation of the shaded areaFiy. 2 weighted by the mass and orbital elements as independent variables of a
jacobian, Eq(2.10) phase space. The distribution function in this space contains
An inspection ofFig. 15reveals some of the effects dis- full information on the combined mass, spatial, and veloc-
cussed before: ity distribution of particles. General kinetic equations for the

®3)

7. Summary and discussion

7.1. Model
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distribution function (Eqs(3.23)—(3.25) are derived. These  distribution does not evolve with time; (2) apsides and nodes
are valid for any set of orbital elementsand for any colli- of particles’ orbits are distributed uniformly and therefore,
sional outcome, specified by a single kernel functfon the disk is rotationally symmetric; (3) between collisions, all
The first implementation of the model devised here uses grains move in Keplerian orbits; (4) these orbits are bound,
p = (a,e), i.e., a mass—semimajor axis—eccentricity phase i.e., elliptic; (5) long-range interactions (dynamical friction,
space, and involves averages over the inclination and allviscous stirring etc.) are absent; (6) collisions lead to full de-
angular elements. We assume collisions to be destructive,struction of both colliders and generation of smaller debris;
simulate them with available material- and size-dependent (7) there is no direct supply of material into the system.
scaling laws, and include collisional damping. A closed set  Assumptions (1)—(2) can, in principle, be lifted by adding
of kinetic equations for a mass—semimajor axis—eccentricity inclination and/or angular elements to the list of phase space
distribution is written and transformation rules to usual mass variables and by treating them in the same way as semima-
and spatial distributions of the disk material are obtained. jor axis and eccentricity. This step is straightforward as far
as derivation of formulas is concerned, but would result in a
7.2. Application to the EKB model very demanding to the computer resources. We esti-
mate that adding one more variable, namely the inclination,
As an application of the model, we have studied the would still yield a model that delivers results in reason-
collisional evolution of the classical population in the able times. For smaller objects with collisional timescales
Edgeworth—Kuiper belt (EKB). We ran the model for dif- less than the integration time, a model withe, i as phase
ferent initial disk masses and radial profiles and for objects space variables would, of course, reproduce an approximate
with different impact strengths. Our results for size distribu- equipartition of energy and the resulting coupled evolution
tion, collisional timescales, and mass loss fall in agreementof distributions ofe andi. In particular, a classical rela-
with previous studies. In particular, the collisional evolution tion (i)/{e) ~ 0.5 (e.g.,Greenberg et al., 199would be
is found to be most substantial in the inner part of the EKB. expected.
In that region, the separation size between the objects that In contrast, lifting assumptions (3)—(7) would require ad-
have survived intact over the EKBs age and those that rep-ditional math effort, but would not pose any severe computa-
resent remnants of earlier collisions lies between a few km tional limitations. Here we sketch some of the possibilities.
and several tens of km. The size distribution in the EKB is One can generalize the master equa(®23)by including
not a single Dohnanyi-type power law and reflects the size an additional diffusion term:
dependence of the critical specific energy in both strength d d
. . - . n p on
and gravity regimes. In accord with other studies, the net —(m, p) = —(m,p) — — - —(m, p), (7.1)
mass loss rate of an evolved disk in nearly constant and is ot d dr9p
dominated by disruption of larger objects. Finally, assuming wheredn/dt is given by Eq.(3.23)anddp/d: is the time
an initially uniform distribution of orbital eccentricities, we derivative of the vector of orbital elemengs assumed to
have shown that an evolved disk contains more objects in evolve under perturbing forces. This offers a way to include
orbits with intermediate eccentricities than in near-circular drag forces and gravitational perturbations by large bodies
and more eccentric orbits. This property holds for objects of in the disk, including resonant cases. One simply takes
any size and is explained in terms of collisional probabili- from known solutions of the perturbation equations of ce-
ties. The effect should modulate the eccentricity distribution lestial mechanics that give osculating or mean elements as
shaped by dynamical mechanisms, such as resonances anftinctions of time. The same applies to the dynamical fric-
truncation of perihelia by Neptune. tion and viscous stirring: equations fptz) provided, e.g.,
by Stewart and lda (20003an be used. Direct radiation
7.3. Limits of the present model and its possible extensions pressure can be included through the usual formalism—the
gravitational problem with a reduced central mé&srns et
As with any model of a complex system, it is important al., 1979) For dust-sized particles, one has to allow them
to understand both the validity limits of the approach and to move in unbound orbitérivov et al., 2000) This does
the degree of fidelity of the current implementation. We dis- not imply any changes in the basic equati¢®@23)—(3.25)
tinguish between principal limitations and those that can be but does require, above else, generalization of transforma-
relaxed. The assumptions of the first kind are that: (i) the tion formulas (e.g., Eq$2.10), (2.18), (3.29)—(3.3pjo the
system is not too dense to ensure that finite-size effects arehyperbolic case. A way to include further collisional out-
absent, packing factor is negligible, triple and multiple col- comes — cratering, restitution, agglomeration—is to adjust
lisions are unimportant etc.; (i) no energy is partitioned the fragment-generating functigh(see Eq(3.8)and a dis-
into rotational degrees of freedom of the objects; (iii) the cussion there). Finally, replenishment of material from phys-
largest bodies considered are still numerous enough to beical sources can be simulated by adding supply terms to
represented by a continuous distribution, which is a principal Eq.(3.23)or Eq.(7.1).
limitation inherent to the coagulation equation. The assump-  We believe that future work on these issues will be re-
tions of the second kind are as follows: (1) the inclination warding. Potential applications are many and, besides the
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EKB, may include protoplanetary disks, the main asteroid
belt, zodiacal cloud, circumstellar debris disks, and plane-
tary rings.
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Appendix A. Implementation of the model
A.1. Numerical solution of the kinetic equation

First we discretize the kinetic equati¢8.23) by intro-
ducing a mesh in variables, a, ande and replacing inte-
gration with summation over discrete values,, a;,, and
ei. The kinetic equatior{3.23) with the gain term(3.24)
and loss tern(3.25) are integrated with a first-order Euler
routine to find the phase space distributioim;,;,, a4, e;e)
at different instants of time. It means that, on the base of the
equation,

<d

dr

i

the state of the system1(m;n,, aiq, ei0) attimet; .1 =1 +
At is found from the state; (m;,,, a;4, eie) @S

dn
—Mim, Gig, €ie) =

dt

n
(Mim, Gia, €ie)
gain
dn

- (A1)

> (mim’aia’eie)’
loss

ni+1(Mim, Gia; €ie) = Ni(Mim, dia, €ie)

+ Ani(Mim, i, €ie), (A.2)
where
dl’l,'
dt

An; (A.3)
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absolute value of the relative incrementamiy sign,

Ani(Mim, dia, €ie)

: (A.5)
im,ia,ie suchthan; 0| n;(Mim, Qia, €ic)
and typically see that these quantities, being large at the
beginning of integration, gradually tend 8 indicating a
dynamical balance between the sources and losses.

Once the phase space distributiotn;,,,, a;,, ¢;.) for a
certain moment of time is found, it is converted into the
mass-distance distributio¥i(m, ) with the aid of Eq(2.18)
or Eg.(2.22) In our code, the integral®.18) and (2.22are
evaluated by a Monte Carlo method which helps maintain
high precision close to the singularitf1 — ¢) = r. Further
guantities, such as the mass density distribu{23) and
surface mass densif2.24) are also calculated.

A.2. The small-mass cutoff problem

In his fundamental workDohnanyi (1969xonsidered a
closed system with destructive collisions, assuming two im-
portant conditions: (i) the mass range extends from zero to
infinity, and (ii) fragmentation parameters are independent
of particles’ mass. He has shown that the mass distribution
in such a system relaxes to a single power law

n(im,a,e) xcm™?

(A.6)

with the indexp = 11/6 = 1.83.... In reality, neither con-
dition is fulfilled, however. First, the small-mass end of the
mass distribution usually represents a “channel” through
which the material is lost by the system: at least at dust sizes,
the particles are vulnerable to radiation pressure, plasma
drag forces, and erosion or sputtering processes which start
to determine their lifetimes instead of collisions. Second, the
fragmentation parameters do depend on the particle sizes:
for instance, the critical energy does. What is more, condi-
tion (i) introduces a serious problem into the simulations.
Indeed, any modeling assumes a certain minimum mass (or
size), below which the particles are simply ignored.

Campo Bagatin et al. (199%4howed that the presence
of a small-size cutoff makes a mass distribution wavy. In
Fig. A.1 (dash-dotted line) we show such a wavy distrib-
ution for a Kuiper belt-like system where we assumed a
constantQ% = 3 x 10°ergg! over the whole mass range
andc = 1.24 (see Sectiof.3for other details about the pa-
rameters adopted). A wavy structure, superimposed on the

The best strategy is to use an adaptive step size. Most “danpghnanyi's equilibrium slope, arises because particles with

gerous” are large negative incrementsroivhich, for too

sizes just above the cutoff are not eliminated by smaller pro-

large Az, can make: (i, aia, ¢i.) for some of the indices  jactiles (which are absent) and therefore are produced by
negative, causing numerical instabilities. We therefore re- break-up of larger bodies faster than they are removed. Con-
quire that sequently, larger particles are increasingly depleted up to
the mass where the smaller stuttering impactor exceeds the
cutoff. Beyond then, the removal rate is reduced and the dis-
tribution flattens. The pattern then reproduces itself at larger
where 0< § < 1 is an input parameter. We take= 0.1. and larger masses.

Inequality (A.4) is used to dynamically set the “new” step It is important to understand that the wavy pattern is not
size At before a current time step is completed. As a check an artefact of the modeling, but an intrinsic property of a sys-
for numerical stability of solutions, we inspect the maximum tem with a small-mass cutofCampo Bagatin et al. (1994)

Ani(Mjm, Giq, €ie)

<4, (A4)

max
im,ia,ie such that;£0 andAn; <0| n; (Mjn, ia, €ic)
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Fig. A.1. Typical size distributions under different assumptions about the small-size cutoff. Plotted is the mass density per unit logaritimeo/aize
(Eq. (2.23) as a function of size. The region of the cutoff itself is shown with a thin line. The cutoff parameters are shown in the legend. The smoother the
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70 L

have shown that the amplitude of the wave depends on how =
abrupt the cutoff is, and that the wavelength depends on the
mechanical properties of the bodies. They pointed out that
the wave does not develop if the effective width of the cutoff <,
exceeds the wavelength.

Although a possibility that the behavior of smallest, dust- <o
sized debris may affect the size distribution of large aster-
OidS and EKBOS CannOt be Completely rUIed OUt’ we argue 300 0.05 0.1 0.15 0.2 0.25 0.3 00 0.050.10.150.20.250.2
that it does not seem likely. Let us see, for instance, what .,
happens with particles of smaller and smaller size. Starting
from the radius of about 10? um, for which the Poynting—
Robertson lifetimes become comparable to the collisional
ones, the Poynting—Robertson lifetimes of meteoroids be-
come increasingly shorter. This takes place until the radii
reach~ 1 um, at which size the direct radiation pressure be-
comes comparable in strength with the solar gravity, chang-
ing the dynamics and distributions again. Consequently, *°
there must exist a “Poynting—Robertson cutoff” extending _ » o _ ,

. - . Fig. B.1. The eccentricity—semimajor axis mesh. Unshaded region repre-
over 2 Orde_rs of magthde n te_rms of sizes, or G,Orders of sents the orbits that intersect a given orbit (bold dot). Four panels are for
magnitude in terms of mass. This exceeds the typical wave- gifterent positions of the latter.
length and therefore makes the cutoff smooth enough to pre-

vent formation of the wave. Thus we are left with a merely ) o
technical problem: how to avoid triggering of the wave in and are only introduced to smoothly fade the distribution.

the simulations without extending the modeling to the dust 1he Phase space density in these cutoff bins is calculated as
sizes.

The issue was analyzed in depth Burda and Der-
mott (1997)who suggested using an artificial smooth cutoff

be_low the mass range.of iqterest. We now describe their\here extrapolatiofim) is n(im) computed by extrapolat-
(slightly modified) technique implemented in our model. All ing the two lowest “real” bins with indice&., and N, + 1

mass bins, withindiceisn =0, ..., Ny, are divided intotwo g the bin with indexm, and scalingim) is a decay factor,
parts. Upper mass bins, from a certaip, to N,,, are treated

as “real” bins that cover the mass range of interest. Lower T 1 Nep—im
logqg|scalin =—(1—x" A.8
mass binsim =0, ..., N, — 1, are declared “cutoff” bins, 910[ glm)] 10( o ) (A-8)

60

50

30 L
.2 0.25 0.3 0 0.050.10.15 0.2 0.25 0.2

n(im) = extrapolatiotiim) - scalingim), (A7)



132 A.V. Krivov et al. / Icarus 174 (2005) 105-134

(b)
70
= 6.5x1078 6.5x1078
50
0 0 °
8 H _8 ]
C 40 _8 i 6.0x10 i
k=3 6.0x10 2 2
g £ g
£ € £
@ L @
0 [ -8 0
20 8 5.5x10
P1,P2,P3,P4 5.5x10" P2,P3,P4
10
0 5.0x1078
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
eccentricity eccentricity eccentricity
(d) (e) (f)
70 FroT e e 70 T 70 FrrrTT e
-7
-7 60 1.60x10 60F 3
1.90x10 1.39130x10™7
50 1.50x10™7 s0f E
@ 1.80x1077 P e ®
5 5 3
o = 40 -7 = 40
£ £ 30 . £ 30
) g © 1.30x107 @
9 1.60%10 L &
20 20F E -
-7 none 1.39120x10
1.20x10
1.50x1077 10 : 10F =
0 1.10x1077 | T P TP T TP T
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.1¢ 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
eccentricity eccentricity eccentricity
(a) (h)
70 e 70 T
o
1.4x10 sokE E
1.8x1077 ,
-7 50F E 1.45%107
0 1.2x10 o o
% % £
o o o
5 5 5 40 3 i s
= -= 30 3 = 1.40x107
8 s % 8
20F E 7
P2 1.4x10
6.0x1078 10 3 1.35x1077
(o1 TP TUNTUL TEUEY PNTTN PTTY JEE
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
eccentricity eccentricity eccentricity

Fig. B.2. Results of numerical runs made to explain the “eccentricity effect.” See text for description of the panels.

with x > 1 being a parameter that controls the strength of diate eccentricities, whereas the objects with smadlestd
the cutoff ¢ = 1, no cutoff,x — oo, an abrupt cutoff). Sev-  both low and higte are the most depleted.

eral lines inFig. A.1show the size distribution of one and the We can decompose the effect into the following two: (i)
same system with different cutoff parameters—fror oo bins with smallew: are more depleted, and (i) bins with both
(abrupt cutoff) tox = 1.30 (corresponds ta(Nc)/n(0) = smaller and larger are more depleted that those with inter-
10> andm(Nep)/m(0) = 10, i.e., to a phase space density mediatee. The effect (i) is trivial: both the number density

drop by 5 orders of magnitude over 11 orders of magnitude ¢ qpiects and impact velocity increase towards smallao

in mass). The smoother the cutoff, the less wavy the d|s_- the intensity of collisional processes is higher closer to the

tribution. The smoothest cutoff gives a wave-free Dohnanyi Sun. It remains to explain the “eccentricity effect” (ii). To

distribution (solid line). this end, we look at the kinetic equatio(®&23)—(3.25)and
at the integration limits in those. There are four eccentricity-

Appendix B. Non-uniformity of the e, a-distribution dependent places there, which can do the job:

Here we discuss the V-shape patterns seefigs. 13— (P1) The functionf in the gain term that describes gener-
14. The essence of the effect is that a collisionally evolved ation of collisional fragments. One can expect that the
disk, whose(e, a)-distribution was initially uniform, con- “center-of-mass” model of Sectidh4tends to choose

tains more objects with largest semimajor axes and interme- e of collisional fragments between those of two collid-
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ing particles, thereby “preferring” intermediate values from the combined influence of (P2)—(P4). To put it shortly,
of e. the effect is explained in terms of collisional probabilities
(P2) The impact velocityimp grows with eccentricities of  between objects in orbits with different eccentricities.
colliders (seeFig. 6), favoring removal of objects in
more eccentric orbits.
(P3) The integralA grows as eccentricities of colliders de- References
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