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Evolution of a Keplerian disk of colliding and fragmenting particles
a kinetic model with application to the Edgeworth–Kuiper belt
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Abstract

We present a kinetic model of a disk of solid particles, orbiting a primary and experiencing inelastic collisions. In distinction
collisional models that use a 2D (mass–semimajor axis) binning and perform a separate analysis of the velocity (eccentricity, in
evolution, we choose mass and orbital elements as independent variables of a phase space. The distribution function in this space
information on the combined mass, spatial, and velocity distributions of particles. A general kinetic equation for the distribution fu
derived, valid for any set of orbital elements and for any collisional outcome, specified by a single kernel function. The first implemen
the model utilizes a 3D phase space (mass–semimajor axis–eccentricity) and involves averages over the inclination and all angula
We assume collisions to be destructive, simulate them with available material- and size-dependent scaling laws, and include
damping. A closed set of kinetic equations for a mass–semimajor axis–eccentricity distribution is written and transformation rule
mass and spatial distributions of the disk material are obtained. The kinetic “core” of our approach is generic. It is possible to add i
as an additional phase space variable, to include cratering collisions and agglomeration, dynamical friction and viscous stirring,
large perturbers, drag forces, and other effects into the model. As a specific application, we address the collisional evolution of th
population in the Edgeworth–Kuiper belt (EKB). We run the model for different initial disk’s masses and radial profiles and differen
strengths of objects. Our results for the size distribution, collisional timescales, and mass loss are in agreement with previous
particular, collisional evolution is found to be most substantial in the inner part of the EKB, where the separation size between the
over EKB’s age and fragments of earlier collisions lies between a few and several tens of km. The size distribution in the EKB
single Dohnanyi-type power law, reflecting the size dependence of the critical specific energy in both strength and gravity regime
mass loss rate of an evolved disk is nearly constant and is dominated by disruption of larger objects. Finally, assuming an initiall
distribution of orbital eccentricities, we show that an evolved disk contains more objects in orbits with intermediate eccentricitie
nearly circular or more eccentric orbits. This property holds for objects of any size and is explained in terms of collisional prob
The effect should modulate the eccentricity distribution shaped by dynamical mechanisms, such as resonances and truncation of
Neptune.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many astronomical objects can be classified as collis
ally-evolving Keplerian disks. These include the solar n
ula and protoplanetary disks of other stars, the Edgewo
* Corresponding author. On leave from: Astronomical Institute, St. Pe-
tersburg University, Stary Peterhof, 198504 St. Petersburg, Russia.

E-mail address:krivov@agnld.uni-potsdam.de(A.V. Krivov).

0019-1035/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2004.10.003
; Planetesimals

Kuiper disk, main asteroid belt, interplanetary dust clo
in the Solar System, circumstellar debris disks, plane
rings, and many others. The difference in mass, spatial,
time scales in all these systems is huge, as are differe
in dynamical and physical processes that govern them.
instance, purely gravitational dynamics and predomina

catastrophic and cratering collisions in the asteroid belt can
be contrasted to viscous, dissipative dynamics and agglom-
erating collisions in protoplanetary disks. Still, all these sys-
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tems do have much in common. They all consist of so
particles orbiting a massive primary in orbits that can be
proximated (at least adiabatically) with Keplerian ones. T
particles experience frequent collisions which, dependin
the masses, mechanical properties of colliders, as we
their relative velocities, can result either in full or part
disruption, restitution, or agglomeration of both particl
Collisions represent an important source as well as a
for the disk material and reprocess mass, spatial, and
locity distributions of particles. Depending on the syste
especially on the preponderant collisional outcomes, dif
ent types of collisional evolution may occur: growth of larg
bodies (protoplanetary disks), gradual depletion of the
(asteroids), and adiabatic steady-state (planetary rings).

The systems described above have been studied by
riety of methods. A straightforward,N -body approach—to
follow dynamics of many individual objects and to perfo
true collision simulations—remains important for studyi
“difficult” cases where many other methods fail, such as
final stages of planet formation (e.g.,Ida and Makino, 1993
Kokubo and Ida, 1998; Charnoz et al., 2001; Charnoz
Brahic, 2001). It can also be useful when the dynamics
complex, whereas any collisional event can be treated
simple way (seeLecavelier des Etangs et al., 1996, for an
application to debris disks). However, this method can
treat more than∼ 104 objects and has an intrinsic pro
lem in detecting collisions during the integration, which
stricts its applicability. An alternative method is to repla
particles themselves with their distribution in an approp
ate phase space. Common methods aresmoothed particle
hydrodynamics(Monaghan, 1992)and true hydrodynamics
(Lynden-Bell and Pringle, 1974; Pringle, 1981; Kley, 199
Srem̌cevíc et al., 2002). Both deal with several lowest mo
ments of the distributions and therefore are very efficien
describing formation of density structures due to diffus
effects or gravity of embedded perturbers, but are not s
able for collision-dominated systems. Finally, most gen
is thekinetic methodof statistical physics(Boltzmann, 1896;
Chapman and Cowling, 1970; Résibois and de Leener, 1
Spahn et al., 2004)that considers the distribution function
themselves. The kinetic method can also be combined
the single-particle dynamics. For example, the state of
art in calculations of planetesimal evolution at the runaw
growth stage is the so-called “two-groups approximati
(Weidenschilling et al., 1997; Goldreich et al., 2004)is
which kinetic equations for numerous small planetesim
are solved together withN -body-type equations for a few
large protoplanets.

In many astronomical problems, the kinetic method
been applied to derive a mass (or size) distribution and
evolution from the so-called coagulation equation, or Sm
chowski equation(Smoluchowski, 1916; Chandrasekh
1943). Note that the term “coagulation equation” is ac

ally used regardless of whether the colliding particles merge,
fragment, or just change their velocities. In particular cases
when the coalescence (or fragmentation) coefficient is con-
174 (2005) 105–134
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stant or depends on masses in a simple way, analytic
tions have been found (seeSafronov, 1969; Dohnanyi, 1969
Dorschner, 1970; Silk and Takahashi, 1979; Wetherill, 19,
and references therein). Otherwise, the equation is integ
numerically. The coagulation equation alone is sufficien
describe diffuse media, for instance growth of dust grain
the interstellar space(Oort and van de Hulst, 1946)and frag-
mentation of collapsing molecular clouds(Silk and Taka-
hashi, 1979).

In any disk system, however, the spatial extent of the
tem makes collisional rates among the bodies and their
ative velocities dependent on the distance from the prim
A classical technique originally proposed to study the e
lution of a planetesimal swarm (e.g.,Greenberg et al., 1978
Wetherill, 1990) is to approximate the disk with a set of co
centric semimajor axis annuli and a set of mass batche
each of those. Every semimajor axis zone is then tre
with a particle-in-a-box method: to quantify random velo
ities between the particles in a given semimajor axis zo
one introduces mean values of eccentricity〈e〉 and incli-
nation 〈i〉, pre-calculates collisional rates, and then sol
the coagulation-type equation for the mass distribution. B
〈e〉 and 〈i〉 are constant input parameters, which may
may not be different for different mass bins and spatial
nuli. Models of this type were developed and applied
the accumulation of planetesimals(Greenberg et al., 1978
Nakagawa et al., 1983; Wetherill and Stewart, 1989), col-
lisional evolution of asteroids (e.g.,Campo Bagatin et al.
1994; Davis and Farinella, 1997) and Edgeworth–Kuipe
belt (EKB) objects (e.g.,Stern, 1995, 1996; Stern and Co
well, 1997; Durda and Stern, 2000), and for circumstellar
debris disks (e.g.,Krivov et al., 2000; Dominik and Decin
2003; Thébault et al., 2003).

To achieve a reasonable degree of fidelity, especially
systems that are very sensitive to velocities (evolution of p
toplanetary disks and formation of planets), the evolu
of the mass distribution must be considered simultaneo
with the velocity evolution (see, e.g.,Lissauer and Stew
art, 1993, for a review). Equations for the random velociti
or equivalently, for〈e〉 and 〈i〉 may include modification
of velocities by physical collisions, dynamical friction, vi
cous stirring, etc. (see, e.g.,Wetherill and Stewart, 1993
Stewart and Ida, 2000, and references therein). Taken alo
these equations can already be useful in some applicat
For example, in the theory of dense planetary rings wh
directN -body simulations and hydrodynamics are prefer
methods, the Boltzmann-type kinetic equations for velo
have been used to study the vertical structure of the r
(Frezzotti, 2001). A more common approach, however,
to integrate the velocity equations simultaneously with
coagulation equation for the mass distribution. Another s
stantial improvement recently made to the models wa
use multiannulus codes, in which the particles belongin

different semimajor axis zones can collide and produce frag-
ments that may go into other zones(Spaute et al., 1991;
Weidenschilling et al., 1997). Multiannulus models taking
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full account of the velocity evolution may also include
multitude of additional effects, such as gas drag, Poynti
Robertson drag, and gravitational perturbations by mas
objects(Kenyon and Luu, 1998, 1999a, 1999b; Kenyon a
Bromley, 2002, 2004a, 2004b).

All these methods, being very powerful and providing
curate results, are “hybrid” in the sense that they cons
the velocity evolution and orbital dynamics, separately fr
the mass and/or spatial distribution of the material. An
dication for that is that all of these approaches consider
groups of equations, one for the masses and semimajor
and another one for the eccentricities and inclinations
the velocity components). In this paper, we propose a
ferent version of the kinetic approach, which relies on
simple idea that orbital elements of the disk particles c
tain full information on their position and velocity. We thu
consider mass and orbital elements of the particles as i
pendent, and equally important, variables and systemati
formulate all parts of the theory, including the coagulat
equation, equations for collisional rates and the velocity e
lution equations, in terms of these variables. This results
single set of kinetic equations with respect to one mathem
ical object, a phase space distributionn(m, orbital elements)
Moreover, the equations are written in a covariant fo
allowing one to choose orbital elements in a flexible w
(Keplerian elements, Delaunay variables etc.) and to red
the number of degrees of freedom (e.g., by using ave
ing over some of the elements). The first implementation
the model presented here uses a 3-dimensional phase s
comprising the particle massm, orbital semimajor axisa,
and eccentricitye and involving averages over the inclin
tion i and all angular elements. A new version of the mo
with a (m,a, e, i)-phase space will follow.

We believe that this approach is simpler conceptu
than the methods outlined above. It automatically ena
a study of the simultaneous evolution of mass, spatial,
velocity distribution of particles. It does not involve any se
aration between the arguments ofn(m,a, e, i, . . .), which
makes the method ideal for detection of possible comb
effects. Further, it does not assume an a priori functio
form of the distribution of orbital elements (for instanc
a uniform distribution in eccentricities as inSpaute et al
(1991); Weidenschilling et al. (1997)), which has a bonu
for dynamically hot disks with broad ranges of semima
axes and orbital eccentricities. A multiannulus treatmen
an intrinsic property of our approach. Of course, our met
is not free of disadvantages. Particular physical effects
may wish to incorporate have to be described in terms o
bital elements, which would require additional effort. Als
the model is more demanding with respect to compu
resources, because it deals with a multidimensional p
space.

To render the problem tractable, we are forced to m

many simplifying assumptions. It is important, however, to
distinguish between principal limitations and those that can
be lifted without changing the conceptual “core” of our ap-
Keplerian disk 107
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proach. The assumptions of the first kind are as follo
(i) the system is not too dense to ensure that finite-size
fects are absent, the packing factor is negligible, triple
multiple collisions are unimportant etc.; (ii) no energy
partitioned into rotational degrees of freedom of the
jects; (iii) the largest bodies considered are still numer
enough to be represented by a continuous distribution, w
is a principal limitation inherent to the coagulation equat
(Tanaka and Nakazawa, 1994).

We now list the assumptions of the second kind: (1)
inclination distribution does not evolve with time; (2) a
sides and nodes of particles’ orbits are distributed unifor
and therefore, the disk is rotationally symmetric; (3) betw
collisions, all particles move in Keplerian orbits; (4) the
orbits are bound, i.e., elliptic; (5) long-range interactio
(dynamical friction, viscous stirring, distant perturbatio
etc.) are absent; (6) any collision with a sufficiently high i
pact energy leads to full destruction of both colliders a
generation of smaller debris; (7) there is no direct suppl
material into the system. Assumptions (1)–(2) can, in prin
ple, be lifted by adding inclination and/or angular eleme
to the list of phase space variables and by treating the
the same way as semimajor axis and eccentricity. This st
straightforward as far as derivation of formulas is concern
but would result in a model very demanding to the co
puter resources. We estimate that adding one more vari
but no more, would still yield a model that delivers resu
in reasonable time. In contrast, lifting assumptions (3)–
would require additional effort, but would not pose any
vere computational limitations. It should be possible to
clude radiation pressure and drag forces, or add a popul
of hyperbolic particles, include coagulation and restitut
regime, or add distant interactions and supply terms. T
our approach is generic enough and can potentially s
as a basis for, say, a planetary accretion code or a cod
modeling dilute circumstellar debris disks with Poyntin
Robertson transport and radiation pressure removal of s
dust grains.

In Section2, we introduce basic variables and dist
bution functions. In Section3, integro-differential kinetic
equations for the phase space distribution are derived.
tion 4 discusses probabilistic and kinematic terms in the
netic equations. In Section5, the model of a single impac
event is compiled. Section6 applies the model to the coll
sional evolution of the EKB. Section7 contains a summar
and discusses possible extensions of the model.Appendix A
presents a numerical method for solving the kinetic eq
tions and its computer implementation.Appendix B pro-
vides an explanation of a new effect in the combined(e, a)-
distribution of a collisionally evolving disk.

2. Distribution functions
The system considered here is a disk of “particles” mov-
ing in Keplerian orbits around a primary and experiencing
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destructive collisions. By “particles” we mean solids that
large enough not to be affected by non-gravitational for
such as radiation pressure. This sets the lower bound o
particle sizes to∼ 1 mm. The upper bound is limited by th
requirement (iii) in the Introduction and may be as large
hundreds of kilometers for systems like the EKB. In this s
tion, we consider variables that characterize a particle’s s
and distribution functions that describe the ensemble of
ticles. The assumption (i) in the Introduction implies that
use the so-called single-particle distribution to describe
ensemble, meaning that each distribution function will h
state variables of only one particle in its argument list.

2.1. Configuration space

Apart from masses of particlesm, their radius vectorsr
and velocitiesv are the most natural state variables one
use to describe collisional processes. For instance, a c
tion that two particles collide is just the coincidence of th
radius vectors:r1 = r2. The results are also best understo
in terms of these variables. For example, the number de
of particles or the surface mass density at a certain dist
from the primary are usual quantities of interest. Unfor
nately, in terms of coordinates and velocities, it is not e
to get rid of unnecessary degrees of freedom and to use
ural symmetries of the problem. Below we shall see that
can be easily done by using orbital elements.

2.2. Orbital element space

The orbit of each particle in the disk may be described
six Keplerian elements: the semimajor axisa, eccentricity
e, inclination i, longitude of the ascending nodeΩ , argu-
ment of pericenterω, and the mean anomalyM . We assume
a rotationally symmetric disk with semi-opening angleε

(Fig. 1). This implies that the distribution of bothΩ and
ω is uniform, and that 0� i � ε. We will also assume tha
each orbit is densely populated by particles, so that the
variable—mean anomalyM—has a uniform distribution a
well. Denote byp ≡ (a, e, i) the three positional elemen
and byq ≡ (Ω,ω,M) the three angular elements. Dime
sion: [p] = [a][e][i] = cm, [q] = [Ω][ω][M] = 1. The an-
gular elementsq will be eventually averaged out and w
not appear in the final equations.

2.3. Notation conventions

(1) Below we will introduce several distribution fun
tions, which will be denoted by one and the same letten
Fig. 1. Geometry of the disk seen edge-on.
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with different lists of arguments. These are treated asdiffer-
ent functions. The quantityn(x, y, . . .) always has the fol
lowing meaning:n(x, y, . . .) dx dy . . . is the total number o
particles in the disk with arguments[x, x + dx], [y, y + dy],
. . . . Integration ofn(x, y, . . .) over some of its argumen
gives again a functionn without those arguments. The qua
tity n without arguments is simply the total number of pa
cles in the disk:

(2.1)
∫
x

∫
y

. . . n(x, y, . . .) dx dy . . . = n.

(2) We will also use distribution functions denoted
ϕ(. . .). In contrast ton(. . .), these have a unit normalizatio

(2.2)
∫
x

∫
y

. . . ϕ(x, y, . . .) dx dy . . . = 1.

Obviously, eachn-distribution with several arguments is
product of then-distribution with a subset of argumen
and theϕ-distribution of the remaining arguments. Ea
ϕ-distribution with several arguments is a product ofϕ-
distributions with subsets of arguments. For instance,

n(x, y, z) = nϕ(x, y, z) = n(x)ϕ(y, z) = n(x)ϕ(y)ϕ(z)

(2.3)= n(x, y)ϕ(z) etc.

Of course, these rules can only be applied if the distribut
are independent.

(3) The quantityN stands for the number density of par
cles, i.e., for the number of particles per unit spatial volu
The exact meaning ofN with different arguments is give
below.

(4) The distributionsn(. . .), ϕ(. . .), andN(. . .) are func-
tions of time. For brevity, the argumentt will be omitted (but
is always implied). When defining each function, we indic
its dimension and show how the total number of particle
the disk can be expressed through that function.

2.4. Distributions in orbital element space

2.4.1. Phase space distribution functionn(m,p,q)

Central to our treatment is the distribution functi
n(m,p,q) so thatn(m,p,q) dmdpdq is the number of par
ticles with[m,m+dm], [p,p+dp], [q,q+dq] (at a certain
instant of timet). Dimension:[n(m,p,q)] = g−1 cm−1. The
total number of particles in the disk is

(2.4)n =
∫
m

∫
p

∫
q

n(m,p,q) dmdpdq.

2.4.2. Averaged phase space distribution functionn(m,p)

Another important quantity is a distribution functio
n(m,p) integrated over the angles:∫
(2.5)n(m,p) =
q

n(m,p,q) dq,
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with the dimension[n(m,p)] = g−1 cm−1. The total number
of particles in the disk is

(2.6)n =
∫
m

∫
p

n(m,p) dmdp.

We assume a uniform distribution of the lines of apsi
and nodes:

(2.7)n(m,p,q) = n(m,p)ϕ(q) = n(m,p)ϕ(Ω)ϕ(ω)ϕ(M)

with

(2.8)ϕ(Ω) = ϕ(ω) = ϕ(M) = 1/(2π) = const.

2.5. Distributions in configuration space

2.5.1. Mass-coordinate-velocity distribution function
n(m, r,v)

The transformation between(r,v) and(p,q) is

(2.9)drdv ≡ J dpdq,

with the jacobian

(2.10)J ≡
∥∥∥∥ ∂(r,v)

∂(p,q)

∥∥∥∥ = 1

2

√
(GM)3a e sini,

whereM is the mass of the primary, giving

(2.11)n(m, r,v) = n(m,p,q)J−1 = n(m,p)ϕ(q)J−1.

In subsequent sections we will derive an equation
n(m,p). Once it is solved, Eq.(2.11) can be used to ca
culate the distribution in terms of coordinates and velocit

2.5.2. Number density as a function of mass and
coordinatesN(m, r)

The mass-spatial distribution can be characterized
N(m, r), the number density of particles with mass
[m,m + dm] at the pointr ≡ (r,φ,λ), whereφ is the “lati-
tude” andλ is the “longitude.” Dimension:[N(m, r,φ,λ)] =
g−1 cm−3. The total number of particles in the disk is

(2.12)n =
∫
m

dm

∫
r

π/2∫
−π/2

2π∫
0

N(m, r,φ,λ)r2 dr cosφ dφ dλ.

The functionN(m, r) can be found by integrating Eq.(2.11)
over velocities. The result is a classicalHaug’s (1958)inte-
gral

N(m, r,φ,λ) = 1

2π3r3

∫
a

∫
e

∫
i

n(m,a, e, i)

(
r

a

)3/2

×
[
2− r

a
− a

r

(
1− e2)]−1/2

(2.13)× 1√
cos2 φ − cos2 i

da de di,
where the integration domain is

(2.14)a(1− e) � r � a(1+ e), cos2 i � cos2 φ.
Keplerian disk 109

2.5.3. Number density as a function of mass and distan
N(m, r)

We define the functionN(m, r) to be the vertically-
averaged number density of particles with masses[m,m +
dm] at the pointr :

(2.15)N(m, r) ≡
∫ ε

−ε

∫ 2π

0 N(m, r,φ,λ)cosφ dφ dλ∫ ε

−ε

∫ 2π

0 cosφ dφ dλ
.

Dimension: [N(m, r)] = g−1 cm−3. The total number o
particles in the disk is

(2.16)n =
∫
m

dm

∫
r

ε∫
−ε

2π∫
0

N(m, r)r2 dr cosφ dφ dλ.

In most of the applications, the distribution of inclinatio
can be assumed independent of the distribution ofa, e:
n(m,a, e, i) = n(m,a, e)ϕ(i), where the distribution of in
clinations is non-zero within[0, ε] and is normalized to
unity:

(2.17)

ε∫
0

ϕ(i) di = 1.

Then, inserting(2.13)into (2.15)leads to:

N(m, r) = 1

4π2 sinε

1

r3

∫ ∫
n(m,a, e)

(
r

a

)3/2

(2.18)×
[
2− r

a
− a

r

(
1− e2)]−1/2

da de,

where the integration domain is (seeFig. 2)

(2.19)a(1− e) � r � a(1+ e).

Equation(2.18)holds for any distribution of inclination
ϕ(i) within [0, ε]—in particular, for a uniform distribution

(2.20)ϕ(i) = sini

1− cosε
.

Fig. 2. Integration domain for Eq.(2.18)in the (e, a)-plane. The filled area
corresponds to particles that contribute to the number density at a distancer .
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Note that Eq.(2.18)has an integrable singularity at one
the borders of the integration domain, namely at the “p
centric” curvea(1 − e) = r . This fact should be taken int
account in the numerical implementation. Another poten
difficulty in the numerical evaluation of the integral(2.18)
is a curtailment of the integration domain for small v
ues ofe, i.e., for near-circular orbits, which is typically
densely populated part of the phase space. One can
with the problem by applying the transformation of variab
(a, e) → (χ, e), where

(2.21)a(χ, e, r) = r
1− e + 2eχ

1− e2

which replaces Eq.(2.18)by

N(m, r) = 1

4π2 sinε

1

r2

1∫
0

1∫
0

n
(
m,a(χ, e, r), e

)

(2.22)× (1− e + 2eχ)−1

√
1− e2

χ(1− χ)
dχ de,

where the integration domain is a unit rectangle andχ = 0
andχ = 1 are integrable singularities.

2.5.4. Disk’s parameters as functions of distance
Having calculated the vertically-averaged number den

N(m, r) as a function of mass and distance, one can ea
obtain a number of other quantities of interest. Different
thors use distributions of different physical quantities (e
number density, cross section density, mass density)
different arguments (particle mass or size) and of differ
type (differential, cumulative, per unit logarithmic size b
etc.). In this paper, two specific distributions will be use
mass density per unit logarithmic size interval (size deca

(2.23)Nm,10,s(s, r) = 3(ln 10)m2(s)N
(
m(s), r

)
(s is the radius of a particle), and surface mass density

(2.24)Σ(r) = 2r sinε

∫
mN(m, r) dm.

3. The kinetic equation

In this section, we derive integro-differential equatio
for the averaged phase space distribution functionn(m,p).
We start with the kinetic equation in standard form, th
rewrite it in terms of orbital elements, and finally avera
over some of the elements to make use of symmetries a
reduce computational complexity of the problem.

3.1. The kinetic equation in coordinates and velocities
Neglecting transport mechanisms such as drag forces, the
time evolution of the phase space distribution function in
terms of coordinates and velocities is given by an obvious
174 (2005) 105–134

e

master equation

(3.1)

dn

dt
(m, r,v) =

(
dn

dt

)
gain

(m, r,v) −
(

dn

dt

)
loss

(m, r,v).

Assume now that there are no physical sources and s
of the material in the system, other than mutual collisio
that eliminate the original particles (loss) and simultaneou
create collisional fragments (gain). Then the terms in
right-hand side of Eq.(3.1) can be found by “counting” the
particles destroyed and generated per unit time in a unit
ume at a positionr (Spahn et al., 2004):

(3.2)

(
dn

dt

)
gain

(m, r,v) =
∫

· · ·
∫

mp,vp;mt ,vt

F (r;mp,vp;mt,vt ;m,v)

× n(mp, r,vp)n(mt , r,vt )

× vimp(r,vp,vt )σ (mp,mt )

× dmp dvp dmt dvt ,

(3.3)

(
dn

dt

)
loss

(m, r,v) = n(m, r,v)

∫ ∫
mp,vp

n(mp, r,vp)

× vimp(r,vp,v)σ (mp,m)dmp dvp.

Hereafter subscriptsp and t refer to a projectile and a ta
get particle, and we assume that these are the smalle
larger of the two colliders, respectively:mp � mt . Other
quantities in Eqs.(3.1)–(3.3)are:σ is the collisional cross
section:σ(mp,mt ) = π(s2

p + s2
t ), wheres is the radius of

a particle;vimp(r,vp,vt ) ≡ vp(r) − vt (r) is the relative ve-
locity of two particles colliding at the pointr. The function
F(r;mp,vp;mt,vt ;m,v) that appears in the gain term d
scribes the outcome of a binary collision:F(. . .) dmdv is
the number of fragments with[m,m+dm], [v,v+dv], pro-
duced by a collision of particles with(mp,vp) and(mt ,vt )

at the pointr. Dimension: [F(r;mp,vp;mt,vt ;m,v)] =
g−1 s3 cm−3.

In the particular case whenn and other functions in th
integrands are independent of the velocities, Eqs.(3.1)–(3.3)
reduce to the Smoluchowski equation. Similarly, when
masses are absent, Eqs.(3.1)–(3.3)transform to the Boltz-
mann equation. In that case, if the kernelF describes elasti
collisions, the equation takes the form originally obtained
Boltzmann (1896).

3.2. Derivation of the kinetic equation in orbital element

The kinetic equations(3.1)–(3.3)will be expressed in
terms of the orbital elements. According to(2.11), the left-
hand side of Eq.(3.1) transforms in a straightforward way

dn dn −1
 (3.4)
dt

(m, r,v) =
dt

(m,p,q)J ,

where the jacobianJ is given by(2.10).



l of a

e

s
-

nts,
n-
.
y

ith

-
ives

nal
s
s to

s
col-
trict

n

the
for

ay,
tions

n in

en-
one

pro-
lace
or-
Kinetic mode

We now consider the gain term(3.2). Using the identity

(3.5)G(r,v) =
∫

G(r′,v)δ(r − r′) dr′,

valid for any functionG, results in(
dn

dt

)
gain

(m, r,v)

=
∫

· · ·
∫

mp,rp,vp;mt ,rt ,vt

F (r;mp,vp;mt,vt ;m,v)

× δ(r − rp)δ(r − rt )n(mp, rp,vp)n(mt , rt ,vt )

(3.6)
× vimp(r,vp,vt )σ (mp,mt ) dmp drp dvp dmt drt dvt .

Instead of the functionF , we introduce another form of th
fragment-generating functionf (mp, rp,vp;mt, rt ,vt ;m,

r,v) such thatf (. . .) dmdrdv is the number of fragment
with [m,m+dm], [r, r+dr], [v,v+dv] produced by a col
lision of particles with(mp, rp,vp) and(mt , rt ,vt ). Dimen-
sion: [f (mp, rp,vp;mt, rt ,vt ;m, r,v)] = g−1 s3 cm−6.
Note an essential difference betweenF andf : the former
does not involve radius vectors of the emerging fragme
while the latter does. Notwithstanding normalizing co
stants, both functionsF andf are conditional probabilities
The functionF is proportional to the conditional probabilit
of generating a particle with[m,m+ dm], [v,v + dv] out of
two particlesmp,vp andmt,vt , provided that both collid-
ers are located atr. Similarly, the functionf is proportional
to the conditional probability of generating a particle w
[m,m + dm], [r, r + dr], [v,v + dv] out of two particles
mp, rp,vp andmt, rt ,vt , provided that the colliding parti
cles are at the same point in space. This interpretation g
a relation between both functions:

f (mp, rp,vp;mt, rt ,vt ;m, r,v)δ(rp − rt )

(3.7)= F(r;mp,vp;mt,vt ;m,v)δ(r − rp)δ(r − rt ).

It is worth noting that the functionf is the only quan-
tity in the kinetic equations that determines the collisio
outcome(Spahn et al., 2004). Using appropriate definition
of that function, one can easily generalize the equation
include coagulation and restitution. For instance, setting

f (mp, rp,vp;mt, rt ,vt ;m, r,v)δ(rp − rt )

(3.8)= δ
[
m − (mp + mt)

]
δ(r − rp)δ(r − rt )δ(v − vc),

wherevc ≡ (mpvp +mtvt )/(mp +mt) is the center-of-mas
velocity, corresponds to the coagulation case when two
liding particles coalesce. In this paper, however, we res
ourselves to the fragmentation case.

We now return to Eq.(3.6) and replace the integratio
over (rp,vp; rt ,vt ) with that over(pp,qp;pt ,qt ). As a re-
sult of the transformation of differentials(2.9), the jacobian
J appears twice in the equation and, according to(2.11),

can be grouped with then’s in the integrand, making these
n’s functions of the new variables. The impact velocity is
a scalar of the transformation; hence we simply replace
Keplerian disk 111

vimp(r,vp,vt ) with vimp(pp,qp;pt ,qt ), which is the rela-
tive speed of two particles with orbital elements given by
arguments, at the collision point. The transformation rule
the functionf is the same as for the distribution functionn:

f (mp, rp,vp;mt, rt ,vt ;m, r,v)

(3.9)= f (mp,pp,qp;mt,pt ,qt ;m,p,q)J−1,

and the jacobian in(3.9)cancels with that in(3.4). We there-
fore get the following expression for the gain term:(

dn

dt

)
gain

(m,p,q)

=
∫

· · ·
∫

mp,pp,qp;mt ,pt ,qt

f (mp,pp,qp;mt,pt ,qt ;m,p,q)

× n(mp,pp,qp)n(mt ,pt ,qt )vimp(pp,qp;pt ,qt )

× δ
[
r(pp,qp) − r(pt ,qt )

]
σ(mp,mt )

(3.10)× dmp dpp dqp dmt dpt dqt .

The transformation of the loss term is done in a similar w
and is even easier because the fragment-generating func
F or f are absent. The final form of the balance equatio
terms of the orbital elements is:

(3.11)

dn

dt
(m,p,q) =

(
dn

dt

)
gain

(m,p,q) −
(

dn

dt

)
loss

(m,p,q)

with(
dn

dt

)
gain

(m,p,q)

=
∫

· · ·
∫

mp,pp,qp;mt ,pt ,qt

f (mp,pp,qp;mt,pt ,qt ;m,p,q)

× n(mp,pp,qp)n(mt ,pt ,qt )vimp(pp,qp;pt ,qt )

× δ
[
r(pp,qp) − r(pt ,qt )

]
σ(mp,mt )

(3.12)× dmp dpp dqp dmt dpt dqt ,(
dn

dt

)
loss

(m,p,q)

= n(m,p,q)

∫ ∫ ∫
mp,pp,qp

n(mp,pp,qp)

× vimp(pp,qp;p,q)δ
[
r(pp,qp) − r(p,q)

]
σ(mp,m)

(3.13)× dmp dpp dqp.

Note that theδ-functions in both Eqs.(3.12) and (3.13)
represent a collisional condition and are essential. They
sure that the gain and loss terms are being considered in
and the same volume of the “physical” space and thus
vide a link between the collisional processes that take p
in the “physical” space and distributions in a space of
bital elements. Furthermore, the presence of theδ-functions

−3
([δ(r · · ·)] = cm ) automatically ensures correct dimen-
sionality of the equations: both sides of the equations have
dimension cm−1 s−1 g−1.
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Fig. 3. Representation of colliding particles with rings formed by sprea
along the orbits and rotation of lines of nodes and apsides. The ring
shown pole-on.

3.3. Averaging over angular elements

The next step in the derivation is to eliminate from t
equations all angles, i.e., variablesqp, qt , andq. This can
be done by integrating all terms in the equations over th
variables. Before doing that, it is important to explain
physical meaning of the procedure. An integration overqp

andqt would mean that we “spread” both the projectile p
ticle and the target particle along their orbits and rotate t
lines of nodes and apsides over 360◦ (Fig. 3). Thus we re-
place each particle with a ring that extends froma(1− e) to
a(1+ e) radially and from−ε to ε latitudinally. For brevity,
we will call the rings corresponding to a projectile and a t
get particle p-ring and t-ring, respectively. The same is
for the collisional debris generated during the impact (
shown inFig. 3). They can each be thought of as a ring sw
by an elliptic orbit with the rotating nodal and apsidal lin
This “ring approach” is justified by the fact that in real co
mic disks there are mechanisms that efficiently random
the orientation of nodes and apsides. The job can be don
the oblateness of the primary (important for planetary rin
by gravity of larger perturbers and, even in non-pertur
disks, by collisions and gravitational encounters. The “r
approach” is similar to that employed bySpaute et al. (1991).

We now integrate both the gain and loss Eqs.(3.12)–
(3.13)overq and substitute(2.7). The left-hand side of eithe
equation just loses theq-argument:∫
q

(
dn

dt

)
(m,p,q) dq =

∫
q

ϕ(q)

(
dn

dt

)
(m,p) dq

(3.14)=
(

dn

dt

)
(m,p).

Before transforming the right-hand sides, we introduce
following averages:
vimp(pp,pt )

≡ 〈vimp〉qp,qt
174 (2005) 105–134

≡
(∫ ∫

qpqt

vimp(pp,qp,pt ,qt )δ
[
r(pp,qp) − r(pt ,qt )

]

× ϕ(qp)ϕ(qt ) dqp dqt

)

×
(∫ ∫

qpqt

δ
[
r(pp,qp) − r(pt ,qt )

]
ϕ(qp)

(3.15)× ϕ(qt ) dqp dqt

)−1

and

f̄ (mp,pp;mt,pt ;m,p)

≡
∫
q

〈f 〉qp,qt dq

≡
∫
q

(∫ ∫
qpqt

f (mp,pp;qpmt ,pt ,qt ;m,p,q)

× δ
[
r(pp,qp) − r(pt ,qt )

]
ϕ(qp)ϕ(qt ) dqp dqt

)

×
(∫ ∫

qpqt

δ
[
r(pp,qp) − r(pt ,qt )

]
ϕ(qp)

(3.16)× ϕ(qt ) dqp dqt

)−1

dq.

The meaning ofvimp is obvious, andf̄ (mp,pp;mt,pt ;m,

p) dmdp is the number of fragments with[m,m + dm],
[p,p + dp], produced by a collision of particles wit
(mp,pp) and(mt ,pt ).

The integral that appears in the denominators,

∆(pp,pt ) ≡
∫ ∫
qpqt

δ
[
r(pp,qp) − r(pt ,qt )

]
(3.17)× ϕ(qp)ϕ(qt ) dqp dqt ,

has the following geometrical interpretation: it isapprox-
imately the volume of the intersection between the
ring and the t-ring divided by the volumes of both ring
(Approximately—because a strict calculation of the integ
will take into account that the motion of particles in ellip
orbits is not uniform and therefore, automatically “weigh
the volumes.) Accordingly, the dimension is[∆] = cm−3.

The transformation of the right-hand side of the gain te
gives:(

dn

dt

)
gain

(m,p)

=
∫
q

dq
∫

· · ·
∫

mp,pp,qp;
mt ,pt ,qt

f (mp,pp,qp;mt,pt ,qt ;m,p,q)
× n(mp,pp)ϕ(qp)n(mt ,pt )ϕ(qt )vimp(pp,qp;pt ,qt )

× δ
[
r(pp,qp) − r(pt ,qt )

]
σ(mp,mt )
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(3.18)× dmp dpp dqp dmt dpt dqt .

We nowmake a simplification: replace the impact velocit
vimp with vimp given by(3.15), resulting in(

dn

dt

)
gain

(m,p)

≈
∫
q

dq
∫

· · ·
∫

mp,pp,qp;
mt ,pt ,qt

f (mp,pp,qp;mt,pt ,qt ;m,p,q)

× δ
[
r(pp,qp) − r(pt ,qt )

]
ϕ(qp)ϕ(qt )n(mp,pp)

× n(mt ,pt )vimp(pp,pt )σ (mp,mt )

(3.19)× dmp dpp dqp dmt dpt dqt

or, using(3.16),(
dn

dt

)
gain

(m,p) =
∫ ∫ ∫ ∫

mp,mt ,pp,pt

f̄ (mp,pp;mt,pt ;m,p)

× n(mp,pp)n(mt ,pt )vimp(pp,pt )

× ∆(pp,pt )σ (mp,mt )

(3.20)× dmp dmt dpp dpt .

The right-hand side of the loss term transforms with
any simplifications:(

dn

dt

)
loss

(m,p)

=
∫
q

dqn(m,p)ϕ(q)

∫ ∫ ∫
mp,pp,qp

n(mp,pp)ϕ(qp)

× vimp(pp,qp;p,q)δ
[
r(pp,qp) − r(p,q)

]
σ(mp,m)

(3.21)× dmp dpp dqp

or, using(3.15),(
dn

dt

)
loss

(m,p)

= n(m,p)

∫ ∫
mp,pp

n(mp,pp)vimp(pp,p)∆(pp,p)

(3.22)× σ(mp,m)dmp dpp.

Collecting together Eqs.(3.11), (3.14), (3.20), and (3.22,
the equations take the final form:

(3.23)
dn

dt
(m,p) =

(
dn

dt

)
gain

(m,p) −
(

dn

dt

)
loss

(m,p),

(
dn

dt

)
gain

(m,p) =
∫ ∫ ∫ ∫

mp,mt ,pp,pt

f̄ (mp,pp;mt,pt ;m,p)

× n(mp,pp)n(mt ,pt )vimp(pp,pt )
(3.24)

× ∆(pp,pt )σ (mp,mt )

× dmp dmt dpp dpt ,
Keplerian disk 113

(3.25)

(
dn

dt

)
loss

(m,p) = n(m,p)

∫ ∫
mp,pp

n(mp,pp)vimp(pp,p)

× ∆(pp,p)σ (mp,m)dmp dpp.

The reciprocal of the integral in Eq.(3.25)is the collisional
lifetime of particles with massm and orbital elementsp,
which we denoteT (m,p). One can introduce an average c
lisional lifetime of particles of massm by

(3.26)T (m) ≡
[∫

p T −1(m,p)n(m,p) dp∫
p n(m,p) dp

]−1

.

3.4. Additional averaging over inclination

Equations(3.23)–(3.25)determine the 4-argument pha
space distribution functionn(m,p) ≡ n(m,a, e, i). For the
sake of speeding up the calculations, and taking into acc
that in many applications the evolution ofi is of less im-
portance than that ofa and e, we will further reduce the
dimension of the phase space by performing averaging
the inclination. Such a “thin-disk” approximation involves
phase space distribution with 3 arguments,n(m,a, e). Luck-
ily, no additional derivation is required to obtain equatio
for n(m,a, e)—it is sufficient to redefine vectorsp and q
in the equations already obtained. We now putp ≡ (a, e)

andq ≡ (i,Ω,ω,M). Then the whole derivation given in th
previous subsection can be repeated without any change
this set of elements, yielding the same Eqs.(3.23)–(3.25).

Throughout the rest of the paper, we will assume thatp =
(a, e). However, it is important to know that Eqs.(3.23)–
(3.25)have a covariant form. Instead of Keplerian eleme
one can use any other set of 6 quantities that fully de
mine the particle’s state—for instance, Delaunay or Poinc
variables. “Splitting” of those six betweenp and q is also
arbitrary. For example, settingp ≡ a and averaging ove
q ≡ (e, i,Ω,ω,M) would result in a model focused o
the mass-distance distribution of material. Regardless o
choice ofp andq, the system is described by Eqs.(3.23)–
(3.25).

3.5. Corrections for the gravitational interaction of
particles

For larger objects, it may be necessary to take into
count their mutual gravitational interaction before collisio
Gravity enhances the collisional cross section (Safron
factor) and increases the impact velocity. Then, the pro
σ(mp,mt )vimp(pp,pt ) in Eqs.(3.24) and (3.25)should be
replaced with

(3.27)σ(mp,mt )vimp(pp,pt )

(
1+ v2

esc

v2
imp

)3/2

,

where
(3.28)vesc=
√

2G(mp + mt)

sp + st
.
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The mutual gravity will also affect integration domains
the equations discussed below, because an increase
impact velocity changes the minimum mass of the sha
ing projectile,mcr , and the mass of the largest collision
fragment,mx , discussed in Section5.

3.6. Argument ranges and integration domains

The range of(m,p) ≡ (m,a, e) in Eqs.(3.23)–(3.25)is:

(3.29)0� m � ∞, 0� a � ∞, 0� e < 1.

The integration domain in the gain term(3.24)is:

0� mp � mt � ∞, 0� ap, at � ∞,

(3.30)0� ep, et < 1

(note the conditionmp � mt ), to which two additional re-
quirements are added: the particles should be in collisi
orbits and the projectile should carry enough energy to
rupt the target. The first condition means an overlap betw
the p- and t-rings and reduces to

(3.31)
ap(1− ep) < at (1+ et ) and ap(1+ ep) > at (1− et ),

while the second can be written as

(3.32)mcr � mp,

wheremcr(mp,mt , vimp(pp,pt )) is the minimum mass of
projectile that destroys the grain of massmt .

Similarly, the integration domain in the loss term(3.25)
is:

(3.33)0� mp � ∞, 0� ap � ∞, 0� ep < 1

with additional conditions

(3.34)ap(1− ep) < a(1+ e), ap(1+ ep) > a(1− e)

and

(3.35)mcr � mp,

wheremcr = mcr(mp,m,vimp(pp,p)).

4. Probability and kinematics of a binary collision

Equations (3.24) and (3.25)contain two functions
∆(pp,pt ) andvimp(pp,pt ), which depend solely on the p
and t-rings representing two colliding particles. The fi
function, ∆, basically determines the probability of col
sion for a pair of crossing Keplerian orbits (cf.KR in Eq. (5)
of Spaute et al., 1991). The second function,vimp, tells us
how strong the collision will be. Neither of them “care
about the outcome of that collision, however. This is w
both quantities are independent of the masses of the co

ers.

A complication of calculating the quantities in question
stems from the fact that here, unlike in other parts of the
174 (2005) 105–134

e
model, we cannot ignore the third spatial dimension rela
to particles’ orbital inclinations and nodes. There is no s
ple scaling for probabilities of collisions and relative velo
ties for disks with different semi-opening anglesε.

4.1. The integral∆

We now consider the integral(3.17):

∆(pp,pt ) ≡
∫ ∫
qpqt

δ
[
r(pp,qp) − r(pt ,qt )

]
(4.1)× ϕ(qp)ϕ(qt ) dqp dqt .

In the 2D case (disk semi-opening angleε = 0), the ∆-
integral can be reduced to a single integral over a func
of the true anomaly of one of the two particles. Including
third dimension (ε > 0) further complicates the integral. I
any event, the resulting integral is not elementary and m
be calculated numerically, which would slow down the c
culations drastically. Thus we have to use an approxima

As noted above, the integral is approximately the volu
of the intersection between the p-ring and the t-ring,Apt ,
divided by the volumes of both rings,Ap andAt :

(4.2)∆(pp,pt ) ≈ Apt

ApAt

.

Denote byA(rmin, rmax) the volume of the disk between th
distancesrmin andrmax (rmin < rmax):

(4.3)A(rmin, rmax) = 4

3
π

(
r3
max− r3

min

)
sinε.

Obviously,

Ap = A
(
ap(1− ep), ap(1+ ep)

)
,

(4.4)At = A
(
at (1− et ), at (1+ et )

)
and it only remains to findApt .

All possible cases are sketched inFig. 4. If the rings over-
lap, Eq.(3.31), we set

rmin = max
[
ap(1− ep), at (1− et )

]
,

Fig. 4. Location of p- and t-rings.
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(a)∆(a1, e1, a2, e2): a1 = a2, e2 = {0.2,0.5,0.8}, ε = 20◦

(b) ∆(a1, e1, a2, e2): a1 = 1.6a2, e2 = {0.2,0.5,0.8}, ε = 20◦

Fig. 5. The∆ integral for different combinations of the semimajor axes and eccentricities of two colliding particles,a1, e1, a2, e2. (Top) a1 = a2, (bottom)

a1 = 1.6a2 (see legend for other parameters). We show the results for one value of the disk’s semi-opening angleε = 20◦. The results for other values look

taine
e sam

ral
oxi-

are

-

similar. For each set ofa1, e1, a2, e2, two values are shown: “exact” (ob
and approximate (our geometrical approximation, Eq.(4.2), a thin line of th

(4.5)rmax= min
[
ap(1+ ep), at (1+ et )

]
and

(4.6)Apt = A(rmin, rmax),

where the functionA is given by Eq. (4.3). For non-
overlapping rings, we have simplyApt = 0 and∆ = 0.

Using an “exact” Monte Carlo evaluation of the integ
(4.1), we checked the accuracy of the geometrical appr
mation presented here. Typical results of this comparison

shown inFig. 5. The geometrical approximation typically
provides a 10–30% accuracy and only in some pathological
cases underestimates the true value by a factor of two.
d with time-consuming Monte Carlo evaluation of the∆-integral, a thick line)
e style).

4.2. Impact velocityvimp

Consider two “rings”(ap, ep) and(at , et ) crossing each
other, i.e., satisfying Eq.(3.31). We are interested in the av
eraged impact velocityvimp(pp,pt ), given by Eq.(3.15):

vimp(pp,pt ) = 1

∆(pp,pt )

∫ ∫
qpqt

vimp(pp,qp,pt ,qt )

× δ
[
r(pp,qp) − r(pt ,qt )

]
(4.7)× ϕ(qp)ϕ(qt ) dqp dqt .
According to this definition, a strict way to compute it would
be to calculate the integral∆ twice—with and withoutvimp
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in the integrand—and taking the ratio. As noted abo
a direct evaluation of the∆-integrals would be too cum
bersome computationally, so we use approximate solut
again.

The simplest approximation is a “particle-in-a-box” fo
mula

(4.8)vimp
2(ap, ep, at , et ) = 2GM

ap + at

(
e2
p + e2

t + sin2 ε
)
,

whereM is the mass of the central body andε is the semi-
opening angle of the disk, so that the last term in parenth
reflects the relative velocity coming from the orbital inclin
tions of the particles.

A better approximation can be obtained in the follo
ing way. Kholshevnikov and Shor (1994)solved a similar
problem in a 3D case, employing, however, an averag
procedure which is not symmetric with respect to both c
liding particles. In the spirit of their approach, one can obt
(M. Srem̌cevíc, in preparation)

vimp(pp,pt ) = 1/2
(
vKS(ap, ep, at , et )

(4.9)+ vKS(at , et , ap, ep)
)
,

where

v2
KS(a1, e1, a2, e2)

= GM
p1

[
3− p1

a2
+ e2

1 − (
2+ e2

1

)
cosi

√
p2

p1

+ 4e1
sinl2 − sinl1

l2 − l1

(
1.0− cosi

√
p2

p1

)

(4.10)− 1

2
e2

1
sin(2l2) − sin(2l1)

l2 − l1
cosi

√
p2

p1

]
.

Here,p1 = a1(1−e2
1) andp2 = a2(1−e2

2) are thesemilatera
rectaof the two orbits, and

(4.11)cosi =
ε∫

0

cosiφ(i) di

is the mean inclination, which for a uniform distribution
inclinations(2.20)is simply

(4.12)cosi = sin2 ε

2(1− cosε)
.

The quantitiesl1 andl2 are given by

l1 =



0 if a1(1− e1) � a2(1− e2),

arccos
[ 1

e1

( p1
a2(1−e2)

− 1
)]

otherwise,

(4.13)l2 =



π if a1(1+ e1) � a2(1+ e2),

arccos
[ 1

e1

( p1
a2(1+e2)

− 1
)]

otherwise.

Remember that we require that the two rings over

Eq.(3.31).

As in the case of the∆-integral, we used direct Monte
Carlo evaluation of the integral(4.7) to check the accu-
174 (2005) 105–134

racy of both Eq.(4.8) and Eq.(4.9). Typical results of this
comparison are shown inFig. 6. The particle-in-a-box for-
mula (4.8) still provides reasonable accuracy for moder
eccentricities, but severely underestimates the impact ve
ity for high e. Our alternative, Eq.(4.9), does an excellen
job, providing better than 10% accuracy in nearly all
cases.

5. Impact mechanics

As explained above, the quantities analyzed in the
vious section do not “care” about the outcome of a bin
collision. Now we focus on terms that describe the mech
ics of such a collision, assuming it to be destructive. Th
are the minimum mass of the shattering impactor, the m
of the largest collisional fragment, as well as the distribut
of masses and orbital elements of the collisional fragme
These quantities appear both in integrands and integra
domains of Eqs.(3.24) and (3.25). They rely on the so-calle
critical energy for fragmentation, discussed immediately
low.

5.1. The critical specific energy

As a conventional “threshold” between the cratering c
lisions (which we do not consider here) and disruptive o
(which are of central interest for this work), one usually c
siders the case where the mass of the largest particle left
the impact is half the target mass:mx = 0.5mt (see, e.g.
Paolicchi et al., 1996; Durda et al., 1998; Benz and Asph
1999). The kinetic energy of the projectile per unit targe
mass, required for such a “marginally disruptive” impact
called thecritical specific energyand denotedQ∗

D . By de-
finition, this quantity includes the energy needed for b
disruption of the target (work against strength) and disp
sal of the collisional fragments to the “local infinity” (wor
against gravity)—seeDurda et al. (1998). Later we shall
see that knowledge ofQ∗

D is required to calculate bothmcr

andmx .
The critical specific energy is known to be a functi

of the target radiusst (or its massmt ), essentially con-
sisting of two power laws (see, e.g.,Davis et al., 1985
Holsapple, 1994; Paolicchi et al., 1996; Durda and D
mott, 1997; Durda et al., 1998; Benz and Asphaug, 19
Kenyon and Bromley, 2004b):

(5.1)Q∗
D(st ) = Ass

bs
t + Ags

bg

t .

The first one, with a shallow negative slope, dominate
the strength regime at smaller sizes. The second one
trols the fragmentation of larger objects and has a pos
index between 1 and 2, reflecting the growth of grav

tional binding energy of large objects with their size. Ab-
solute values of constants in Eq.(5.1) can be found in
the papers cited above. For a visual comparison of differ-
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(a)Vimp(a1, e1, a2, e2): a1 = a2, e2 = {0.2,0.8}, ε = 20◦

(b) Vimp(a1, e1, a2, e2): a1 = 1.6a2, e2 = {0.2,0.8}, ε = 20◦

Fig. 6. The average impact velocityvimp for different combinations of the semimajor axes and eccentricities of two colliding particles,a1, e1, a2, e2. The
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(see
figure is organized similarly toFig. 5, expect that we compare three and
“exact” results (obtained with time-consuming Monte Carlo evaluation
from Eq.(4.8) (dotted lines).

ent curves see, e.g., Figs. 1 and 5 inDurda et al. (1998),
Fig. 8 in Benz and Asphaug (1999), and Fig. 1 inKenyon
and Bromley (2004b). Most of the studies report a min
mum ofQ∗

D to lie at radius∼ 0.1 km. However, for a given
size, material, and impact speed, the absolute value
ported differ by at least one order of magnitude. Besid
actual values for astronomical objects, such as EKBOs,
deviate from those found in laboratory or by hydroco
simulations, due to the objects’ complex internal struct
and porosity. From the available literature, we have cho

two model materials, a weaker one (“ice”) and a stronger
one (“rock”), for whichQ∗

D and constants are depicted in
Fig. 7.
o different computation methods here. For each set ofa1, e1, a2, e2, we show:
etegral, solid lines), results from Eqs.(4.9)–(4.10)(dashed lines), and thos

-

5.2. The minimum projectile massmcr

Consider a collision of two grains:(mp,pp) and(mt ,pt ).
From the definition of the critical specific energy, the mi
mum mass of a projectile that destroys the target satisfie
equation

(5.2)
mtmcr

mt + mcr

vimp
2

2
= mtQ

∗
D(mt) + mcrQ

∗
D(mcr).

Here, the left-hand side is the available impact energy

Eq. (5.13)below), assumed to be entirely spent for disrup-
tion and dispersal, and the right-hand side is the energy
needed to disrupt and disperse both colliders. Taking into
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Fig. 7. Dependence of the critical specific energy for fragmentation on the target particle’s radius. Solid curve: weaker material (“ice”), dashedtronger

material (“rock”).
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account that usuallymcr � mt , Eq.(5.2)can be replaced b

(5.3)
mcrvimp

2

2
≈ mtQ

∗
D(mt).

For objects in the strength regime and impact velocitie
order 1 kms−1, the minimum projectile mass (size) is 3 (
order(s) of magnitude less than that of the target. Obviou
mcr = mcr(mt , vimp(pp,pt )) = mcr(pp;mt,pt ).

5.3. The mass of the largest fragmentmx

Consider again a collision of two grains:(mp,pp) and
(mt ,pt ). In what follows, we will need to know the large
fragment’s massmx . An approximate scaling law formx is
(e.g.,Paolicchi et al., 1996) mx/mt ∝ E−c

p , whereEp is the
kinetic energy of the projectile andc is a constant close t
unity. In extended form,

(5.4)
mx

mt

= 1

2

[
2

mt

mp

Q∗
D(mt)

vimp
2

]c

,

where the normalization is consistent with Eq.(5.3). Of
course, Eq.(5.4) impliesmp � mcr(mt ), resulting inmx �
(1/2)mt . For the two materials used in our modeling,
assumec = 0.91 for “ice” (Arakawa, 1999)and c = 1.24
for “rock” (Paolicchi et al., 1996). The larger the impact en
ergy, the smaller the fragments. For two objects of the s
size (in the strength regime), for impact velocities of the
der of 1 kms−1, the largest fragment’s mass is a factor

thousand smaller than the original mass of either collider.
The functional dependence ofmx is: mx = mx(mp,mt ,

vimp(pp,pt )) = mx(mp,pp;mt,pt ).
5.4. Production of collisional fragments: the function̄f

Consider the functionf̄ that appears in the gain ter
(3.24). As noted above,f̄ (mp,pp;mt,pt ;m,p) dmdp is
the number of fragments with[m,m+dm], [p,p+dp], pro-
duced in a collision of particles with(mp,pp) and(mt ,pt ).

The functionf̄ includes two distributions: the mass d
tribution of fragments and the distribution of their orbi
elements. Omitting for brevity the quantities with indicesp

andt , we can write:

(5.5)f̄ (m,p) ≡ ḡ(m)h̄(m,p)

and splitf̄ into that product in such a way thatḡ(m)dm is
the number of fragments with masses[m,m+ dm], whereas
h̄(m,p) dp is the fraction (by number) of fragments wi
massm that have elements[p,p + dp]. The normalizations
of ḡ andh̄ are

(5.6)

mx∫
0

mḡ(m)dm = mp + mt

and

(5.7)
∫
p

h̄(m,p) dp = 1,

whence the normalization of̄f is

mx∫ ∫
mf̄ (m,p) dmdp =

mx∫
mḡ(m)

[∫
h̄(m,p) dp

]
dm
0 p 0 p

(5.8)= mp + mt .
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5.5. Mass distribution of collisional fragments: the
functionḡ

For the mass distribution function, we adopt

ḡ(mp,pp;mt,pt ;m)

(5.9)= G(mp,pp;mt,pt )m
−η, 0< m � mx

with

G(mp,pp;mt,pt )

(5.10)= (2− η)(mp + mt)m
η−2
x (η < 2).

Plausible values ofη from impact experiments are 1.5, . . . ,

2.0; a “classical” value is 11/6 = 1.83 (corresponds to
differential size distribution with the index 3.5). Equati
(5.10) ensures correct normalization: Eq.(5.6) is satisfied.
The functionG depends on thep’s becausemx does.

5.6. Orbital distribution of collisional fragments: the
functionh̄

To write the functionh̄, we need to know the orbital ele
ments of collisional fragments. We start with a few gene
expressions coming from theoretical mechanics. As a c
sion is a brief event, the particles involved in it represen
closed system. Therefore, the total mass and the mome
are conserved during the collision:

(5.11)mp + mt =
∑

i

mi ≡ mc,

(5.12)mpvp + mtvt =
∑

i

mivi ≡ mcvc,

wheremi andvi are the masses and velocities of collisio
fragments,vc is the velocity of their center of mass, and
velocities are in the reference frame of the central body.
kinetic energy before the collision can be expressed thro
the relative velocity of the colliders,vimp = vp − vt , as

(5.13)
1

2
mpv2

p + 1

2
mtv2

t = 1

2
mcv2

c + mpmt

2mc

v2
imp,

but the kinetic energyafter the collision depends on th
physics of the impact that has to be specified.

An approximate, yet reasonably accurate, way to ca
late the orbital elements of the fragments is to assert tha
of them follow the trajectory of the center of mass:vi = vc

for all i. This implies that all the kinetic energy of the co
liders in the center-of-mass reference frame, the last ter
Eq. (5.13), is expended in destroying and heating the p
ticles, diminishing the mechanical energy of the cloud
fragments in the reference frame of the primary (collisional
damping).
We are now able to compute the orbital elements of the
fragmentsai andei which, asvi = vc, coincide with those
of the center of mass,ac andec. By squaring Eq.(5.12)and
Keplerian disk 119

applying the energy integral we obtain

−GMmc

2ac

= −mp

mc

GMmp

2ap

− mt

mc

GMmt

2at

(5.14)+ mpmt

mc

[
vp · vt − 2

GM
r

]
,

wherer is the distance at which the collision occurs. He
the left-hand side is proportional to the total mechan
energy of the fragment cloud. The expression in brac
depends on the mutual orientation of thep- and t-orbits at
the collision point. In the 2D approximation, which is re
sonable for a disk with a small semi-opening angleε, the
scalar product term is a function of one variable (e.g.,
true anomaly of one of the colliders). By letting this va
able vary over the admissible range, Eq.(5.14)can be used
to find a range of possible semimajor axesac ∈ [amin, amax].
Taking the cross product of Eq.(5.12)and the radius vecto
of the collision point,r, results in the conservation law fo
the angular momentum. Expressing the result through or
elements, we get

mc

√
ac

(
1− e2

c

) ≈ mp

√
ap

(
1− e2

p

)
(5.15)+ mt

√
at

(
1− e2

t

)
,

where we have assumed that the average values cosi, cosip,
cosit are equal, which accounts for the approximate eq
ity sign. Equation(5.15)determines the eccentricityec as a
function ofac.

Thus, in the(a, e)-plane, the orbital elements of th
collisional fragments form a curveec(ac), extending from
(amin, emin) to (amax, emax), where emin ≡ ec(amin) and
emax ≡ ec(amax). Examples of these curves for differe
combinations of parameters are shown inFig. 8. As ex-
pected, when one of the colliders is much heavier t
the other, the curves transform to short dashes close to
position of the heavier particle. And vice versa, for eq
masses the curves are the longest, indicating an appr
ble dispersion of fragments. The resultingac ’s never exceed
max{ap, at }; the same is true for theec ’s. In some case
either the semimajor axis of some fragments, their ecc
tricity, or both, are smaller than those of both impacto
This is a clear indication of energy dissipation in the syst

The functionh̄ we have sought is given by

h̄(m,p) = h̄(m,a, e)

= 1

amax− amin
δ
[
e − ec(a)

]
H [a − amin]

(5.16)× H [amax− a],
whereH denotes the Heaviside step function equal to 1
positive arguments and to 0 otherwise, and we have drop
thep- andt-arguments for brevity.

In reality, botha ande are somewhat dispersed around

center-of-mass values, so that the curveec(ac) transforms
to an elongated 2D-area. Such a scatter occurs because, al-
though nearly all impact energy goes to comminution and
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Fig. 8. Orbital elements of two colliding particles and the resulting collisional fragments in the center-of-mass model, depicted in the(e, a)-plane. Different
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panels are for several combinations of(a, e) of the two colliders, as listed
represent colliders and 5 curves of increasing thickness are collisiona

heating, a small fraction still goes to the kinetic energy
the individual fragments. This fraction, that causes rela
changes ina ande at each collision, is of the order of a fe
percent(Fujiwara and Tsukamoto, 1980). If the eccentrici-
ties of the particles in a certain system are larger, which
typically are, then the “center-of mass” model is accur
enough. As an exception, we mention planetary rings, w
the orbits are nearly circular, so that the scattering effect
cause appreciable, diffusive changes in semimajor axes
eccentricities. The inclination terms (3D corrections) om
ted in our analysis of Eqs.(5.14)–(5.15)will cause a similar
effect, spreading the fragments over a larger area in the
bital element space. This effect can only be important
disks with large opening angles and is not included in
current model either.

6. Application of the model to the Edgeworth–Kuiper
belt

6.1. Objectives

The kinetic model described in the previous sections
now be applied to the collisional evolution of the EKB. O
calculations pursue mostly illustrative purposes: we wis
demonstrate that our model is able to reproduce some sa

features of this collisional system found earlier with other
methods. We start with an overview of the simplifying as-
sumptions and limitations of our simulations:
legend. The semimajor axis is in arbitrary units. In each panel, two bo
ents for different mass ratios of the colliders: 10, 3, 1, 0.3, and 0.1.

t

• When setting initial conditions, we assume a set of fu
formed EKBOs, either in situ(Stern and Colwell, 1997
Kenyon and Luu, 1998, 1999a, 1999b)or transported
to the present location by dynamical interactions
the early Solar System(Levison and Morbidelli, 2003).
Therefore, we neither endeavor to “build” the early EK
nor find out how the early EKB might look by tracing th
evolution backward in time.

• We confine our analysis to the classical, dynamic
cold, population of the EKB and do not simulate its c
lisional interaction with the dynamically hot populatio
(S. Charnoz, personal communication).

• We do not include distant interactions of bodies,
pecially on crossing orbits (viscous stirring, dynami
friction). because they are not of importance for the
ready formed) EKBOs in the size range under stu
Indeed, simple estimates that we made on the bas
Stewart’s stirring equations (see, e.g., Appendix B
Weidenschilling et al., 1997) show that both viscou
stirring and dynamical friction, whose timescales
roughly proportional to(e/s)3 (e—orbital eccentrici-
ties, s—object sizes), may lead to substantial effects
radii above several hundred km, which we do not c
sider.

• We ignore cratering impacts, rebounds and merg
(Kenyon and Bromley, 2002). Accordingly, we do not

touch upon highly debated topics of impact resurfacing
and color modification of EKBOs (see, e.g.,Thébault
and Doressoundiram, 2003, and references therein).
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• We do not consider the effects of resonant, secular,
short-period perturbations by giant planets, most
tably Neptune, which may substantially modify the d
tribution and therefore the collisional evolution of t
disk (Kenyon and Bromley, 2004b).

• We do not model stochastic fluctuations in the distr
utions caused by individual collisions of larger bod
(Durda and Dermott, 1997).

Therefore, any conclusions about the real EKB on the
sis of these runs should be made with caution. On the o
hand, we are not aware of any model that would take
accountall the effects listed above. Our model provide
better treatment of orbital eccentricities and possible co
lations between distributions of masses, semimajor axes
eccentricities, than other models. Besides, by considerin
idealized system it may be easier to reach a better un
standing of general properties of EKB-like systems.

6.2. The collisional code

The programming implementation of the kinetic mod
constructed in previous sections is described inAppendix A.
We discuss discretization of the phase space, the integr
procedure including the stepsize control, and the so-ca
small size-cutoff problem.

6.3. Description of the runs

We considered a system of objects with a bulk den
of 1 gcm−3 and a mass (size) distribution extending fro
10−6 g (60 µm) to 1023g (300 km), represented by 45 bin
Of these, the lowest 15 bins (up to 8 kg or the 12 cm
dius) were in the smooth exponential cutoff with the con
parameterx = 1.30 (seeAppendix A.2). Thirty “real” bins
provided results valid for sizes from about 1 m to 300 k
The mass ratio in successive bins wasδm ≈ 4. We have made
tests with a better mass binning (δm ≈ 2) and found no qual
itative differences in any of the distributions that we ha
analyzed. Quantitative differences were moderate. For
stance, the mass density differed by not more than se
tens of percent across the whole size range. A similar m
binning has been used in many previous studies:δm = 4
(Stern, 1995, 1996), δm = 3 (Davis and Farinella, 1997,
δm = 2 (Stern and Colwell, 1997). The initial mass distri-
bution was taken to be the Dohnanyi power law.

The initial semimajor axis distribution was assumed to
a power law with sharp cutoffs at 30 and 70 AU. As inStern
(1995), two power law indices were used:−2 (for zero ec-
centricities, it would correspond to the surface mass den
proportional to a reciprocal of distance, meaning a cons
mass per semimajor axis bin) and−1 (declining mass pe
semimajor axis bin). The initial eccentricity distribution w

uniform between 0.0 and 0.3. When choosing the(a, e)-
binning, we kept in mind that, if the(a, e)-grid is too coarse,
the fragments may be distributed into the same bins to which
Keplerian disk 121

l

Table 1
Parameters for numerical runs

Run
identificatora

Initial disk
mass [M⊕]

Initial slope
in n(a)

Material

nd-dmb-i 0.33 −2 Ice
nd-dmb-r 0.33 −2 Rock
nd-cmb-i 0.33 −1 Ice
nd-cmb-r 0.33 −1 Rock
ld-dmb-i 0.1 −2 Ice
md-dmb-i 1.0 −2 Ice

a md—massive disk, nd—nominal disk, ld—low-mass disk; cmb
constant mass pera-bin, dmb—declining mass pera-bin; i—“ice,” r—
“rock.”

the colliders belong, and the code will fail to simulate pos
ble diffusion-like effects. We have checked that 8 bins ia

and 12 bins ine taken in most of the runs were sufficient
avoid missing diffusion due to collisional damping.

The disk was assumed to have a semi-opening ang
0.3 radians (≈ 20◦). Three different values of initial to
tal mass of the disk were taken: 1.0M⊕ (massive disk),
0.33M⊕ (nominal disk), and 0.1M⊕ (low-mass disk). We
considered both “icy” and “rocky” objects, as describ
above. The integration interval was 4.5 Gyr in all the cas
The runs are listed inTable 1.

6.4. Size distribution

The evolution of the mass distribution in several runs
illustrated byFig. 9. The upper and lower panels show t
distribution at 30 and 70 AU, respectively.Figure 9demon-
strates that, not unexpectedly, a system composed of “
objects is eroded more significantly than a similar system
“rocky” bodies. The difference between the runs with a d
ferent initial spatial slope (cmb and dmb runs) is only min

In agreement with other modeling results and in
cord with observations (e.g.,Stern, 1995, 1996; Davis an
Farinella, 1997; Durda and Stern, 2000; Pan and Sari, 20),
the resulting size distribution is not a Dohnanyi power la
The reason is the size dependence of the fragmentatio
rameters, most notably the critical specific energy(5.1). The
broad dip in the distribution seen at radii of about 0.1 km is
a direct consequence of the minimum ofQ∗

D(st ) there (see
Fig. 7). This also gives rise to a change in the slope of the
tribution at a break radius of several kilometers. The cha
in the slope, as well as the break radius depend of the cri
specific energy, initial disk’s mass, and the time elapsed(Pan
and Sari, 2004; Kenyon and Bromley, 2004b). A detailed
quantitative study of these features in the size distribu
and reconciliation with new data on the EKBO size distr
ution require more realistic modeling, including stirring
Neptune(Kenyon and Bromley, 2004b), which is beyond the
scope of this paper.

In is interesting to note that the minimum ofQ∗
D(st )
means that bodies of that size are easier to destroy than the
others, which effectively acts as a moderately smooth cutoff
for larger sizes. Therefore, we should expect the phenom-
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Fig. 9. Size distribution of EKBOs at two different distances from the Sun: 30AU (top) and 70AU (bottom). Thin straight lines: initial state, thick curves: final

state. Different linestyles are for several runs, which are indicated in the legend and explained inTable 1. To alleviate comparison with other studies, we note

minu

out
lli-

a
af-

each
in
arti-
y live
ach
-i,
ms
ro-
ctly

rger
that a slope of the differential size distribution is the slope in the figure
+0.5, which would correspond to a classical index of−3.5.

enon discussed inAppendix A.2—a wavy distribution of
bodies above 0.1 km. Indeed, a slight hump is seen inFig. 9
(top) at several km for ice and at∼ 1 km for rock. What is
more, for rock there is a second weak maximum at ab
∼ 10 km. A similar phenomenon was discussed for the co
sional evolution of the asteroidal belt byDurda et al. (1998).

6.5. Collisional lifetime

Figure 10depicts the average collisional lifetimes as
function of the particle mass—for the initial stage and

ter 4.5 Gyr. The average lifetimes increase in the course of
evolution, following a gradual depletion of the disk. There
is a correspondence between the lifetime curves and the
s 4. For example, the initial (Dohnanyi’s) distributions in our axes have a slope of

mass distribution curves: humps and dips are close to
other (Figs. 9 and 10). This is understandable: maxima
the mass distribution correspond to more abundant p
cles, and that these are more abundant means that the
longer. The three solid lines of different thickness in e
panel are for disks with different initial mass (md-dmb
nd-dmb-i, and ld-dmb-i runs). Their comparison confir
that the instantaneous collisional lifetime is inversely p
portional the instantaneous disk’s mass, as follows dire
from Eqs.(3.25)–(3.26).

A look at the absolute values shows that bodies la

that a few km in a 4.5 Gyr-old Kuiper belt must be primor-
dial, whereas smaller ones are most likely fragments from
earlier collisions. This falls in agreement with earlier con-
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Fig. 10. Average collisional lifetime of different-mass EKBOs, Eq.(3.26): fo
runs, which are indicated in the legend and explained inTable 1. The inte
panels.

clusions. For comparison,Durda and Stern (2000)found
that EKB objects (EKBOs) withs < 2.5 km have collisiona
lifetimes less than 3.5 Gyr, whereasDavis and Farinella
(1997)reported several tens of kilometers as the separa
size between primordial objects and collisional fragme
Of course, the actual “critical” size depends on a num
of model parameters—for instance, on mechanical pro
ties of EKBOs. For larger, 100 km EKBOsDurda and Stern
(2000)found the destruction time to range from 3× 1012 to
8 × 1012 years, which is in a good agreement with our
sults, too.Kenyon and Bromley (2004b, their Fig. 2)report
values close to ours for∼ 1 km objects, but much shorte

timescales for smaller EKBOs and much longer for larger
ones. The difference for small objects traces back to their
much larger disk’s mass of 10M⊕ at the initial moment to
nitial state (top) and at the final state (bottom). Different lines are for se
n interval was 4.5 Gyr, and is shown with a horizontal straight line in

which their removal timescales refer. For larger EKBOs,
difference is probably due to the fact that Kenyon and Bro
ley include accretion (their Eq. (10)), while we do not.

6.6. Mass loss

We have also traced the collisional mass loss by
Kuiper disk. Recall that in our model the mass is lost throu
small collisional fragments whose masses fall into binsim <

Ncb, seeAppendix A.2. Figure 11shows that the mass los
rate is very high at the initial phase of evolution and slo

down as the disk mass decreases. The mass loss rate is higher
for more massive disks. During 4.5 Gyr, the disks with ini-
tial masses from 0.1M⊕ to 1.0M⊕ lost 6 to 13% of their



124 A.V. Krivov et al. / Icarus 174 (2005) 105–134
Fig. 11. Mass loss by the Kuiper disk for the md-dmb-i, nd-dmb-i, and ld-dmb-i runs (thick lines). Bold dots on the curves show integration steps assigned
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automatically on the base of Eq.(A.4) with δ = 0.1 (typically 100—300 in
with constants found from fitting of the middle curve.

initial mass, of which a half occurred during the first 0.5
1 Gyr.

We now seek a qualitative explanation of these res
from a simple physical argument. We try a rough tw
component model that includes populations of “large”
jects with total massML(t) and “small” ones with mas
MS(t), so that the total disk mass isM(t) = ML(t)+MS(t).
Each population is assumed to gradually erode by mu
collisions. Simultaneously, small objects are gained as f
ments of collisions of large objects. These processes
described by differential equations

(6.1)ṀL = −CLM2
L,

(6.2)ṀS = +CLM2
L − CSM2

S,

whereCL andCS are positive constants. The right-hand s
terms are quadratic in mass, because our basic equa
(3.24)–(3.25)are quadratic in the phase space distributionn.
Next, denote byM0 the initial mass of the disk (att = 0) and
by f (0< f < 1) the initial fraction of mass in large object
Thus the initial mass of large and small objects is

(6.3)ML(0) = f M0 and MS(0) = (1− f )M0.

Equations(6.1) and (6.2)with initial conditions(6.3) allow
an analytic solution in a closed form, but the solution
rather lengthy and is therefore not shown here. We used
fit the middle curve inFig. 11(the nominal value of the ini
tial mass, 0.3M⊕) and to determine the constants:f = 0.93,
CL = 0.024M−1⊕ Gyr−1, andCS = 101M−1⊕ Gyr−1. Then
we applied the solution, without changing the constants
two other curves. The results are also shown inFig. 11.

Our simple model provides a reasonably good scaling of
the mass loss rate for different values ofM0. Besides, it ex-
plains the high mass loss rate during the first Gyr and the
depending on the run). Thin solid lines depict the solution of Eqs.(6.1)–(6.3)

s

nearly constant one after that: the mass is lost rapidly u
the population of small bodies is appreciably depleted
the loss and gain terms in Eqs.(6.1) and (6.2)come to bal-
ance. At that stage, the absolute mass loss rateCLM2

L ≈
CLM2

0 ranges from 2× 10−4M⊕ Gyr−1 (ld-dmb-i run) to
2× 10−2M⊕ Gyr−1 (md-dmb-i). Of course, this is less tha
theaveragemass loss rate of 1×10−3 to 3×10−2M⊕ Gyr−1

for the same runs.
It is interesting to compare our mass loss model w

that ofDominik and Decin (2003). They used a similar ap
proach to describe collisional removal of planetesimals
act as sources of circumstellar dust in Vega-type syste
in an attempt to explain the observed decay of debris d
with stellar age. They used a simpler, one component m
equivalent to our Eq.(6.1) which, as pointed above, is
good approximation after the initial rapid removal of sma
planetesimals. Thus our results, confirming the conclu
of a nearly constant mass loss rate at later stages (see
Kenyon and Bromley, 2004a), can serve as an extension
their model to earlier stages of the disk evolution.

6.7. Spatial distribution

The same runs allow us to trace the evolution of the s
tial distribution in the disk.Figure 12shows the surface mas
density profile for two models and two moments in time
the initial one and after 4.5 Gyr of evolution. As expect
the innermost part of the disk gets progressively deple
This reflects the fact that the disk is denser towards
Sun and the collision velocities are larger there, so that

collisional evolution is more intensive in the inner region.
This agrees with other studies (see, e.g.,Davis and Farinella,
1997).
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Fig. 12. Evolution of the spatial distribution in the disk with time: surface mass density (Eq.(2.24)) as a function of heliocentric distance. Shown are the results
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6.8. Distribution of orbital elements

We now look at the evolution of the full phase space d
tribution of the Kuiper belt objects, which is perhaps t
most interesting part of the analysis, because it is conce
with the combined evolution of all three phase space v
ables; mass, semimajor axis, and eccentricity. For illustra
purposes, we have chosen one of the runs, namely nd-c
—a disk with “nominal” mass, initially constant mass pera-
bin, and icy objects. The results are shown inFigs. 13–14.
Each panel presents a distribution of objects in the(e, a)-
plane. The left-hand columns of either figure depict the t
massof the objects in different(e, a)-bins and the right-han
columns show the totalnumberof objects.

Figure 13presents the phase space distributions of la
objects (bins 38–43, radii 14–170 km). From top to botto
we plot the(e, a)-distribution of objects for different in
stants in time, starting from the initial state and ending
4 Gyr. The grey scale is fixed through each vertical colu
of panels. The uppermost panels are uniformly black.
uniformity reflects the facts that in a cmb-run both the to
masses and numbers of objects in alla-bins are initially the
same, and that our initiale-distribution is also uniform. Tha
the uppermost panels are black means that the total mas
number of objects are maximum at the beginning. It is
to the fact that the EKB is not replenished, and the loss te
supersede the collisional gain terms. The middle and lo
panels all show that the collisional erosion leads to the
mation of a clear V-shape pattern: the bins with largesta and
intermediatee retain the largest amount of material, where
the bins with smallesta and both low and high eccentric

ities are the most depleted. InAppendix B we describe a
series of numerical tests and provide an explanation of the
effect. Namely, we show that enhanced depletion at smaller
) and constant mass pera-bin (dotted line). The double-headed arrow ma

i

d

a simply reflects more intensive collisional evolution clos
to the Sun, whereas predominant depletion at both sm
and highere stems largely from collisional probabilities b
tween objects with different orbital eccentricities.

Figure 14shows the distribution of smaller bodies (bi
19–23, radii 1–7 m), but the panels from top to bottom h
a different meaning than inFig. 13. Instead of showing blac
rectangular areas as inFig. 13(top), we put in the upper pan
els the state of the system right after the evolution star
at t = 4 Myr. These panels illustrate the rapid depletion
small objects at the early stage of the evolution and for
tion of the V-shape patterns discussed above. These pa
are still present after 4 Gyr of the evolution (Fig. 14 (mid-
dle)). Note that the linear grey scale in the upper and mid
panels is now different. Finally, the lowest panels are
same as the middle ones, but drawn in the log scale.
scale “overexposes” the regiona � 30 AU, but makes vis-
ible a new row of filled bins ata between 25 and 30 AU
These bins, whose density increases towards smaller e
tricities, arise from the collisional damping (see Section5.4
andFig. 8) that gradually relocates the material to regio
with smallera and e. The binary collision model of Sec
tion 5.4 also ensures that initially empty bins withe > 0.3
and/ora > 70 AU do not get filled.

There are a number of other features seen in the
ures. For instance, a comparison ofFigs. 13 and 14shows
that the population of meter-sized objects is depleted
much higher degree than that of the largest bodies. In
most of the largest, 100 km-sized bodies beyond≈ 50 AU
still remain intact over several Gyr of collisional evol
tion.
The phase distributions for the other runs listed inTable 1,
not shown here, allow a similar interpretation. For instance,
the dmb-runs where the low-a bins initially contain more
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Fig. 13. Distribution of large (14–170km-sized) objects in the eccentricity–semimajor axis plane (12 bins ine and 8 bins ina). (Left) Total mass of particles
(Right) Total number of particles. (From top to bottom) System’s state att = 0.0, 1.8, and 4.0 Gyr. The grey scale used in all panels is linear and is the

for all panels of either column.
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Fig. 14. Similar toFig. 13, but for small (1–7m-sized) objects. (Top)t = 4Myr, (middle and bottom)t = 4.0Gyr (linear and log grey scale, respectively).
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material than the high-a bins, yield X-shape rather than V
shape distributions: bins with lowa, regardless ofe, still
contain a lot of objects after 4.5 Gyr—because they w
quite dense initially.

6.9. Velocity distribution

We finally look at the evolution of the velocity distrib
ution. The results for the same nd-cmb-i run that we h
chosen in the previous section are shown inFig. 15. The
left and right panels correspond to upper and low mass
used inFigs. 13 and 14, respectively. Each panel depicts t
initial and final distributions of two velocity components, r
dial vr and azimuthalvφ , for a fixed heliocentric distance o
45 AU. Both components are scaled to the circular Keple
velocityvcirc = √

GM/r . Besides,vcirc is always subtracte
from vφ . Lines show marginal distribution ofvr andvφ sepa-
rately, whereas insets contain 2D plots ofn(vr , vφ). Isolines
in the insets are close to ellipses with a classical ratio
(see, e.g.,Lissauer, 1993). The smallest ellipses, looking lik
black spots, correspond to (vr ≈ 0, vφ ≈ vcirc) and therefore
to e ≈ 0. Larger ellipses correspond to highere, and are get-
ting increasingly distorted. The complete grey “ellipse” i
transformation of the shaded area inFig. 2 weighted by the

jacobian, Eq.(2.10).

(1–7m-sized) objects. (Lines) Marginal distributions ofvr (solid) andvφ (dashed
n(vr , vφ). of vr andvφ . (Thin lines and left insets) Initial state, (thick lines an
are logarithmic.
174 (2005) 105–134

(1) The largest effect is a substantial depletion of small p
ticles: the difference between the initial and final sta
in the right panel is much larger than in the left pane

(2) Another effect is a stronger depletion of the inner rin
i.e., a preferential loss of particles with smallera and
consequently, withv ≈ vφ < vcirc. This is seen as th
slight left-right asymmetry of dashed lines in the l
panel (vφ − vcirc < 0 versusvφ − vcirc > 0).

(3) A V-shape pattern that appears inFigs. 13 and 14should
correspond roughly to a smaller depletion of the midd
sized ellipses. The effect is difficult to spot, but it is s
visible in the right panel for the smaller masses, both
the lines and insets.

7. Summary and discussion

7.1. Model

In this paper we have employed the kinetic theory
statistical physics to describe a disk of solid particles
biting a primary and experiencing inelastic collisions.
distinct from other collisional models that use a 2D (ma
semimajor axis) binning and perform a separate analys
the velocity (eccentricity, inclination) evolution, we choo
mass and orbital elements as independent variables

phase space. The distribution function in this space contains

oc-
the

a dis-
mall
An inspection ofFig. 15reveals some of the effects dis-
cussed before:

full information on the combined mass, spatial, and vel
ity distribution of particles. General kinetic equations for

Fig. 15. Velocity distributionn(r,v), Eq. (2.10), for the nd-cmb-i run. Shown are distributions of the radial and azimuthal velocity components at
tancer = 45AU from the Sun, both in units of the circular Keplerian velocityvcirc at that distance. (Left) Large (14–170km-sized) objects, (right) s
), obtained by integration over the other component. (Insets) 2D distributions
d right insets) final state. The vertical axis for lines and the grey scale for insets
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distribution function (Eqs.(3.23)–(3.25)) are derived. Thes
are valid for any set of orbital elementsp and for any colli-
sional outcome, specified by a single kernel functionf .

The first implementation of the model devised here u
p = (a, e), i.e., a mass–semimajor axis–eccentricity ph
space, and involves averages over the inclination and
angular elements. We assume collisions to be destruc
simulate them with available material- and size-depend
scaling laws, and include collisional damping. A closed
of kinetic equations for a mass–semimajor axis–eccentr
distribution is written and transformation rules to usual m
and spatial distributions of the disk material are obtained

7.2. Application to the EKB

As an application of the model, we have studied
collisional evolution of the classical population in t
Edgeworth–Kuiper belt (EKB). We ran the model for d
ferent initial disk masses and radial profiles and for obje
with different impact strengths. Our results for size distri
tion, collisional timescales, and mass loss fall in agreem
with previous studies. In particular, the collisional evoluti
is found to be most substantial in the inner part of the EK
In that region, the separation size between the objects
have survived intact over the EKBs age and those that
resent remnants of earlier collisions lies between a few
and several tens of km. The size distribution in the EKB
not a single Dohnanyi-type power law and reflects the
dependence of the critical specific energy in both stren
and gravity regimes. In accord with other studies, the
mass loss rate of an evolved disk in nearly constant an
dominated by disruption of larger objects. Finally, assum
an initially uniform distribution of orbital eccentricities, w
have shown that an evolved disk contains more object
orbits with intermediate eccentricities than in near-circu
and more eccentric orbits. This property holds for object
any size and is explained in terms of collisional probab
ties. The effect should modulate the eccentricity distribut
shaped by dynamical mechanisms, such as resonance
truncation of perihelia by Neptune.

7.3. Limits of the present model and its possible extensi

As with any model of a complex system, it is importa
to understand both the validity limits of the approach a
the degree of fidelity of the current implementation. We d
tinguish between principal limitations and those that can
relaxed. The assumptions of the first kind are that: (i)
system is not too dense to ensure that finite-size effects
absent, packing factor is negligible, triple and multiple c
lisions are unimportant etc.; (ii) no energy is partition
into rotational degrees of freedom of the objects; (iii)
largest bodies considered are still numerous enough t

represented by a continuous distribution, which is a principal
limitation inherent to the coagulation equation. The assump-
tions of the second kind are as follows: (1) the inclination
Keplerian disk 129

,

t

d

distribution does not evolve with time; (2) apsides and no
of particles’ orbits are distributed uniformly and therefo
the disk is rotationally symmetric; (3) between collisions,
grains move in Keplerian orbits; (4) these orbits are bou
i.e., elliptic; (5) long-range interactions (dynamical frictio
viscous stirring etc.) are absent; (6) collisions lead to full
struction of both colliders and generation of smaller deb
(7) there is no direct supply of material into the system.

Assumptions (1)–(2) can, in principle, be lifted by addi
inclination and/or angular elements to the list of phase sp
variables and by treating them in the same way as sem
jor axis and eccentricity. This step is straightforward as
as derivation of formulas is concerned, but would result
model very demanding to the computer resources. We
mate that adding one more variable, namely the inclinat
would still yield a model that delivers results in reaso
able times. For smaller objects with collisional timesca
less than the integration time, a model witha, e, i as phase
space variables would, of course, reproduce an approxi
equipartition of energy and the resulting coupled evolut
of distributions ofe and i. In particular, a classical rela
tion 〈i〉/〈e〉 ∼ 0.5 (e.g.,Greenberg et al., 1991) would be
expected.

In contrast, lifting assumptions (3)–(7) would require a
ditional math effort, but would not pose any severe comp
tional limitations. Here we sketch some of the possibiliti
One can generalize the master equation(3.23)by including
an additional diffusion term:

(7.1)
∂n

∂t
(m,p) = dn

dt
(m,p) − dp

dt
· ∂n

∂p
(m,p),

wheredn/dt is given by Eq.(3.23)anddp/dt is the time
derivative of the vector of orbital elementsp, assumed to
evolve under perturbing forces. This offers a way to inclu
drag forces and gravitational perturbations by large bo
in the disk, including resonant cases. One simply takesp(t)

from known solutions of the perturbation equations of
lestial mechanics that give osculating or mean elemen
functions of time. The same applies to the dynamical f
tion and viscous stirring: equations forp(t) provided, e.g.,
by Stewart and Ida (2000)can be used. Direct radiatio
pressure can be included through the usual formalism—
gravitational problem with a reduced central mass(Burns et
al., 1979). For dust-sized particles, one has to allow th
to move in unbound orbits(Krivov et al., 2000). This does
not imply any changes in the basic equations(3.23)–(3.25)
but does require, above else, generalization of transfo
tion formulas (e.g., Eqs.(2.10), (2.18), (3.29)–(3.30)) to the
hyperbolic case. A way to include further collisional ou
comes — cratering, restitution, agglomeration—is to ad
the fragment-generating functionf (see Eq.(3.8)and a dis-
cussion there). Finally, replenishment of material from ph
ical sources can be simulated by adding supply term

Eq.(3.23)or Eq.(7.1).

We believe that future work on these issues will be re-
warding. Potential applications are many and, besides the
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EKB, may include protoplanetary disks, the main aster
belt, zodiacal cloud, circumstellar debris disks, and pla
tary rings.
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Appendix A. Implementation of the model

A.1. Numerical solution of the kinetic equation

First we discretize the kinetic equation(3.23) by intro-
ducing a mesh in variablesm, a, ande and replacing inte
gration with summation over discrete valuesmim, aia , and
eie. The kinetic equation(3.23) with the gain term(3.24)
and loss term(3.25) are integrated with a first-order Eul
routine to find the phase space distributionn(mim, aia, eie)

at different instants of time. It means that, on the base o
equation,

dn

dt
(mim, aia, eie) =

(
dn

dt

)
gain

(mim, aia, eie)

(A.1)−
(

dn

dt

)
loss

(mim, aia, eie),

the state of the systemni+1(mim, aia, eie) at timeti+1 = ti +
�t is found from the stateni(mim, aia, eie) as

ni+1(mim, aia, eie) = ni(mim, aia, eie)

(A.2)+ �ni(mim, aia, eie),

where

(A.3)�ni ≡
(

dni

dt

)
(mim, aia, eie)�t.

The best strategy is to use an adaptive step size. Most “
gerous” are large negative increments ofn which, for too
large�t , can maken(mim, aia, eie) for some of the indices
negative, causing numerical instabilities. We therefore
quire that

(A.4)max
im,ia,ie such thatni �=0 and�ni<0

∣∣∣∣�ni(mim, aia, eie)

ni(mim, aia, eie)

∣∣∣∣ � δ,

where 0< δ < 1 is an input parameter. We takeδ = 0.1.

Inequality (A.4) is used to dynamically set the “new” step
size�t before a current time step is completed. As a check
for numerical stability of solutions, we inspect the maximum
174 (2005) 105–134

-

absolute value of the relative increment ofanysign,

(A.5)max
im,ia,ie such thatni �=0

∣∣∣∣�ni(mim, aia, eie)

ni(mim, aia, eie)

∣∣∣∣,
and typically see that these quantities, being large at
beginning of integration, gradually tend toδ, indicating a
dynamical balance between the sources and losses.

Once the phase space distributionn(mim, aia, eie) for a
certain moment of time is found, it is converted into t
mass-distance distributionN(m, r) with the aid of Eq.(2.18)
or Eq.(2.22). In our code, the integrals(2.18) and (2.22)are
evaluated by a Monte Carlo method which helps main
high precision close to the singularitya(1− e) = r . Further
quantities, such as the mass density distribution(2.23)and
surface mass density(2.24), are also calculated.

A.2. The small-mass cutoff problem

In his fundamental work,Dohnanyi (1969)considered a
closed system with destructive collisions, assuming two
portant conditions: (i) the mass range extends from zer
infinity, and (ii) fragmentation parameters are independ
of particles’ mass. He has shown that the mass distribu
in such a system relaxes to a single power law

(A.6)n(m,a, e) ∝ m−p

with the indexp = 11/6 = 1.83. . . . In reality, neither con-
dition is fulfilled, however. First, the small-mass end of
mass distribution usually represents a “channel” thro
which the material is lost by the system: at least at dust s
the particles are vulnerable to radiation pressure, pla
drag forces, and erosion or sputtering processes which
to determine their lifetimes instead of collisions. Second,
fragmentation parameters do depend on the particle s
for instance, the critical energy does. What is more, co
tion (i) introduces a serious problem into the simulatio
Indeed, any modeling assumes a certain minimum mas
size), below which the particles are simply ignored.

Campo Bagatin et al. (1994)showed that the presenc
of a small-size cutoff makes a mass distribution wavy.
Fig. A.1 (dash-dotted line) we show such a wavy distr
ution for a Kuiper belt-like system where we assume
constantQ∗

D = 3 × 106 ergg−1 over the whole mass rang
andc = 1.24 (see Section6.3 for other details about the pa
rameters adopted). A wavy structure, superimposed on
Dohnanyi’s equilibrium slope, arises because particles
sizes just above the cutoff are not eliminated by smaller
jectiles (which are absent) and therefore are produce
break-up of larger bodies faster than they are removed. C
sequently, larger particles are increasingly depleted u
the mass where the smaller stuttering impactor exceed
cutoff. Beyond then, the removal rate is reduced and the
tribution flattens. The pattern then reproduces itself at la
and larger masses.
It is important to understand that the wavy pattern is not
an artefact of the modeling, but an intrinsic property of a sys-
tem with a small-mass cutoff.Campo Bagatin et al. (1994)
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Fig. A.1. Typical size distributions under different assumptions about the small-size cutoff. Plotted is the mass density per unit logarithmic sizeinterval
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(Eq. (2.23)) as a function of size. The region of the cutoff itself is show
cutoff, the less wavy the distribution.

have shown that the amplitude of the wave depends on
abrupt the cutoff is, and that the wavelength depends on
mechanical properties of the bodies. They pointed out
the wave does not develop if the effective width of the cu
exceeds the wavelength.

Although a possibility that the behavior of smallest, du
sized debris may affect the size distribution of large as
oids and EKBOs cannot be completely ruled out, we ar
that it does not seem likely. Let us see, for instance, w
happens with particles of smaller and smaller size. Star
from the radius of about∼ 102 µm, for which the Poynting–
Robertson lifetimes become comparable to the collisio
ones, the Poynting–Robertson lifetimes of meteoroids
come increasingly shorter. This takes place until the r
reach∼ 1 µm, at which size the direct radiation pressure
comes comparable in strength with the solar gravity, cha
ing the dynamics and distributions again. Conseque
there must exist a “Poynting–Robertson cutoff” extend
over 2 orders of magnitude in terms of sizes, or 6 order
magnitude in terms of mass. This exceeds the typical w
length and therefore makes the cutoff smooth enough to
vent formation of the wave. Thus we are left with a mer
technical problem: how to avoid triggering of the wave
the simulations without extending the modeling to the d
sizes.

The issue was analyzed in depth byDurda and Der-
mott (1997)who suggested using an artificial smooth cut
below the mass range of interest. We now describe t
(slightly modified) technique implemented in our model. A
mass bins, with indicesim = 0, . . . ,Nm, are divided into two

parts. Upper mass bins, from a certainNcb to Nm, are treated
as “real” bins that cover the mass range of interest. Lower
mass bins,im = 0, . . . ,Ncb − 1, are declared “cutoff” bins,
h a thin line. The cutoff parameters are shown in the legend. The smo

Fig. B.1. The eccentricity–semimajor axis mesh. Unshaded region re
sents the orbits that intersect a given orbit (bold dot). Four panels ar
different positions of the latter.

and are only introduced to smoothly fade the distributi
The phase space density in these cutoff bins is calculate

(A.7)n(im) = extrapolation(im) · scaling(im),

where extrapolation(im) is n(im) computed by extrapolat
ing the two lowest “real” bins with indicesNcb andNcb + 1
to the bin with indexim, and scaling(im) is a decay factor,
(A.8)log10
[
scaling(im)

] = 1

10

(
1− xNcb−im

)
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Fig. B.2. Results of numerical runs made to explai

with x � 1 being a parameter that controls the strength
the cutoff (x = 1, no cutoff;x → ∞, an abrupt cutoff). Sev
eral lines inFig. A.1show the size distribution of one and t
same system with different cutoff parameters—fromx → ∞
(abrupt cutoff) tox = 1.30 (corresponds ton(Ncb)/n(0) =
105 andm(Ncb)/m(0) = 1011, i.e., to a phase space dens
drop by 5 orders of magnitude over 11 orders of magnit
in mass). The smoother the cutoff, the less wavy the
tribution. The smoothest cutoff gives a wave-free Dohna
distribution (solid line).

Appendix B. Non-uniformity of the e,a-distribution

Here we discuss the V-shape patterns seen inFigs. 13–

14. The essence of the effect is that a collisionally evolved
disk, whose(e, a)-distribution was initially uniform, con-
tains more objects with largest semimajor axes and interme-
“eccentricity effect.” See text for description of the panels.

diate eccentricities, whereas the objects with smallesta and
both low and highe are the most depleted.

We can decompose the effect into the following two:
bins with smallera are more depleted, and (ii) bins with bo
smaller and largere are more depleted that those with inte
mediatee. The effect (i) is trivial: both the number densi
of objects and impact velocity increase towards smallera, so
the intensity of collisional processes is higher closer to
Sun. It remains to explain the “eccentricity effect” (ii). T
this end, we look at the kinetic equations(3.23)–(3.25)and
at the integration limits in those. There are four eccentric
dependent places there, which can do the job:

(P1) The functionf̄ in the gain term that describes gen
ation of collisional fragments. One can expect that

“center-of-mass” model of Section5.4tends to choose
e of collisional fragments between those of two collid-



l of a

es

f

e-

ere,
bin
p-

re-
de-

un-
ad

their

tom
i-
ves.
al-

cia-
etion

ent
or-
of
nds

ase
the

in
3) ar
the
ent
)–

trib-
ame

s

the
s a

tly,
es

ct.

142,

icles

P.,
ize

nomy.

uni-

ssi-
tro-

tion
373,

per

985.
ma

bris.

non:

rstel-
ung-

roid
.
iper
od-

ron.

and
roid

ary

y of

ion:
549–

Plan-
on.

tary

i den

Sys-
Kinetic mode

ing particles, thereby “preferring” intermediate valu
of e.

(P2) The impact velocityvimp grows with eccentricities o
colliders (seeFig. 6), favoring removal of objects in
more eccentric orbits.

(P3) The integral∆ grows as eccentricities of colliders d
crease (seeFig. 5), which may dislodge objects from
near-circular orbits.

(P4) Collisional conditions, Eq.(3.31) (gain) and(3.34)
(loss). There is a hidden eccentricity dependence h
too. Consider an orbit represented by a certain
(e�, a�). This orbit intersects a number of orbits, re
resented by other(e, a) bins. For largere� the number
of such orbits is higher (Fig. B.1). Thus a particle in
a more eccentric orbit collides with others more f
quently, meaning that we can expect an enhanced
pletion of regions with higher eccentricities.

We now describe a series of numerical tests we have
dertaken to find out which of these factors actually le
to the effect (ii) observed in the simulations (Fig. B.2).
In these tests, we sequentially exclude (P1)–(P4) and
combinations.Figure B.2a is a full simulation result with
a V-pattern to be explained (the same as the right bot
panel inFig. 13). Panel (b) depicts the run without coll
sional gain. Here, (P1) is excluded, but the pattern survi
In panel (c), we additionally excluded (P2) and (P3) by c
culating bothvimp and ∆ with fixed eccentricities of both
colliders artificially set to their maximum values of 0.3. Thus
only (P4) is at work here. This changes the pattern appre
bly and demonstrates that (P4) does contribute to a depl
at highere.

We now do the opposite and exclude (P4). It is suffici
to consider a system with only one semimajor bin. As
bits with the same value ofa cross each other regardless
their eccentricities, any pair of bins in this case correspo
to intersecting orbits, and the effect depicted inFig. B.1 is
automatically eliminated. Panel (d) corresponds to the c
when (P1)–(P3) are at work, and still the “1D-version of
V-pattern” is present: the number of objects peaks ate ∼ 0.1
as inFigs. B.2a and B.2b. Panel (e) excludes collisional ga
and therefore corresponds to the case when (P2) and (P
at work; the result is similar. Next, panel (f) represents
run in which we additionally used eccentricity-independ
vimp and∆, like in panel (c). Here, none of the factors (P1
(P4) are included. It is no surprise therefore, that the dis
ution becomes uniform. Panels (g) and (h) present the s
as (f), but with only one quantity, eithervimp or ∆, fixed.
As expected, (P3) depletes lowere, whereas (P2) deplete
highere. The final test, presented in panel (i), sets bothvimp
and∆ to constants, like in panels (c) and (f), but here
collisional gain, effect (P1), is turned on again. There i
slight maximum at intermediate values ofe, but the absolute

black-white difference here is only marginal, see grey scale
bar. To summarize, the whole “eccentricity effect,” more ob-
jects in orbits with intermediate eccentricities, largely comes
Keplerian disk 133

e

from the combined influence of (P2)–(P4). To put it shor
the effect is explained in terms of collisional probabiliti
between objects in orbits with different eccentricities.

References

Arakawa, M., 1999. Collisional disruption of ice by high-velocity impa
Icarus 142, 34–45.

Benz, W., Asphaug, E., 1999. Catastrophic disruptions revisited. Icarus
5–20.

Boltzmann, L., 1896. Vorlesungen über Gastheorie. Barth, Leipzig.
Burns, J.A., Lamy, P.L., Soter, S., 1979. Radiation forces on small part

in the Solar System. Icarus 40, 1–48.
Campo Bagatin, A., Cellino, A., Davis, D.R., Farinella, P., Paolicchi,

1994. Wavy size distributions for collisional systems with a small-s
cutoff. Planet. Space Sci. 42, 1079–1092.

Chandrasekhar, S., 1943. Stochastic problems in physics and astro
Rev. Mod. Phys. 15, 1–89.

Chapman, S., Cowling, T.G., 1970. The Mathematical Theory of Non
form Gases. Cambridge Univ. Press, New York.

Charnoz, S., Brahic, A., 2001. Long-term collisional evolution of a di
pative particle disc perturbed by a giant-planet embryo. Astron. As
phys. 375, L31–L34.

Charnoz, S., Thébault, P., Brahic, A., 2001. Short-term collisional evolu
of a disc perturbed by a giant-planet embryo. Astron. Astrophys.
683–701.

Davis, D.R., Farinella, P., 1997. Collisional evolution of Edgeworth–Kui
belt objects. Icarus 125, 50–60.

Davis, D.R., Chapman, C.R., Weidenschilling, S.J., Greenberg, R., 1
Collisional history of asteroids—evidence from Vesta and the Hiraya
families. Icarus 62, 30–53.

Dohnanyi, J.S., 1969. Collisional model of asteroids and their de
J. Geophys. Res. 74, 2531–2554.

Dominik, C., Decin, G., 2003. Age dependence of the Vega phenome
theory. Astrophys. J. 598, 626–635.

Dorschner, J., 1970. Theoretische Untersuchungen über den inte
laren Staub. III. Stauberzeugung durch zirkumstellare Zertrümmer
sprozesse. Astron. Nachr. 292, 79–85.

Durda, D.D., Dermott, S.F., 1997. The collision evolution of the aste
belt and its contribution to the zodiacal cloud. Icarus 130, 140–164

Durda, D.D., Stern, S.A., 2000. Collision rates in the present-day Ku
belt and Centaur regions: applications to surface activation and m
ification on comets, Kuiper belt objects, Centaurs, and Pluto–Cha
Icarus 145, 220–229.

Durda, D.D., Greenberg, R.R., Jedicke, R., 1998. Collisional models
scaling laws: a new interpretation of the shape of the main-belt aste
size distribution. Icarus 135, 431–440.

Frezzotti, A., 2001. DSMC simulation of the vertical structure of planet
rings. Astron. Astrophys. 380, 761–775.

Fujiwara, A., Tsukamoto, A., 1980. Experimental study on the velocit
fragments in collisional breakup. Icarus 44, 142–153.

Goldreich, P., Lithwick, Y., Sari, R., 2004. Planet formation by coagulat
a focus on Uranus and Neptune. Annu. Rev. Astron. Astrophys. 42,
601.

Greenberg, R., Wacker, J.F., Hartmann, W.K., Chapman, C.R., 1978.
etesimals to planets: numerical simulation of collisional evoluti
Icarus 35, 1–26.

Greenberg, R., Bottke, W.F., Carusi, A., Valsecchi, G.B., 1991. Plane
accretion rates: analytical derivation. Icarus 94, 98–111.

Haug, U., 1958. Über die Häufigkeitsverteilung der Bahnelemente be
interplanetaren Staubteilchen. Z. Astrophys. 44, 71–97.

Holsapple, K.A., 1994. Catastrophic disruptions and cratering of Solar

tem bodies: a review and new results. Planet. Space Sci. 42, 1067–1078.

Ida, S., Makino, J., 1993. Scattering of planetesimals by a protoplanet: slow-
ing down of runaway growth. Icarus 106, 210–227.



carus

imal

imal

belt

gu-

ag-

tem.

ds
ys.

iscs.

31,

in

djar,
t
time

he
26,

. 31,

tellar
ets

isco,

the
03–

. As-

lan-

pace.

ering

cal

. As-

Wi-

tion
nsla-

ass

Be-
.
-
em-

cre-
92,

bed

im-

As-

ial
ap.

uni-

qua-

ithin
rio.

olli-

K.,
trial

g of

all

: ef-
134 A.V. Krivov et al. / I

Kenyon, S.J., Bromley, B.C., 2002. Collisional cascades in planetes
disks. I. Stellar flybys. Astron. J. 123, 1757–1775.

Kenyon, S.J., Bromley, B.C., 2004a. Collisional cascades in planetes
disks. II. Embedded planets. Astron. J. 127, 513–530.

Kenyon, S.J., Bromley, B.C., 2004b. The size distribution of Kuiper
objects. Astron. J. 128, 1916–1926.

Kenyon, S.J., Luu, J.X., 1998. Accretion in the early Kuiper belt. I. Coa
lation and velocity evolution. Astron. J. 115, 2136–2160.

Kenyon, S.J., Luu, J.X., 1999a. Accretion in the early Kuiper belt. II. Fr
mentation. Astron. J. 118, 1101–1119.

Kenyon, S.J., Luu, J.X., 1999b. Accretion in the early outer Solar Sys
Astrophys. J. 526, 465–470.

Kholshevnikov, K.V., Shor, V.A., 1994. Velocity distribution of meteoroi
colliding with planets and satellites. I. Theory. Astron. Astroph
Trans. 5, 233–241.

Kley, W., 1999. Mass flow and accretion through gaps in accretion d
Mon. Not. R. Astron. Soc. 303, 696–710.

Kokubo, I., Ida, S., 1998. Oligarchic growth of protoplanets. Icarus 1
171–178.

Krivov, A.V., Mann, I., Krivova, N.A., 2000. Size distributions of dust
circumstellar debris disks. Astron. Astrophys. 362, 1127–1137.

Lecavelier des Etangs, A., Scholl, H., Roques, F., Sicardy, B., Vidal-Ma
A., 1996. Perturbations of a planet on theβ Pictoris circumstellar dus
disk. 3. Time scale of collisional destruction versus resonance
scale. Icarus 123, 168–179.

Levison, H.F., Morbidelli, A., 2003. The formation of the Kuiper belt by t
outward transport of bodies during Neptune’s migration. Nature 4
419–421.

Lissauer, J.J., 1993. Planet formation. Annu. Rev. Astron. Astrophys
129–174.

Lissauer, J.J., Stewart, G.R., 1993. Planetary accretion in circums
disks. In: Phillips, J.A., Thorsett, J.E., Kulkarni, S.R. (Eds.), Plan
Around Pulsars. In: ASP Conf. Series, vol. 36. ASP, San Franc
pp. 217–233.

Lynden-Bell, D., Pringle, J.E., 1974. The evolution of viscous discs and
origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 6
637.

Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Annu. Rev
tron. Astrophys. 30, 543–574.

Nakagawa, Y., Hayashi, C., Nakazawa, K., 1983. Accumulation of p
etesimals in the solar nebula. Icarus 54, 361–376.

Oort, J.H., van de Hulst, H.C., 1946. Gas and smoke in interstellar s
Bull. Astron. Inst. Netherl. 10, 187–204.

Pan, M., Sari, R., 2004. Shaping the Kuiper belt size spectrum by shatt
large but strengthless bodies. Icarus. astro-ph/0402138. In press.

Paolicchi, P., Verlicchi, A., Cellino, A., 1996. An improved semi-empiri

model of catastrophic impact processes. I. Theory and laboratory exper-
iments. Icarus 121, 126–157.
174 (2005) 105–134

Pringle, J.E., 1981. Accretion discs in astrophysics. Annu. Rev. Astron
trophys. 19, 137–162.

Résibois, P., de Leener, M., 1977. Classical Kinetic Theory of Fluids.
ley, New York.

Safronov, V.S., 1969. Evolution of the Protoplanetary Cloud and Forma
of the Earth and Planets. Nauka, Moscow. In Russian. English tra
tion: NASA TTF-677, 1972.

Silk, J., Takahashi, T., 1979. A statistical model for the initial stellar m
function. Astrophys. J. 229, 242–256.

Smoluchowski, M.V., 1916. Drei Vorträge über Diffusion, brownsche
wegung und Koagulation von Kolloidteilchen. Z. Phys. 17, 557–585

Spahn, F., Albers, N., Srem̌cevíc, M., Thornton, C., 2004. Kinetic descrip
tion of coagulation and fragmentation in dilute granular particle ens
bles. Europhys. Lett. 67, 545–551.

Spaute, D., Weidenschilling, S.J., Davis, D.R., Marzari, F., 1991. Ac
tional evolution of a planetesimal swarm. I. A new simulation. Icarus
147–164.

Srem̌cevíc, M., Spahn, F., Duschl, W., 2002. Density structures in pertur
thin cold discs. Mon. Not. R. Astron. Soc. 337, 1139–1152.

Stern, S.A., 1995. Collisional time scales in the Kuiper disk and their
plications. Astron. J. 110, 856–868.

Stern, S.A., 1996. Signatures of collisions in the Kuiper disk. Astron.
trophys. 310, 999–1010.

Stern, S.A., Colwell, J.E., 1997. Collisional erosion in the primord
Edgeworth–Kuiper belt and the generation of the 30–50 AU Kuiper g
Astrophys. J. 490, 879–882.

Stewart, G.R., Ida, S., 2000. Velocity evolution of planetesimals:
fied analytical formulas and comparisons withN -body simulations.
Icarus 143, 28–44.

Tanaka, H., Nakazawa, K., 1994. Validity of the statistical coagulation e
tion and runaway growth of protoplanets. Icarus 107, 404–412.

Thébault, P., Doressoundiram, A., 2003. Colors and collision rates w
the Kuiper belt: problems with the collisional resurfacing scena
Icarus 162, 27–37.

Thébault, P., Augereau, J.C., Beust, H., 2003. Dust production from c
sions in extrasolar planetary systems. The innerβ Pictoris disc. Astron.
Astrophys. 408, 775–788.

Weidenschilling, S.J., Spaute, D., Davis, D.R., Marzari, F., Ohtsuki,
1997. Accretional evolution of a planetesimal swarm. 2. The terres
zone. Icarus 128, 429–455.

Wetherill, G.W., 1990. Comparison of analytical and physical modelin
planetesimal accumulation. Icarus 88, 336–354.

Wetherill, G.W., Stewart, G.R., 1989. Accumulation of a swarm of sm
planetesimals. Icarus 77, 350–357.

Wetherill, G.W., Stewart, G.R., 1993. Formation of planetary embryos

fects of fragmentation, low relative velocity, and independent variation
of eccentricity and inclination. Icarus 106, 190–209.


	Evolution of a Keplerian disk of colliding and fragmenting particles:  a kinetic model with application to the Edgeworth-Kuiper belt
	Introduction
	Distribution functions
	Configuration space
	Orbital element space
	Notation conventions
	Distributions in orbital element space
	Phase space distribution function n(m, p, q)
	Averaged phase space distribution function n(m, p)

	Distributions in configuration space
	Mass-coordinate-velocity distribution function n(m, r, v)
	Number density as a function of mass and coordinates N(m, r)
	Number density as a function of mass and distance N(m, r)
	Disk's parameters as functions of distance


	The kinetic equation
	The kinetic equation in coordinates and velocities
	Derivation of the kinetic equation in orbital elements
	Averaging over angular elements
	Additional averaging over inclination
	Corrections for the gravitational interaction of particles
	Argument ranges and integration domains

	Probability and kinematics of a binary collision
	The integral Delta
	Impact velocity vimp

	Impact mechanics
	The critical specific energy
	The minimum projectile mass mcr
	The mass of the largest fragment mx
	Production of collisional fragments: the function f
	Mass distribution of collisional fragments: the function g
	Orbital distribution of collisional fragments: the function h

	Application of the model to the Edgeworth-Kuiper belt
	Objectives
	The collisional code
	Description of the runs
	Size distribution
	Collisional lifetime
	Mass loss
	Spatial distribution
	Distribution of orbital elements
	Velocity distribution

	Summary and discussion
	Model
	Application to the EKB
	Limits of the present model and its possible extensions

	Acknowledgments
	Implementation of the model
	Numerical solution of the kinetic equation
	The small-mass cutoff problem

	Non-uniformity of the e,a-distribution
	References


