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Length Scales of Clustering in Granular Gases
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Clustering of granular gases is caused by the dissipation occurring in particle collisions. We
the generalized dimension, a measure for the inhomogeneity of a spatial distribution of particle
characterize the structural evolution. Furthermore, we quantify the typical length scale of the clus
obtained by 3D simulations using the index of dispersion, a measure for the deviation of the part
density from a Poissonian. We then derive an expression for the expected length scales of cl
formation from a stability analysis in the hydrodynamical approximation. We find a good agreem
between our theoretical prediction and numerical experiments. [S0031-9007(99)09344-8]

PACS numbers: 45.70.Mg, 02.50.Fz, 05.20.Dd, 47.20.–k
r
r
r-

dy

de
e

or
ere
ry
re

the
m
he
e

ins,
in
es,
icle
ly

m
s to
its
n
e
ing

2D
g
be

olu-
ical
he
In recent studies much attention has been devoted to
dynamics of granular gases [1–8]. The difference of su
systems to conventional gases is the energy loss occur
in interparticle collisions, characterized by the coefficie
of restitutione, the ratio between the normal componen
of the rebound velocity, and the impact velocity of th
colliding particles. The dissipation leads to several ph
nomena that show a completely different behavior th
conventional gases, e.g., permanent cooling of the ga
the absence of energy sources, clustering of the partic
with continued cooling [1], or a nonequipartition of th
translational and the rotational degrees of freedom [
Therefore, the study of granular gases represents an
tension of the Boltzmann theory of classical gases.

In this Letter, we present a method of cluster detection
nearly homogeneous distributed assemblies in 3D and t
compare this with a quantitative expression of the clus
sizes derived from stability analyses in the hydrodynam
approach. Namely, we characterize and quantify the cl
tering of granular assemblies through a statistical analy
of the phase-space data obtained from particle simulatio
We introduce two statistical measures to accomplish th

(i) To characterize the increase of clustering in the pa
ticle density with time, we define a quantity in terms of th
generalized dimensions, a measure for the inhomogen
of a spatial distribution of particles [9]. This quantity re
flects thee dependence of clustering formation. We fin
a monotonic dependence of the rate of clustering on
dissipation.

(ii) To quantify the characteristic size of inhomo
geneities, we define another quantity in terms of the ind
of dispersion [10], which is a measure for the deviation
the particle density from a Poissonian. We find that t
dependence of cluster size one, as obtained from our 3D
simulations, agrees well with our theoretical prediction
derived from a stability analysis using a hydrodynamic
approximation [e.g., Eq. (6)]. Numerical simulation
have shown [3] that the beginning of the cooling process
well described by thehomogeneous cooling state(HCS),
while, after a certain critical time, depending on the num
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ber of collisions per particleCyN , the cooling process is
slowed down by velocity and density fluctuations. Afte
this critical moment, the cooling is almost no longe
determined by particle-particle but by cluster-cluster inte
actions. This would imply that the clusters have alrea
been formed during this HCS phase.

In our simulations, we use a 3D event-driven co
with N ø 50 000 identical spherical particles. The particl
ensemble is simulated in a cubic box of side lengthLbox ø
220 particle radii, chosen to correspond to a filling fact
of about 0.02. We use periodic boundary conditions wh
we prevent overlapping by creating a twin particle of eve
particle reaching the boundaries. The twin particles a
shifted by an amount of2Lbox to the opposite boundary
and they get the same velocities and coordinates as
original particles. The original particles are removed fro
the system when the twin particle is completely inside t
simulation box again. A particle leaving the box at th
edge or the corners needs, of course, four or eight tw
respectively. Initially each particle is placed randomly
the box, checked for overlaps with already placed particl
and regenerated if an overlap occurs. Then each part
gets a velocity of a given absolute value with a random
chosen direction.

In our simulations only translational degrees of freedo
are considered. For convenience, we restrict ourselve
the case of constant coefficients of restitution and fix
values at0.1, 0.2, . . . , 1.0. In recent studies we have show
that a variable coefficient of restitution slows down th
process of cluster formation but does not prevent cluster
at all, i.e., the HCS is elongated [4].

The inelastic collapse that has been found in 1D and
and could be expected in 3D [5] is due to the low fillin
factor not detected in our runs. However, it cannot
expected if one considers a finite contact duration [6].

We simulate the assemblies of differente for the same
ratio of collisions per particleCyN ø 12. We ensure to
be in the HCS phase by comparing the temperature ev
tion of the granular assembly measured by the numer
experiment with theoretical expressions derived from t
© 1999 The American Physical Society 4819
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Boltzmann theory [1,7,8]. A deviation of the theory an
the numerical simulation indicates an abandonment of t
HCS phase.

In a granular system which is still in the HCS, inho
mogeneities are difficult to distinguish from fluctuation
of an ensemble with purely elastic particle interaction
Therefore, we use measures from nonlinear dynamics a
statistics to characterize and quantify the spatial inhom
geneities in our simulations. First, we split the box int
m ­ 2L sub-boxes, whereL ­ 1, 2, . . . , 12. Note that the
sub-boxes are no cubes in general. Second, we charac
ize the cluster formation quantitatively, using the genera
ized dimension, based on the Rényi entropies [11] defin
asHsqd ­ f1ys1 2 qdg log

Pm
l­1 p

q
l with q [ R n h1j and

the probabilitypl for particles to be in thelth box labeled
by m ­ 2L .

Recently, we have shown that the generalized dime
sion Dq, defined in terms ofHsqd, is an appropriate tool
to characterize the time evolution of the degree of clu
tering [9,12]. It is defined byDq ­ 2 limd!0 Hsqdy logd
for each time stept and restitution coefficiente, where
d is the diagonal of each sub-box. Asq increases from
1, Dq accentuates more and more the degree of clum
ing (high density regions) while, asq decreases from 1,
Dq accentuates better the degree of depletion (low dens
regions). To characterize the increase of inhomogene
with time, we calculate from the simulation data howDq

changes withq, i.e., ≠Dqse, tdy≠q. Then, to get a rep-
resentative measure of the change of inhomogeneity w
time, we introduce the quantity (forq ! 0)

Lsed ­
≠Dqse, t ­ t0dy≠q

≠Dqse, t ­ tmaxdy≠q
, (1)

wheret0 andtmax are the times at the beginning and at th
end of the simulation, respectively. The valueL, based on
the change of the generalized dimension withq reflects the
e-dependent structure formation. This measure is mo
detailed and therefore more suitable for 3D simulatio
than the measureHsqd with q ­ const used in [4]. As well,
the quantityL is more sensitive for detecting density in
homogeneities in our runs than the well-known two-poi
correlation function. Figure 1 shows the dependence
L on e indicating that an initially homogeneous distribu
tion of particles changes the greatest the smaller the coe
cient of restitutione is. For elastically colliding granules
(e ­ 1), one getsL ­ 1 corresponding to an unchange
homogeneous particle distribution during the time evol
tion. This behavior agrees with predictions [1,4] that, a
the dissipation per collisions1 2 e2d increases, the clus-
tering becomes more intense.

However, it is not possible to quantify, using thi
method, the length scales of the inhomogeneities in t
particle density of the simulations. Therefore, we intro
duce a new measure defined in terms of the index of d
persion [10]. The test statistic of the index of dispersio
is given byI ­ sm 2 1ds2sndyknll with the particle den-
4820
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FIG. 1. L vs e [Eq. (1)]. The diamonds are the data points
the solid line is the result of a quadratic regression fit.

sity n ­ nse, l, d, td in the lth box, the standard devia-
tion s2 ­

Pm
l­1sn 2 knld2ysm 2 1d, and the number of

degrees of freedomm (total number of boxes). This tes
statistic is that of ax2 goodness-of-fit test for the hypothe
sis that the particles are independently and uniformly d
tributed in the whole simulation box.

For a homogeneous particle distribution, the index
dispersion satisfiesx2

m21,12a , I , x
2
m21,a, which is

characteristic for a Poissonian distribution of particle
Here, a is the significance level of thex2 statistics. A
higher index of dispersionI . x

2
m21,a points towards in-

homogeneities, whileI , x
2
m21,12a is typical for a regular

distribution of particles, as it is found, e.g., in lattice
To detect the inhomogeneities, we define the normaliz
quantity

Ĩ ­

"
I

x
2
m21,a

2 1

#
QH

√
I

x
2
m21,a

2 1

!
, (2)

where we relate the index of dispersion to the critic
valuex

2
m21,a. We checked different significance levels o

the x2 statistics, namely,0.01 # a # 0.07, which show
similar results. Figure 2 and the following calculation
are done witha ­ 0.05. The Heaviside functionQH

ensures that purely regular features are excluded fr
the statistical treatment. The time evolution ofĨ in the
critical region (I . x

2
m21,a) for different values ofe,

obtained from the 3D simulations, is shown in Fig. 2. Th
clumping starts at the smallest scales after a character
time. At later times, inhomogeneities at larger scal
evolve. Figure 2 shows the tendency of the valuesĨ as a
function ofL, e and time. Because of the finite number o
particles used in the simulations, one observes, in addit
to the density inhomogeneities caused by the dissipati
fluctuations~ 1y

p
N . The most prominent length scale o

the inhomogeneities, under these conditions, is obtain
as follows. From our simulations and analysis, we fin
the following expression for the critical length scaleLc by
averaging the sub-box diagonald over space and time, as

Lcsed ­

P
d d

P
CyN ĨP

d

P
CyN Ĩ

. (3)
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FIG. 2(color). The evolution of the index of dispersion
[Eq. (2)] in the critical regioñI vs the sub-box diagonald and
the number of collisions per particleCyN for different restitu-
tion coefficientse. The value ofĨ is color coded as indicated
in the color bar. Black indicates a Poissonian distributio
(Ĩ ­ 0); values higher than 0 (colored) indicate a significan
lumpy distribution of the particles in the configuration space
White corresponds to the highest deviation from a Poissoni
particle distribution.

To interpret and better understand the results of o
simulations, we use a stability analysis in the hydrod
namical approximation, which describes well the physic
of a granular gas during the HCS phase [1,3,4,7]. Th
equations of hydrodynamics for a force-free granular g
read as

dr

dt
­ 2r= ? $u, r

d $u
dt

­ 2= ? P̂ ,

and
3
2

r
dT
dt

­ 2= ? $Q 2 P̂ : = ± $u 2 g ,

(4)

where the material derivative is given bydydt !
≠y≠t 1 $u ? =; “:” and “±” denote the double inner product
and the dyadic product, respectively. The quantitiesr, $u,
andT are the density, the average particle velocity, and t
temperature, respectively. The heat flux is$Q ­ 2k=T ,
and the pressure tensor is denoted byP̂sD̂d ­ pÎ 2 2hD̂
with the shear tensor̂D ­ 1

2 s= ± $u 1 $u ± =d, wherep
n
t
.
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is the pressure and̂I is the unity tensor. The constitutive
relations in the dilute limit read for a constant coefficie
of restitution [7] h ­ 5

p
Ty4s2pp s3 2 ed s1 1 ed for

the viscosity, k ­ 75
p

Ty2s2pp s1 1 ed s49 2 33ed
for the heat conductivity, andg ­ 2r2s2

p
pT3 s1 2 e2d

for the cooling. Here, the mass and the Boltzma
constant arem ­ kB ­ 1 ands is the particle diameter.

In order to analyze the stability of an initially homoge
neous granular gas, we linearize the hydrodynamic Eq.
and expand the state variables about the ground s
$X ­ $X0std 1 $X 0s$r , td with j $X 0y $X0j ø 1. For a force-free
granular gas,r0 is constant in time and space,$u0 ­ 0, and
the ground state temperatureT0 is a function of time, due
to the permanent cooling. In a periodic or infinite system
the eigenfunctions of the linearized Eq. (4) are plane wav
$X 0s$r, td ~ expsat 1 i $k ? $rd, where $k is the wave vector
anda is the growth rate. Without loss of generality, on
can choose$k ­ sk, 0, 0d. The resulting eigenvalue prob
lem gives a system of linear equationshÂ 2 aÎj $X 0 ­ $0,
where Â is the coefficient matrix with the characteristi
equationjÂ 2 aÎj ­ 0, determining a characteristic third
order polynomial. If one of its roots takes Resad . 0, an
instability is found. The linear stability analysis yields
condition, for which an initially homogeneous granular e
semble becomes monotonically unstable [4],

g0

r0

≠p
≠T

Ç
0

2
≠g

≠r

Ç
0

≠p
≠T

Ç
0

1
≠g

≠T

Ç
0

≠p
≠r

Ç
0

1

k0
≠p
≠r

Ç
0

k2 , 0 . (5)

The subscript 0 denotes the ground state about which
linear stability analysis is carried out. To quantify th
derivatives in Eq. (5), we apply the equation of state of
ideal gas withr as an independent variablep ­ rT srd.
Using this, we get≠py≠T j0 ­ r0, ≠py≠rj0 ­ T0 1

r0≠Ty≠rj0, ≠gy≠T j0 ­ 3g0y2T0, and≠gy≠rj0 ­ 2g0y
r0 1 3g0y2T0 ? ≠Ty≠rj0. This yields an expression
for the critical wave numberkc ­

p
2g0y2k0≠py≠rj0.

According to this equation, unstable wavelike oscillation
with a characteristic length scaleLc ­ 2pk21

c occur only
if ≠py≠rj0 , 0, which quantifies the pressure instabilit
mentioned above.

The number of collisions per particle as a function
the “real” time is given byCyN ­ 1

2

Rt
0 ȳyl dt0 with the

average velocityȳ ­
p

8Typ and the mean free path
l ­ s

p
2 ps2rd21. In the dilute limit, the temperature

evolution of an initial homogeneous granular gas withe ­
const and an initial temperatureTin is given by T std ­
Tinys1 1 tytpd2 with tp ­ f 2

3 s1 2 e2drs2ppTin g21.
Using this, one findsCyN ­ 3ys1 2 e2d lns1 1 tytpd.
The temperature in terms ofCyN is then given byT s C

N d ­

Tin exps22 C
N

s12e2d
3 d, and ≠py≠rj0 ­ T0f2 exps2 C

N 3
s12e2d

3 d 2 1g which, together with the constitutive relation
4821
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for k andg yields the critical wave number

kc ­

vuut
2

g0

2k0T0

"
2 exp

√
2

C
N

s1 2 e2d
3

!
2 1

#
21

.

(6)

Because of thee dependence ofg0 there is no clustering
for e ­ 1. Especially, forCyN ! ` (e fi 1) one gets
kc ~

p
1 2 e2, which is the result found by Goldhirsch

and Zanetti [1], where the derivative≠py≠r has been
assumed to be a negative constant (thee dependence of
k0 has only little influence on the shape ofkc). In Fig. 3,
the wave numberkc derived from numerical simulations is
compared with the corresponding theoretical relation forkc

[Eq. (6)] as a function ofe andCyN ! ` (dotted line).
Note that the stability analysis yields akc corresponding
to a “full” wavelength, while the critical length scale given
by Eq. (3) corresponds to the detection of inhomogeneit
according to the size of the chosen sub-box. Therefore
compare the results of the simulations with the theoretic
investigations, we have to multiply the measuredLc by
a factor of 2. We find a fairly good agreement betwee
the theoretical approach and the numerical experimen
This confirms the validity of the theory to explain cluste
formation, including the major quantitative property suc
as the typical cluster size. The rather small deviatio
of the theoretical curve from the data points is due
fluctuations associated with the finite number of particl
and the averaging procedure. The dotted line correspo
to the wave numberkc of the homogeneous cooling for
CyN ! `, indicating that no dramatic change of cluste
formation can be expected under homogeneous cool
state conditions. Fore ­ 1, where one expectskc ­ 0,
fluctuations on all scales yield length scales in the range
half of the box size Eq. (3), while fore , 1, Fig. 3 shows
a systematic dependence on the dissipation.

To judge whether there is an influence of the box si
on our measurements, we vary the number of partic
and adequate the box size at a filling factor of 0.02 f
e ­ 0.4. In Fig. 3 the result forN ø 40 000 and N ø
100 000 is shown, indicating that there is no systemat
dependence on the box sizes.

In conclusion, our theoretical investigations, based on
stability analysis of the hydrodynamical equations, Eq. (4
yield typical cluster sizes depending on the dissipatio
represented by the wave numberkc [Eq. (6)]. Using
the generalized dimension we characterize the structu
evolution of density inhomogeneities. Statistical analys
of 3D numerical simulation data, based on the index
dispersion, yield typical length scales of cluster formatio
[Eq. (3)] as a function of the restitutione, which is in
good agreement with our theoretical predictions [Eq. (6
Both the theoretical investigations as well as the compu
4822
ies
, to
al

n
ts.
r
h
n

to
es
nds

r
ing

of

ze
les
or

ic

a
),
n,

ral
es
of
n

)].
ter

FIG. 3. Critical wave numberkc vs e. The stars are the
data points obtained from the simulations, the solid line show
the curve for the quadratic regression fit. The dotted line i
the theoretical result forCyN ! `. Diamonds and squares
are the results forN ø 40 000 and 100 000, respectively. To
get the length scales of the measured inhomogeneities, t
correspondingkc has to be divided by 2.

simulations are restricted to the HCS. An analysis of th
cooling regime beyond the homogeneous cooling state
needed and is part of ongoing and future work.
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