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Length Scales of Clustering in Granular Gases
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Clustering of granular gases is caused by the dissipation occurring in particle collisions. We use
the generalized dimension, a measure for the inhomogeneity of a spatial distribution of particles to
characterize the structural evolution. Furthermore, we quantify the typical length scale of the clusters
obtained by 3D simulations using the index of dispersion, a measure for the deviation of the particle
density from a Poissonian. We then derive an expression for the expected length scales of cluster
formation from a stability analysis in the hydrodynamical approximation. We find a good agreement
between our theoretical prediction and numerical experiments. [S0031-9007(99)09344-8]

PACS numbers: 45.70.Mg, 02.50.Fz, 05.20.Dd, 47.20.—k

In recent studies much attention has been devoted to thger of collisions per particl€ /N, the cooling process is
dynamics of granular gases [1-8]. The difference of suclslowed down by velocity and density fluctuations. After
systems to conventional gases is the energy loss occurririgis critical moment, the cooling is almost no longer
in interparticle collisions, characterized by the coefficientdetermined by particle-particle but by cluster-cluster inter-
of restitutione, the ratio between the normal componentsactions. This would imply that the clusters have already
of the rebound velocity, and the impact velocity of thebeen formed during this HCS phase.
colliding particles. The dissipation leads to several phe- In our simulations, we use a 3D event-driven code
nomena that show a completely different behavior tharwith N = 50 000 identical spherical particles. The particle
conventional gases, e.g., permanent cooling of the gas insemble is simulated in a cubic box of side lenggh =
the absence of energy sources, clustering of the particle?0 particle radii, chosen to correspond to a filling factor
with continued cooling [1], or a nonequipartition of the of about 0.02. We use periodic boundary conditions where
translational and the rotational degrees of freedom [2]we prevent overlapping by creating a twin particle of every
Therefore, the study of granular gases represents an emarticle reaching the boundaries. The twin particles are
tension of the Boltzmann theory of classical gases. shifted by an amount diL. to the opposite boundary

In this Letter, we present a method of cluster detection oind they get the same velocities and coordinates as the
nearly homogeneous distributed assemblies in 3D and thesriginal particles. The original particles are removed from
compare this with a quantitative expression of the clustethe system when the twin particle is completely inside the
sizes derived from stability analyses in the hydrodynamiesimulation box again. A particle leaving the box at the
approach. Namely, we characterize and quantify the clusedge or the corners needs, of course, four or eight twins,
tering of granular assemblies through a statistical analysigespectively. Initially each particle is placed randomly in
of the phase-space data obtained from particle simulationthe box, checked for overlaps with already placed particles,
We introduce two statistical measures to accomplish thatand regenerated if an overlap occurs. Then each particle

(i) To characterize the increase of clustering in the pargets a velocity of a given absolute value with a randomly
ticle density with time, we define a quantity in terms of thechosen direction.
generalized dimensions, a measure for the inhomogeneity In our simulations only translational degrees of freedom
of a spatial distribution of particles [9]. This quantity re- are considered. For convenience, we restrict ourselves to
flects thee dependence of clustering formation. We find the case of constant coefficients of restitution and fix its
a monotonic dependence of the rate of clustering on thgalues ab.1,0.2,...,1.0. Inrecent studies we have shown
dissipation. that a variable coefficient of restitution slows down the

(i) To quantify the characteristic size of inhomo- process of cluster formation but does not prevent clustering
geneities, we define another quantity in terms of the indexat all, i.e., the HCS is elongated [4].
of dispersion [10], which is a measure for the deviation of The inelastic collapse that has been found in 1D and 2D
the particle density from a Poissonian. We find that theand could be expected in 3D [5] is due to the low filling
dependence of cluster size enas obtained from our 3D factor not detected in our runs. However, it cannot be
simulations, agrees well with our theoretical predictionsexpected if one considers a finite contact duration [6].
derived from a stability analysis using a hydrodynamical We simulate the assemblies of differenfor the same
approximation [e.g., Eq. (6)]. Numerical simulations ratio of collisions per particl€ /N = 12. We ensure to
have shown [3] that the beginning of the cooling process ide in the HCS phase by comparing the temperature evolu-
well described by thédomogeneous cooling stafelCS),  tion of the granular assembly measured by the numerical
while, after a certain critical time, depending on the num-experiment with theoretical expressions derived from the
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Boltzmann theory [1,7,8]. A deviation of the theory and
the numerical simulation indicates an abandonment of the 1.6f j
HCS phase.
In a granular system which is still in the HCS, inho- 141 1
mogeneities are difficult to distinguish from fluctuations <
of an ensemble with purely elastic particle interactions. 1.2+ .
Therefore, we use measures from nonlinear dynamics and
statistics to characterize and quantify the spatial inhomo- 1.0F -
geneities in our simulations. First, we split the box into
m = 2L sub-boxes, wher€ = 1,2,...,12. Note thatthe
sub-boxes are no cubes in general. Second, we character-
ize the cluster formation quantitatively, using the general-
ized dimension, based on the Rényi entropies [11] definellIG. 1. A vs € [Eq. (1)]. The diamonds are the data points;
asH@ = [1/(1 — ¢)]log>’", p{ with ¢ € R \ {1} and the solid line is the result of a quadratic regression fit.
the probabilityp; for particles to be in théth box labeled
by m = 2£. sity n = n(e, 1, d, t) in the [th box, the standard devia-
Recently, we have shown that the generalized dimention s> = 3. (n — (n))*/(m — 1), and the number of
sion D4, defined in terms oH'@, is an appropriate tool degrees of freedom (total number of boxes). This test
to characterize the time evolution of the degree of clusStatistic is that of &> goodness-of-fit test for the hypothe-
tering [9,12]. Itis defined by, = — lim,_o H@/logd  sis that the particles are independently and uniformly dis-
for each time step and restitution coefficiene, where tributed in the whole simulation box.
d is the diagonal of each sub-box. Asincreases from For a homogeneous particle distribution, the index of
1, D, accentuates more and more the degree of clumpdispersion satisfiesy,, 11—« <1 < Xm-14, Which is
ing (high density regions) while, ag decreases from 1, characteristic for a Poissonian distribution of particles.
D, accentuates better the degree of depletion (low densitifere, « is the significance level of thg* statistics. A
regions). To characterize the increase of inhomogeneitfiigher index of dispersiofi > x._; , points towards in-
with time, we calculate from the simulation data héy  homogeneities, whilé < X,fq,l,l,a is typical for a regular
changes withy, i.e., dD,(e,1)/dq. Then, to get a rep- distribution of particles, as it is found, e.g., in lattices.
resentative measure of the change of inhomogeneity witfio detect the inhomogeneities, we define the normalized

00 02 04 06 08 1.0
€

time, we introduce the quantity (fgr — 0) quantity
aD,(e,t = ty)/dq - 1 1
Ale) = — : 1 1= - 1|0y —— —1], 2
)= 3D, et = tm)/0g @ R e G- @

wherezo andry,, are the times at the beginning and at theyhere we relate the index of dispersion to the critical
end of the simulation, respectively. The valgbased on  yg1ye 2 | . We checked different significance levels of
the change of the generalized dimension wjitteflects the {0 ¥2 Statistics namely).01 = @ = 0.07, which show

e—de_pendent structure formation. This measure is MOr&imilar results. Figure 2 and the following calculations
detailed and therefore more suitable for 3D simulations;re done witha = 0.05. The Heaviside functior®

than the measur®#®) with ¢ = constused in [4]. Aswell, ensures that purely regular features are excluded from
the quantityA is more sensitive for detecting density in- e statistical treatment. The time evolution Jofn the
homogeneities in our runs than the well-known two-point.itical region { > x2_..) for different values ofe

correlation function. Figure 1 shows the dependence ofptained from the 3D simulations, is shown in Fig. 2. The
A on e indicating that an initially homogeneous distribu- ¢|ymping starts at the smallest scales after a characteristic
tion of particles changes the greatest the smaller the coefffjhe * At later times, inhomogeneities at larger scales
cient of restitutione is. For elastically colliding granules gy lve. Figure 2 shows the tendency of the valiies a
(e = 1), one getsA = 1 corresponding to an unchanged fynction of, € and time. Because of the finite number of
homogeneous particle distribution during the time evolupaticles used in the simulations, one observes, in addition
tion. This behavior agrees with predictions [1,4] that, agq the density inhomogeneities caused by the dissipation,
the dissipation per collisiol — €?) increases, the clus- fiyctuations= 1/+/N. The most prominent length scale of
tering becomes more intense. , , . the inhomogeneities, under these conditions, is obtained
However, it is not possible to quantify, using this 55 follows. From our simulations and analysis, we find
method, the length scales of the inhomogeneities in thg,o following expression for the critical length scaleby

particle density of the simulations. Therefore, we intro'averaging the sub-box diagonalover space and time, as
duce a new measure defined in terms of the index of dis- -
Yadd el

persion [10]. The test statistic of the index of dispersion 5
Zd ZC/N 1

is given byl = (m — 1)s*(n)/(n); with the particle den- Le(e) =

3)
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log,, d
=

" relations in the dilute limit read for a constant coefficient
for the heat conductivity, angl = 2p2c*V#7T3 (1 — €?)
T and expand the state variables about the ground state
3 n granular gaspy is constant in time and spaag, = 0, and
ande« is the growth rate. Without loss of generality, one

£=0.9 is the pressure anblis the unity tensor. The constitutive
of restitution [7]n = 5T /40> /7 (3 — €)(1 + €) for
the viscosity, k = 75VT /202 /7 (1 + €) (49 — 33€)
=07 e (o) for the cooling. Here, the mass and the Boltzmann
- constant aren = kg = 1 ando is the particle diameter.
5 In order to analyze the stability of an initially homoge-
5 neous granular gas, we linearize the hydrodynamic Eq. (4)
st il X = Xo(t) + X'(7, 1) with |X'/X,| < 1. For a force-free
the ground state temperatuFg is a function of time, due
to the permanent cooling. In a periodic or infinite system,
6 F L8 5 £ the eigenfunctions of the linearized Eq. (4) are plane waves
e el B X'(7,1) « explat + ik - 7), wherek is the wave vector
can choosé& = (k,0,0). The resulting eigenvalue prob-
lem gives a system of linear equatiofis — al}X’ =

| i f 10 a 4 B ]

'I' m; S, =0y Time (c/N) where A is the coefficient matrix with the characterlstlc
equationNA — o I| = 0, determining a characteristic third
Tog order polynomial. If one of its roots takes R > 0, an
g Ee - instability is found. The linear stability analysis yields a
o I condition, for which an initially homogeneous granular en-
i 16 semble becomes monotonically unstable [4],
! 4 Yo 9p ay | 9p dy | 9p
FIG. 2(color). The evolution of the index of dispersion po dT lo dp lo 0T lo 9T lo dp lo
[Eq. (2)] in the critical region/ vs the sub-box diagonal and 9
the number of collisions per particle/N for different restitu- 0 Pl 2<o. (5)
tion coefficientse. The value ofl is color coded as indicated ap lo

in the color bar. Black indicates a Poissonian distribution

(T = 0); values higher than 0 (colored) indicate a significant
lumpy distribution of the particles in the configuration space. The subscript 0 denotes the ground state about which the

White corresponds to the highest deviation from a Poissoniafin€ar stability analysis is carried out. To quantify the
particle distribution. derivatives in Eq. (5), we apply the equation of state of an
ideal gas withp as an independent variable= pT(p).
Using this, we getap/aTlo = po, dp/dplo = To +
To interpret and better understand the results of oup,dT/dplo, dy/0T|o = 3v0/2Ty, anddy/dplo = 27yo/
simulations, we use a stability analysis in the hydrody-p, + 3v,/2T, - aT/dplo. This yields an expression
namical approximation, which describes well the physicgor the critical wave numbek. = \/—vyo/2k0dp/dplo.
of a granular gas during the HCS phase [1,3,4,7]. The\ccording to this equation, unstable wavelike oscillations
equations of hydrodynamics for a force-free granular gasvith a characteristic length scale = 27k ! occur only

read as if ap/dplo < 0, which quantifies the pressure instability
dp . dii ) mentioned above.
ar —pV - u, P = -V-P, The number of collisions per particle as a function of
(4) the ‘real” time is given byC/N = 5 [(#/Ad:’ with the
3 dr > A N average velocityp = /87 /7 and the mean free path
and —p—=-V-Q0—-P:V -, . .
2 P ar Q ey A= (2mo%p)~". In the dilute limit, the temperature

where the material derivative is given by/dr — evolution of an initial homogeneous granular gas with
9/at + @i - V" and * o” denote the double inner product const and apzlnma_ll tem*peraturlen is 2glven byT(r) =
and the dyadic product respectively. The quantitied, /(1 + /1) with ¢ =[50 — e )/‘2"7 VWTm]*
andT are the density, the average particle velocity, and th&!sing this, one findsC/N = 3/(1 — €7)In(1 + tc/t )-
temperature, respectively. The heat qu>Qs— —kVT The tempera}lure)ln terms Gf/N s then given byr'(iy) =
! 2 A~ N N C €

and the pressure tensor is denotedt)) = pi — 29D Tin P2y 5 ), and dp/aply = Tol2exp(—§ X
with the shear tensob = %(V ou+ uoV) wherep “}—‘)) — 1] which, together with the constitutive relations

4821



VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

for k andy yields the critical wave number

7 _C(l—ez) 3 !
ke _J 2x0To {ZGX'O( N 3 ) 1] '
(6)

Because of the& dependence of, there is no clustering

for e = 1. Especially, forC/N — « (e # 1) one gets 0.01F 3
k. « /1 — €2, which is the result found by Goldhirsch : : : '
and Zanetti [1], where the derivativep/dp has been 00 0z 04 06 08 10

assumed to be a negative constant (¢hdependence of ¢

) has only litle influence on the shapeied. InFig. 3, G0 &, CrEE, O et B e sald ime shows
the wave ”“T“bekc derived from numerlcql S|mula'F|ons 'S the curve for the guadratic regression fit. The dotted line is
compared with the corresponding theoretical relatiorkfor the theoretical result foC/N — . Diamonds and squares
[Eq. (6)] as a function ok and C/N — o (dotted line). are the results foN ~ 40000 and 100000, respectively. To
Note that the stability analysis yieldska corresponding get the length scales of the measured inhomogeneities, the
to a “full” wavelength, while the critical length scale given corresponding. has to be divided by 2.

by Eq. (3) corresponds to the detection of inhomogeneities

according to the size of the chosen sub-box. Therefore, tgimjations are restricted to the HCS. An analysis of the
compare the results of the simulations with the theoretlca(goonng regime beyond the homogeneous cooling state is
investigations, we have to _multlply the measuledby  eeded and is part of ongoing and future work.
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as the typical cluster size. The rather small deviation

of the theoretical curve from the data points is due to

fluctuations associated with the finite number of particles

and the averaging procedure. The dotted line corresponds1) |. Goldhirsch and G. Zanetti, Phys. Rev. LeR0, 1619
to the wave numbek, of the homogeneous cooling for (1993).

C/N — o, indicating that no dramatic change of cluster [2] A. Goldshtein and M. Shapiro, J. Fluid Mec@82 75
formation can be expected under homogeneous cooling (1995); S. McNamara and S. Luding, Phys. Revb&

state conditions. Foe = 1, where one expects. = 0, 2247 (1998).

fluctuations on all scales yield length scales in the range off3] T.P.C. van Noije, M.H. Emst, R. Brito, and J.A.G.
half of the box size Eq. (3), while for < 1, Fig. 3 shows Orza, Phys. Rev. Let9, 411 (1997); T.P. C. van Noije,
a systematic dependence on the dissipation. gﬂégklggés)t’ and R. Brito, Physica (Amsterdarap1A

To judge whether there is an influence of the box size [4] F. Spahn, U. Schwarz, and J. Kurths, Phys. Rev. [%8t.
on our measurements, we vary the number of particles” ~ 1596 (1997).

and adequate the box size at a filling factor of 0.02 for (5} 5 McNamara and W.R. Young, Phys. Rev.58, R28

e = 0.4. In Fig. 3 the result forN = 40000 and N = (1994);53, 5089 (1996).
100000 is shown, indicating that there is no systematic [6] S. Luding and S. McNamara, Granular Mattér 113
dependence on the box sizes. (1998).

In conclusion, our theoretical investigations, based on a[7] J.T. Jenkins and M.W. Richman, Arch. Ration. Mech.
stability analysis of the hydrodynamical equations, Eq. (4), _ Anal. 87, 355 (1985).
yield typical cluster sizes depending on the dissipation, [8] C.K.K.Lun and S.B. Savage, Acta MeoB3, 15 (1986);
represented by the wave numbkr [Eq. (6)]. Using S.B. Savage, J. Fluid Mecl41, 109 (1992).
the generalized dimension we characterize the structural®’ Cl.gcgr7ebog|, E. Ott, and J. A. Yorke, Phys. Rev38, 3522
evolution of density inhomogeneities. Statistical analyseilo] ( )

. ) . . B. D. Ripley, Spatial Statistic§Wiley & Sons, New York,
of 3D numerical simulation data, based on the index o 1981). 'pey. spatl isticgWiley W

dispersion, yield typical length scales of cluster formationy11} 3. Balatoni and A. Rényi, iSelected Papers of A. Rényi
[Eg. (3)] as a function of the restitutioa, which is in (Akademiai, Budapest, 1976), Vol. I, p. 558.

good agreement with our theoretical predictions [Eq. (6)]{12] A. Brandenburg, I. Klapper, and J. Kurths, Phys. Rev. E
Both the theoretical investigations as well as the computer 52, 4602 (1995).

4822



