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Clustering of Granular Assemblies with Temperature Dependent Restitution
under Keplerian Differential Rotation
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The clustering of granular assembilies is studied under the influences of (i) a temperature-dependent
coefficient of restitution and in (ii) a central gravitational force field. Our stability analyses of the
constitutive equations as well as numerical experiments show that in case (i) clusters are still formed
even though collisions become more elastic as the temperature decreases. In case (ii) the clusters appear
as a transient phenomenon during the establishment of a quasiequilibrium. These transient patterns
rotate driven by the shear and then they “melt” away with elapsed time. [S0031-9007(97)02381-8]

PACS numbers: 83.50.—v, 05.20.Dd, 47.55.Kf, 96.35.Cp

Granular material is very common in nature, from ter-retical analysis. The parameters and 7. ensure that
restrial sands and gravels to dust and planetary rings(T, vin, — 0) — 1. The dissipation rate will be varied
in space. The dissipative nature of the particle colli-via the dissipation parametdfC).
sions makes such systems quite different from usual gasesNow, we investigate the clustering instability in a small
where interactions are conservative. This dissipation erbox corotating in an orbit around a central body (e.g.,
ables granular systems to form clusters, a process stugtanetary rings). The motion of a particle in such a
ied intensively under force-free conditions [1—3] or underregion is governed by Hill's equations, and hence, the
shear [4—6]. However, in most of these investigationshydrodynamic approximation [1,4,15] for this case reads
a constant coefficient of restitution, which measures the 5
damping of the impact velocity, was applied. This results au A > 20203 | — _ _v.p
in stable clusters if the dissipation is strong enough. p{ dt 200 X u 3Q°yey} = TPV -V P,

However, laboratory experiments [7] show that this (1)
coefficient depends sensitively on the relative velocities
of the granules, i.e., on the temperature. This dependence dp _ —pV - @, )
together with a Keplerian differential rotation was taken dt
into account in studies of the dynamj&inetics of 3 dT R .
planetary rings. The differential rotation is caused by =-V-Q0—-P:Vou—1y. 3
a central gravitational field= r~2) which acts as a 2P ar
disrupting “tidal force” (in the following this term will The substantial derivative is glven bﬂy I V)
be used) for extended clusters. Then it was foun an
that the viscous (cluster) instability [8,9] does not work , he shear tensor 'f derlotedﬁy— 27 (Vou +_” oV -
[10-12]. This provokes the question: Does the (i)3 TV -al) = 3006, o €y, where a mean circular mo-
variable restitutionor the (ii) tidal force—or both in  tion around the planefi = 5 yQoé, is assumed {y
combination—prevent the cluster formation? denotes direction to the planet;x denotes direction

In this Letter we investigate these problems by applyingof the orbital motion of the box{), denotes orbital
stability analyses and numerical test-particle experimentdrequency, “” denotes double inner product). The

At first the dynamics of collisions between two granu-deviations from this circular motion—the inclinations
lar spheres is briefly sketched. Recent related mvestlgaind eccentricities—account for the granular tempera-
tions [13] have yielded an extended Hertzian lgw< ture T. The values®, p, P and O are force fields,

—(& + Cé)*/2 for the collisional dynamics, wherg and the mass density, the stress tensor, and the heat flux,
C denote the deformation of either bodies during the conrespectively. The stress tensor and the heat flux read
tact and a dissipative material constant, respectively. Nu?P (D) =~ PI — 29(T)D; Q —k(T)VT, where the
merical solutions of this collision dynamics have yieldedconstitutive relations [1,4,15] in the dilute limit yield for
the restitution coefficient(vimp) = A/(vimp + v+)? in  the viscosity n = (5/24)\/ﬁ/[3 — e(D)]/[1 + e(T)],
dependence on the impact velocity,,. It reproduces for the heat conductivitye =~ (25/4)v#T/[1 + €(T)]/
fairly well the results of laboratory experiments [7] if one [49 — 33€(T)], for the pressureP = pT, and for the
usesA =~ 0.2---0.4 (dissipation parameter) angl = 1/4.  cooling ratey = 24[1 — e(T)*]p>J/T3/#. All quanti-

We use this relation in the following numerical experi- ties are scaled to the particle diamefey = 1, density
ments. Assuming a Gaussian velocity distribution [14],p, = 1, Boltzmann constantz = 1.

the mean restitution become$l’) =~ A/(T + T.)?/? (T Next, we consider the force-free cask = & = 0,
denotes temperature), which will be used for the theoalready discussed for constant restitutier= const by
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Goldhirsch and Zanetti [1], to judge whether the relation Bottom line—The variable restitution cannot prevent

€(T) alone can hinder the clustering. Afterwards we studythe cluster formation; it slows the process down in the

the clustering in orbit}y # 0. same way as the slope of the cooling curve is smaller for
(i) The force-free case(}, = ® = 0).—Equations €(T) becausd1 — €(T)*] is monotonically dropping to

(1)-(3) have the homogeneous solution [&) =0, zero.

VTy = Vpo = 0, To(¢) and its stability is judged by (i) Clustering in the orbit (2o # 0, = 0) —Here,

Imeanzmg these equations (2D problem for simplicity: the temperature evolution [Eq. (3J]] = (anQ3 — by)/

- e, =w = const). Equation (3) reduces to a merep is mainly determined by a viscous heatirgnQZ/p

coollng in this caseT, = —2(3po) 'y(Ty). For B =  and the collisional cooling:a( and b constant) This bal-

1/4 one findst + 1y « A~He(Ty)*> + In[1 — €(Ty)*]} as  ance ensures the establishment of a “quasi’-equilibrium

an expression for the basic soluti@g(r). If €(Ty) < 1 related to a steady temperatufg(r — %, pg) = T( po)

its expansion yields the expression for constant restitutioge p, 2 for 8 = 0) whereT, — 0.

To(t) = To(0)/(1 + t/t0)? (e.g., [1]). This quasiequilibrium reduces the analysis to Egs. (1)
As usual, all values are expanded in a ground state arehd (2). The same procedure as in the force-free case

small perturbationsX = Xo(r) + X'(7,1); (IX'/Xol < (i) can be applied if all values depend merely on

I, X' =4 = @,v'),p/,T'). In a periodic (infinite) corresponding to pattern rotation in the shear [4]. It

system the eigenfunctions of the linearized Egs. (1)—(3}hould be noted that this assumption is valid only if

are plane waveX'(7,t) « explat + ik - 7) (k denotes self-gravity does not play a role, i.e., for dilute (low

wave vector; @ denotes growth rate). The resulting mass) systems. Then the stationary state becaoimes

eigenvalue problem gives a system of linear equation$.5Qgye,; po = const and the criterion of its instability

{AXo(0), ki, ..., k}) — al}X’ = 0 (i = x,y;A denotes is found

coefficient matrix) with the solvability conditionA —

aZI = 0 which determines the characteristic equation 30297 m|  2m P o (©6)
Do aia’ = 0. If one of its roots takes Re) > 0, 9p lp, p 3ply

an instability is found. Because all coefficients in the _ _ _ - _
characteristic equation ate > 0 (V i > 0), Vieta’s root Relation (6) combines the pressure instability [1] with

rules indicate instability fory < 0, which is fulfilled for ~ the viscous instability, already discussed in course of
the explanation of the irregular fine structures in plan-

vo + 9P| oy -p 9y + kok? or =0, (4) etary rings [8,9]. In the dilute limit [see case (i)] one
dplo T lo aplo dplo getsn(p) = const, and thusy,n = 0. However, tak-
4 3 ing into account the nonlocal part ef at higher packing

ke o gp{;[l + €(To)][49 — 33€(Ty)] fractions [6,15,16]—one obtaing,n > 0 ([10-12,17)).

T T2t Simultaneously, the dynamic dependend&) counter-
X [1 — e(Tp)? + M}}z (5) acts the pressure instability as mentioned in the former
To + T case. Thus, at least for larger scales a fragmentation of
where k. is a critical wave number [equality in relation granular agglomerates must be expected.
(4). The relations for constant restitution are obtained for In order to prove this theoretical conclusion we carry
e(Ty, B = 0) = const. Inour cas@ > 0 the expression out numerical particle experiments (2D), where cases of
in the curly brackets never gets negative, provided thadlifferent dissipation—according to a variationAf—will
dPy/apo < 0, but approaches zero fof — 0. That be considered.N = 20000 particles have been initially
means at any time there are typical length scdles  distributed homogeneously over a box which resembles
k' which can form clusters. However, in the coursethe conditions in Saturn’s B ring. The area-filling factor
of the cooling processk. gets smaller and hence only (optical depth) isr = Nn-Rf,/FbOX = 1/10 with a par-
larger scales remain unstable. In the case of constafitle radiusk, = 1 cm, asurface aref,,x =~ 8 m X 8 m
restitution [1] becomeg.(B8 = 0) = const, and all scales in all numerical experiments [cases (i) and (ii). Differ-
are unstable in a stationary fashion. The differencegnt initial conditions have been chosen for the rm veloc-
between both cases are illustrated in Fig. 1 where thdy: equal distribution® (v; — v¢)®(v; — vy); as well as
differenceAk = k.(B8 # 0) — k.(8 = 0) is plotted. At adelta functionS(v — wvg) (vo = 1 cms!; isotropy). In
high temperaturess (= 0) there may well be positive either case the velocity distribution approaches an approxi-
Ak, but with increasing time the values get negativemate Gaussian form [14] after a few collisions per particle
indicating that the instability for the casg@ # 0 gets and follow comparable evolutions during two orbital peri-
weaker compared to the cage= 0. The right part of ods watched numerically. In our runs we have in average
Fig. 1 shows a numerical experiment with 20 000 particled 0 - - - 30 collisions per orbital period, respectively. These
and withA = 0.1 andB = 1/4. One recognizes clusters values are higher than the - - 10 collisions per orbit ob-
isotropically oriented and having wavelengths quite belowtained by Salo [12], which is due to the difference between
the size of the box. the collision frequencies in 2D (this study) and 3D.
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FIG. 1.
structure without tidal forceA = 0.1); 20 000 particles (radius:

Figure 2 shows the snapshots= 0.3(27 /()] of the

Left: Difference of the critical wave number Aft vs density and temperature. Right:
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perature field are much less pronounced. However, even

particle configuration (top) in the box and a grey level rep-in the very dissipative cases df = 0.1 and e = 0, the
resentation of the temperature (bottom) of simulations foomnipresent tidal forces should be able to disrupt the
a quite inelasticA = 0.1 (left), and a more conservative clusters, because of the lack of attractive forces. The

caseA = 0.5 (right).

In the former we observe phases decrease of the dissipation (fer> 0) during the cooling

with rather different “temperatures.” In the clusters theshould only support this process and the related (viscous)
relative motion is almost completely damped which cor-diffusion (heat conductivity) af.. > 0 should smooth out
responds td' — 0. There is a correlation between low density (temperature) gradients.

temperature spots and the clusters formed.

In the case Next we try to characterize quantitatively the evolution

A = 0.5 the inhomogeneities in the density and the tem-of the density pattern by means of complexity measures.
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FIG. 2. Comparison of snapshots of the spatial structures
well as of the spatial temperature field far= 0.1 (left), and
A = 0.5 (right) obtained from numerical experiments.
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We calculate the Renyi informatioH, to describe the
spatial inhomogeneity in dependence on time. It

defined by
N
Hy=(1—-¢)"! |d(z p?>, ()
i=1

which is based on a partition of the space inte—boxes
and p; is the probability of particles to be in thih
box. The weighty emphasizes clustered structures for
g > 1, whereas regions with low probability are favored
for0 < ¢ <1. H, converges to the Shannon entropy as
g — 1. H, takes its maximum in the case of equidis-
tributed particles [18]. Recently we have shown that
is an appropriate tool to characterize spatiotemporal in-
termittency [19]. Using a5 X 15 grid partitioning and
q = 5, we can measure different degrees of clustering for
different A in dependence on time (Fig. 3). It should be
noted that these do not sensitively depend;on

From Fig. 3 we can conclude (1) there is no clustering
in the conservative case= 1 and almost none foA =
0.5. (2) A rapid cluster formation is found fot < 0.5.
(3) An increase ofH, after a certain time points to a
Jtansient nature of all clusters, even in the completely
inelastic case. (4) The fluctuations, well observed for
A = 0 or 0.1, refer to a rapid alternation of freezing and

is
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lations are important. In other words, then the system
cannot be described with a single particle distribution
function [15]. Therefore, the influence of the particle
number density as well as that of a size distribution [12]
of the granules on the validity of Eqgs. (1)—(3) is one of
the interesting points which should be attributed to future
investigations.
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