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Clustering of Granular Assemblies with Temperature Dependent Restitution
under Keplerian Differential Rotation
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(Received 31 May 1996; revised manuscript received 8 October 1996)

The clustering of granular assemblies is studied under the influences of (i) a temperature-dependent
coefficient of restitution and in (ii) a central gravitational force field. Our stability analyses of the
constitutive equations as well as numerical experiments show that in case (i) clusters are still formed
even though collisions become more elastic as the temperature decreases. In case (ii) the clusters appear
as a transient phenomenon during the establishment of a quasiequilibrium. These transient patterns
rotate driven by the shear and then they “melt” away with elapsed time. [S0031-9007(97)02381-8]
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Granular material is very common in nature, from te
restrial sands and gravels to dust and planetary rin
in space. The dissipative nature of the particle col
sions makes such systems quite different from usual ga
where interactions are conservative. This dissipation e
ables granular systems to form clusters, a process s
ied intensively under force-free conditions [1–3] or und
shear [4–6]. However, in most of these investigatio
a constant coefficient of restitution, which measures t
damping of the impact velocity, was applied. This resu
in stable clusters if the dissipation is strong enough.

However, laboratory experiments [7] show that th
coefficient depends sensitively on the relative velociti
of the granules, i.e., on the temperature. This depende
together with a Keplerian differential rotation was take
into account in studies of the dynamicsykinetics of
planetary rings. The differential rotation is caused b
a central gravitational fields~ r22d which acts as a
disrupting “tidal force” (in the following this term will
be used) for extended clusters. Then it was fou
that the viscous (cluster) instability [8,9] does not wor
[10–12]. This provokes the question: Does the (
variable restitutionor the (ii) tidal force—or both in
combination—prevent the cluster formation?

In this Letter we investigate these problems by applyi
stability analyses and numerical test-particle experimen

At first the dynamics of collisions between two granu
lar spheres is briefly sketched. Recent related investi
tions [13] have yielded an extended Hertzian lawj̈ ~

2sj 1 C Ùjd3y2 for the collisional dynamics, wherej and
C denote the deformation of either bodies during the co
tact and a dissipative material constant, respectively. N
merical solutions of this collision dynamics have yielde
the restitution coefficientesyimpd ø Aysyimp 1 ypdb in
dependence on the impact velocityyimp . It reproduces
fairly well the results of laboratory experiments [7] if on
usesA ø 0.2 · · · 0.4 (dissipation parameter) andb ø 1y4.
We use this relation in the following numerical exper
ments. Assuming a Gaussian velocity distribution [14
the mean restitution becomesesTd ø AysT 1 Tpdby2 (T
denotes temperature), which will be used for the the
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retical analysis. The parametersyp and Tp ensure that
esT , yimp ! 0d ! 1. The dissipation rate will be varied
via the dissipation parameterAsCd.

Now, we investigate the clustering instability in a smal
box corotating in an orbit around a central body (e.g
planetary rings). The motion of a particle in such a
region is governed by Hill’s equations, and hence, th
hydrodynamic approximation [1,4,15] for this case reads

r

Ω
d $u
dt

1 2 $V0 3 $u 2 3V2
0y $ey

æ
­ 2r=F 2 = ? P̂ ,

(1)

dr

dt
­ 2r= ? $u , (2)

3
2

r
dT
dt

­ 2= ? $Q 2 P̂ : = ± $u 2 g . (3)

The substantial derivative is given byddt !
≠

≠t 1 $u ? =.
The shear tensor is denoted byD̂ ­

1
2 s= ± $u 1 $u ± = 2

2
3 = ? $uÎd ­

3
2 V0 $ex ± $ey, where a mean circular mo-

tion around the planet$u ­
3
2 yV0 $ex is assumed (2y

denotes direction to the planet,2x denotes direction
of the orbital motion of the box,V0 denotes orbital
frequency, “:” denotes double inner product). The
deviations from this circular motion—the inclinations
and eccentricities—account for the granular temper
ture T . The valuesF, r, P̂ and $Q are force fields,
the mass density, the stress tensor, and the heat fl
respectively. The stress tensor and the heat flux re
P̂ sD̂d ø PÎ 2 2hsT dD̂; $Q ­ 2ksTd=T , where the
constitutive relations [1,4,15] in the dilute limit yield for
the viscosity h ø s5y24d

p
pTyf3 2 esT dgyf1 1 esT dg,

for the heat conductivityk ø s25y4d
p

pTyf1 1 esT dgy
f49 2 33esT dg, for the pressureP ø rT , and for the
cooling rateg ø 24f1 2 esTd2gr2

p
T3yp. All quanti-

ties are scaled to the particle diameterDp ­ 1, density
rp ­ 1, Boltzmann constantkB ­ 1.

Next, we consider the force-free caseV0 ­ F ­ 0,
already discussed for constant restitutione ­ const by
© 1997 The American Physical Society
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Goldhirsch and Zanetti [1], to judge whether the relatio
esT d alone can hinder the clustering. Afterwards we stud
the clustering in orbitV0 fi 0.

(i) The force-free case (V0 ­ F ­ 0).—Equations
(1)–(3) have the homogeneous solution [1]$u0 ­ 0,
=T0 ­ =r0 ­ 0, T0std and its stability is judged by
linearizing these equations (2D problem for simplicity
$u ? $ez ­ w ­ const). Equation (3) reduces to a mer
cooling in this case:ÙT0 ­ 22s3r0d21gsT0d. For b ­
1y4 one findst 1 t0 ~ A24hesT0d2 1 lnf1 2 esT0d2gj as
an expression for the basic solutionT0std. If esT0d ø 1
its expansion yields the expression for constant restituti
T0std ­ T0s0dys1 1 tyt0d2 (e.g., [1]).

As usual, all values are expanded in a ground state a
small perturbationsX ­ X0std 1 X 0s$r , td; (jX 0yX0j ø
1; X 0 ) $u0 ­ su0, y0d, r0, T 0). In a periodic (infinite)
system the eigenfunctions of the linearized Eqs. (1)–(
are plane wavesX 0s$r, td ~ expsat 1 i $k ? $rd ( $k denotes
wave vector; a denotes growth rate). The resulting
eigenvalue problem gives a system of linear equatio
hÂsssX0std, ki , . . . , k2

i ddd 2 aÎj $X 0 ­ 0 (i ­ x, y; Â denotes
coefficient matrix) with the solvability conditionjÂ 2

aÎj ­ 0 which determines the characteristic equatioP4
i­0 aia

i ­ 0. If one of its roots takes Resad . 0,
an instability is found. Because all coefficients in th
characteristic equation areai . 0 s; i . 0d, Vieta’s root
rules indicate instability fora0 , 0, which is fulfilled for

g0 1
≠P
≠r

Ç
0

≠g

≠T

Ç
0

2r
≠g

≠r

Ç
0

1k0k2 ≠P
≠r

Ç
0
# 0 , (4)

kc ~
4
5

r

Ω
3
p

f1 1 esT0dg f49 2 33esT0dg

3

∑
1 2 esT0d2 1

2T0besT0d2

T0 1 Tp

∏æ 1

2

, (5)

where kc is a critical wave number [equality in relation
(4). The relations for constant restitution are obtained f
esT0, b ­ 0d ­ const. In our caseb . 0 the expression
in the curly brackets never gets negative, provided th
≠P0y≠r0 , 0, but approaches zero forT ! 0. That
means at any time there are typical length scalesL .

k21
c which can form clusters. However, in the cours

of the cooling process,kc gets smaller and hence only
larger scales remain unstable. In the case of const
restitution [1] becomeskcsb ­ 0d ­ const, and all scales
are unstable in a stationary fashion. The differenc
between both cases are illustrated in Fig. 1 where t
differenceDk ­ kcsb fi 0d 2 kcsb ­ 0d is plotted. At
high temperatures (t ­ 0) there may well be positive
Dk, but with increasing time the values get negativ
indicating that the instability for the caseb fi 0 gets
weaker compared to the caseb ­ 0. The right part of
Fig. 1 shows a numerical experiment with 20 000 particl
and withA ­ 0.1 andb ­ 1y4. One recognizes clusters
isotropically oriented and having wavelengths quite belo
the size of the box.
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Bottom line.—The variable restitution cannot prevent
the cluster formation; it slows the process down in th
same way as the slope of the cooling curve is smaller f
esTd becausef1 2 esTd2g is monotonically dropping to
zero.

(ii) Clustering in the orbit (V0 fi 0, F ­ 0d.—Here,
the temperature evolution [Eq. (3)]ÙT ø sahV

2
0 2 bgdy

r is mainly determined by a viscous heating~ hV
2
0yr

and the collisional cooling: (a andb constant). This bal-
ance ensures the establishment of a “quasi”-equilibriu
related to a steady temperatureT0st ! `, r0d ­ T`s r0d
(~ r

22
0 for b ­ 0) where ÙT0 ! 0.

This quasiequilibrium reduces the analysis to Eqs. (1
and (2). The same procedure as in the force-free ca
(i) can be applied if all values depend merely ony
corresponding to pattern rotation in the shear [4]. I
should be noted that this assumption is valid only i
self-gravity does not play a role, i.e., for dilute (low
mass) systems. Then the stationary state becomes$u0 ­
1.5V0y $ex; r0 ­ const and the criterion of its instability
is found

3 V2
0

≠h

≠r

Ç
r0

1k2 h

r

≠P
≠r

Ç
r0

, 0 . (6)

Relation (6) combines the pressure instability [1] with
the viscous instability, already discussed in course o
the explanation of the irregular fine structures in plan
etary rings [8,9]. In the dilute limit [see case (i)] one
getshs rd ­ const, and thus,≠rh ­ 0. However, tak-
ing into account the nonlocal part ofh at higher packing
fractions [6,15,16]—one obtains≠rh . 0 ([10–12,17]).
Simultaneously, the dynamic dependenceesT d counter-
acts the pressure instability as mentioned in the form
case. Thus, at least for larger scales a fragmentation
granular agglomerates must be expected.

In order to prove this theoretical conclusion we carr
out numerical particle experiments (2D), where cases
different dissipation—according to a variation ofA—will
be considered.N ­ 20 000 particles have been initially
distributed homogeneously over a box which resemble
the conditions in Saturn’s B ring. The area-filling factor
(optical depth) ist ­ NpR2

pyFbox ­ 1y10 with a par-
ticle radiusRp ­ 1 cm, a surface areaFbox ø 8 m 3 8 m
in all numerical experiments [cases (i) and (ii). Differ-
ent initial conditions have been chosen for the rm veloc
ity: equal distributionQsyi 2 y0dQsyi 2 y0d; as well as
a delta functiondsy 2 y0d (y0 ­ 1 cm s21; isotropy). In
either case the velocity distribution approaches an appro
mate Gaussian form [14] after a few collisions per particl
and follow comparable evolutions during two orbital peri
ods watched numerically. In our runs we have in averag
10 · · · 30 collisions per orbital period, respectively. These
values are higher than the1 · · · 10 collisions per orbit ob-
tained by Salo [12], which is due to the difference betwee
the collision frequencies in 2D (this study) and 3D.
1597
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atial
FIG. 1. Left: Difference of the critical wave number ofDk vs density and temperature. Right: Snapshot (after 1 h) of sp
structure without tidal force (A ­ 0.1); 20 000 particles (radius­ 1 cm); T0s0d ­ 1 cm2 s22.
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Figure 2 shows the snapshots [t ­ 0.3s2pyV0d] of the
particle configuration (top) in the box and a grey level re
resentation of the temperature (bottom) of simulations f
a quite inelasticA ­ 0.1 (left), and a more conservative
caseA ­ 0.5 (right). In the former we observe phase
with rather different “temperatures.” In the clusters th
relative motion is almost completely damped which co
responds toT ! 0. There is a correlation between low
temperature spots and the clusters formed. In the c
A ­ 0.5 the inhomogeneities in the density and the tem

FIG. 2. Comparison of snapshots of the spatial structures
well as of the spatial temperature field forA ­ 0.1 (left), and
A ­ 0.5 (right) obtained from numerical experiments.
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perature field are much less pronounced. However, ev
in the very dissipative cases ofA ­ 0.1 and e ­ 0, the
omnipresent tidal forces should be able to disrupt th
clusters, because of the lack of attractive forces. Th
decrease of the dissipation (fore . 0) during the cooling
should only support this process and the related (viscou
diffusion (heat conductivity) atT` . 0 should smooth out
density (temperature) gradients.

Next we try to characterize quantitatively the evolution
of the density pattern by means of complexity measure
We calculate the Renyi informationHq to describe the
spatial inhomogeneity in dependence on time. It i
defined by

Hq ­ s1 2 qd21 ld

√
NX

i­1

p
q
i

!
, (7)

which is based on a partition of the space intoN —boxes
and pi is the probability of particles to be in theith
box. The weightq emphasizes clustered structures fo
q . 1, whereas regions with low probability are favored
for 0 , q , 1. Hq converges to the Shannon entropy a
q ! 1. Hq takes its maximum in the case of equidis-
tributed particles [18]. Recently we have shown thatHq

is an appropriate tool to characterize spatiotemporal in
termittency [19]. Using a15 3 15 grid partitioning and
q ­ 5, we can measure different degrees of clustering fo
different A in dependence on time (Fig. 3). It should be
noted that these do not sensitively depend onq.

From Fig. 3 we can conclude (1) there is no clusterin
in the conservative casee ­ 1 and almost none forA ­
0.5. (2) A rapid cluster formation is found forA , 0.5.
(3) An increase ofHq after a certain time points to a
transient nature of all clusters, even in the completel
inelastic case. (4) The fluctuations, well observed fo
A ­ 0 or 0.1, refer to a rapid alternation of freezing and
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]

).
FIG. 3. Renyi entropiesHq are shown for q ­ 5 vs
time for the runs varying the dissipation paramete
A ­ 0; 0.1; 0.3; 0.5; 1, which measure the disorder in the
particle configuration.

melting. Furthermore they are also the reason for t
unexpected intersection of the curvesA ­ 0.0; 0.1 in the
time range6 h , t , 9 h.

Coming back to the major topic of this Letter we
have found that the dynamic behavior of the coefficie
of restitution does not prevent granular matter to form
clusters. It slows the cooling process down and
course of the time the scales of unstable modes increa
Furthermore, clustering is not stable if tidal forces, bu
no attractions (interparticle gravity), act between th
particles. In this context, recent results that such syste
behave as if there were long-range attractions betwe
the granules [3] seem to be questionable and shou
be seriously revisited. Consequently, collisions alon
cannot be responsible for the coagulation of planetesim
into planets after decoupling from the nebular gas,
suggested by Goldhirsch and Zanetti [1]. Only attractiv
forces as the gravity are able to keep the clusters safe fr
fragmentation [20,21].

Of course, more detailed work is needed for a deep
understanding of the granular dynamics, as there is, e
a better understanding of the collisional behavior of no
spheric particles (fractal surfaces) including the rotation
degrees of freedom caused by a tangential friction [13
Furthermore, not only the dissipation, and thus, the “di
tance” from equilibrium, is important. In dense system
the Boltzmann and the Enskog theory—both are the ba
of the constitutive Eqs. (1)–(3)—might not be appli
cable anymore, because not only binary particle corr
r
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lations are important. In other words, then the system
cannot be described with a single particle distribution
function [15]. Therefore, the influence of the particle
number density as well as that of a size distribution [12
of the granules on the validity of Eqs. (1)–(3) is one of
the interesting points which should be attributed to future
investigations.
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