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Local simulations with up to 60,000 self-gravitating dissipatively
colliding particles indicate that dense unperturbed ring systems
with optical depth τ > 1 can exhibit spontaneous viscous oscillatory
instability (overstability), with parameter values appropriate for
Saturn’s B ring. These axisymmetric oscillations, with scale∼100 m
and frequency close to the orbital period, generally coexist with in-
clined Julian–Toomre type wakes forming in gravitating disks. The
onset of overstability depends on the internal density of particles,
their elasticity, and the size distribution. The same type of oscillatory
behavior is also obtained in an approximation where the particle–
particle gravity is replaced by an enhanced frequency of vertical
oscillations, Äz/Ä> 1. This has the advantage that these systems
can be more easily studied analytically, as in the absence of wakes the
system has a spatially uniform ground state. For Äz/Ä= 3.6 over-
stability again starts at τ ∼ 1. Also, nongravitating systems, Äz/

Ä= 1, show overstability, but this requires τ ∼ 4. To facilitate a
quantitative hydrodynamical study of overstability we have mea-
sured the transport coefficients (kinematic shear viscosity ν, kine-
matic bulk viscosity ζ , and kinematic heat conductivity κ) in sim-
ulations with Äz/Ä= 3.6, 2.0, and 1.0. Both local and nonlocal
(collisional) contributions to the momentum and energy flux are
taken into account, the latter being dominant in dense systems with
large impact frequency. In this limit we find ζ/ν≈ 2, κ/ν≈ 4. The
dependence of pressure, viscosity, and dissipation on density and
kinetic temperature changes is also estimated. Preliminary com-
parisons indicate that the condition for overstability is β >βcr ∼ 1,
where β := ∂ log(ν)/∂ log(τ ). This limit is clearly larger than the
βcr ∼ 0 suggested by the linear stability analysis in Schmit and
Tscharnuter (1995), where the system was assumed to stay isother-
mal even when perturbed. However, it agrees with the nonisother-
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vision of Astronomy, University of Oulu, PL 3000, FIN-90014 Oulun yliopisto
Finland. Fax: 358-8-553 1934.

mal analysis in Spahn et al. (2000). This increased stability is in
part due to the inclusion of temperature oscillations in the anal-
ysis, and in part due to bulk viscosity exceeding shear viscosity.
A detailed comparison between simulations and hydrodynamical
analysis is presented in a separate paper (Schmidt et al.
2001). c© 2001 Academic Press
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One of the most puzzling features of Saturn’s rings, revea
by Voyager fly-bys, is the wealth of radial structure on sca
ranging from thousands of kilometers down to the resolut
limit of a few kilometers (Smithet al.1982, Laneet al.1982).
Intuitively, frequent collisions between ring particles would
expected to smooth out density gradients. This problem has
spired a great deal of theoretical efforts, concentrating mainly
the role of perturbations due to Saturn’s inner satellites (be
by Goldreich and Termaine 1978, 1982). Indeed, the radial
tances of the most regular density undulations in the oute
ring agree well with the locations of satellite resonances (e
Cuzziet al.1981, 1984, Espositoet al.1983, Rosenet al.1991),
and both theoretical (e.g., Shuet al.1985, Borderieset al.1986)
and numerical simulation studies (Hertzschet al. 1997, Lewis
and Stewart 2000) confirm that satellites are able to excite wa
trains much as observed. Similarly, resonance confinement
account for certain isolated narrow ringlets (H¨anninen and Salo
1995, Goldreichet al.1995). However, satellite resonances a
simply too rare to explain the more irregular variations seen
the densest ring component, the B ring, lacking connection
any known resonances. It thus appears inevitable that irreg
density variations must have an intrinsic origin related to so
type of instability in very dense collisional systems. Recent st
ies (Horn and Cuzzi 1996) have also suggested that the B-
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structure is not totally “irregular”: There are signs of certa
preferred length scales of the order of 20 to 100 km.

Various models for the B-ring structure have been propo
in terms of embedded moonlets (Lissaueret al. 1981, Spahn
and Sponholz 1989), dynamics of charged particles (Goertz
Morfill 1988), or torques exerted by micrometeoroid impa
(Durisen 1995). The originally proposed intrinsic mechan
for the generation of density variations was theviscous insta-
bility, based on the assumption that there is a large collis
induced difference between the kinetic temperatures of rare
(hot) and dense (cool) portions of the rings. In this case the
namic shear viscosity decreases with density and the collisi
particle flux is directed toward local density maxima (H¨ameen-
Anttila 1978, Ward 1981, Lin and Bodenheimer 1981). The a
plification of density variations under such conditions was a
confirmed by computer simulations (Lukkari1981). Howev
to operate in actual rings the viscous instability requires
impacts between particles are very elastic, which is not s
ported by later laboratory measurements (Bridgeset al. 1984)
of the elastic properties of ice. Theoretical models (Araki a
Tremaine 1986, Araki 1991) as well as computer simulati
(Wisdom and Tremaine 1988) indicate stability when the m
sured elastic model is adopted, even in the case of an exte
size distribution (Salo 1992b).

A very promising possibility now appears to beviscous over-
stability (oscillatory instability), which can take place when t
dynamic shear viscosity increases with density (Borderieset al.
1985, Papaloizou and Lin 1988, Longaretti and Rappaport 1
Schmit and Tscharnuter 1995). This type of density–visco
dependence is by far more realistic, especially in extremely
tened rings. In the case of overstability the collisional flux
directed away from the local density maxima, but the sys
overshoots in smoothing the density gradients: Perturbat
remain sinusoidal with respect to time but have exponenti
growing amplitudes (in linear approximation). Superposition
such waves, with amplitudes saturated by nonlinear phenom
might well yield structures as seen in the B ring (Schmit a
Tscharnuter 1999). Such pulsational instabilities were first
cussed in the context of accretion disks (Kato 1978, Blumen
et al.1984).

Most of the above cited studies of overstability have de
with the viscous excitation of forced overstable density wa
(Borderieset al.1985, Papaloizou and Lin 1988, Longaretti a
Rappaport 1995) using analytical approximations for the visc
ity in rings with closely packed particles. However, Mosque
(1996) carried out local simulations, where the perturbed sh
of streamlines near satellite resonances was included via t
dependent radial width of the calculation region, and confirm
numerically that the theoretical conditions for overstability giv
in Borderieset al. (1985) were fulfilled in his dense B-rin
model. However, due to a small number of particles (typica
40) the overstability could not be directly followed.
In our current study attention will be focused on intrins
axisymmetric overstabilities in unperturbed rings, proposed
T, AND SPAHN
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the hydrodynamical models of Schmit and Tscharnuter (19
ST from hereon). In the hydrodynamical approximation t
anisotropy of the velocity ellipsoid is ignored and the syst
is described by the density and isotropic pressure. Furtherm
all quantities are typically averaged over the vertical directi
The Navier–Stokes equations for the evolution of mean ra
and tangential velocity components, combined with the c
tinuity equation and energy equation, yield a solution for t
unperturbed ground state of the system, which is character
by a locally linear shear profile. The stability properties of th
ground state can be determined by a linear stability analysi
small perturbation of the form exp(ikx + ωt) in density, mean
velocity components, and temperature is introduced, leading
dispersion relation for the wavenumberk of the perturbation and
its complex frequencyω. The Navier–Stokes equations conta
the dynamical shear and bulk viscosities, while the energy
ance equation involves also a heat conduction term. Self-gra
is included via the Poisson equation, providing a link betwe
perturbations in density and the self-gravity potential.

In the analysis of ST it is assumed that the system rema
isothermal even when the density is perturbed from the grou
state value. This simplifies the treatment, by removing the
ergy equation, and thus the linear dispersion relation beco
a cubic equation. The evolution of perturbations is then de
mined mainly by the dependence of viscosity on density.
have applied this approximation to Saturn’s B ring, with t
ground-state properties corresponding to typical values of
estimated B-ring temperature and density. The dependenc
viscosity on density was taken from the results of previous
merical simulations (Wisdom and Tremaine 1988): It is assum
that the kinematic shear viscosity depends on optical thickn
byν ∝ τβ , withβ = 1.26. According to ST the B ring should b
overstable for all axisymmetric perturbations with waveleng
exceeding aboutλ ≈ 100 m. The maximal growth rates co
respond toe-folding times of the order of only a few orbita
periods, forλ ≈ 120 m. Also, this result is very robust to th
details of the ground state: The only requirement for the on
of overstability is that the shear viscosity increases with dens
with β at least slightly positive. If self-gravity is included, th
minimumβ is reduced even to slightly negative values.

The above-mentioned wavelength scale is easily studied
our direct particle simulations, employing a local simulati
method (Salo 1992a, 1995). Interestingly, the predictions of
ST stability analysis are not consistent with numerical simu
tions: According to some preliminary experiments (Salo 2001
considerably steeper viscosity vs density dependence is req
than is predicted by the analysis of ST. Specifically, simulatio
with nongravitating particles did not show signs of overstab
ity, although these were fairly easy to conduct for even v
large optical thicknesses (up toτ = 3). In principle, the reason
for this discrepancy could be that the hydrodynamical treatm
fails for particulate rings. However, due to the high impact f
ic
by
quency (several tens of impacts per orbit) the behavior of dense
rings should be closely mimicked by a fluid approach (see, e.g.,
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Stewartet al.1984, Schmidtet al.1999). Nevertheless, there a
simplifying assumptions in ST’s analysis, which might requ
reanalysis.

In Spahnet al.(2000) we suggested that the hydrodynami
treatment of ST should be augmented by including the en
equation in the analysis, thus accounting for the fact that the
turbed system does not instantaneously achieve isothermali
that temperatures are adjusted via the viscous gain of energ
collisional cooling and via the kinetic heat flux. The derived n
fourth-order dispersion relation reproduces ST’s results in
limit of infinite heat conduction but implies increased stabil
of dense rings for a finite heat conduction, which is at least
qualitative agreement with the above-mentioned simulation
further candidate for a stabilizing factor, as pointed out in Sp
et al. (2000), is the bulk viscosity, for which no previous es
mates exist for planetary rings. More quantitative comparis
were not made in Spahnet al. (2000), since the new dispersio
relation includes several additional parameters which are d
cult to estimate analytically. For example, besides the visco
vs density dependence utilized by ST, the dependence of d
pation, energy gain, and heat conduction on density need
determined. Moreover, the derivatives of pressure and visco
with respect to temperature are required. It is also importan
include both local and nonlocal contributions to these quanti
the latter become very important in dense systems with a
filling factor. Thus, the new dispersion relation is most pow
ful in combination with detailed simulation estimates for the
quantities. These estimates can be obtained from small-s
simulations (N ∼ 103), whose calculation region is so small th
they are not subject to overstabilities. Quantities obtained f
these simulations can then be inserted into the improved dis
sion relation, to yield predictions for the behavior of perturb
tions in larger wavelengths, studied in simulations withN> 104.

In this paper we start by showing that an overstable beh
ior can be seen in direct simulations, if realistically calcula
self-gravity is included in dense systems (Section 2), provi
that the dimensions of the calculation region are large enoug
cover the most overstable wavelengths. Specifically, we dem
strate that the basically axisymmetric overstability can coe
with the nonaxisymmetric Julian–Toomre wakes which evo
in dissipative self-gravitating disks (see Salo 1992a). We fur
demonstrate that a qualitatively similar overstable behavio
obtained in an approximation, where the effects of the partic
particle self-gravity are mimicked solely by an enhanced vert
oscillation frequency, as in the study of dense rings by Wisd
and Tremaine (1988) (see also Lukkari and Salo, 1984). The
vantage of this simple approximation is that, for systems wh
dimensions fall below the regime of overstable wavelength
yields a steady, spatially uniform ground state. This enables
derivation of the required ground-state properties and trans
quantities with respect to density and temperature (Sectio
and 4), without the ambiguities related to the presence of n

steady wake structures. The derived quantities will be used
the next paper (Schmidtet al. 2001; hereafter Paper II) for the
OUS OVERSTABILITY 297
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hydrodynamical analysis of the overstability phenomenon a
for the detailed comparison with the overstabilities seen in
larger scale simulations.

2. SIMULATION EXAMPLES OF OVERSTABILITY

In this section a few simulation examples of overstability w
be presented, for systems with fully self-consistently calcula
self-gravity. We also demonstrate that a qualitatively simi
overstable behavior is achieved for a much simpler case, w
the effects of self-gravity are accounted for solely by increas
the frequency of vertical oscillations with a constant factor. T
latter case will also be studied in detail in the next sections
well as in Paper II, where we compare the overstability see
simulations with a theoretical stability analysis. For simplici
we concentrate on the case of identical particles.

The method used in the current simulations is basically s
ilar to that in Salo (1992a, 1995). Thus, all calculations are
stricted to a local coordinate system, co-moving with the lo
mean angular speed of particles. Linearized dynamical equat
are employed, and the particles leaving the simulation sys
are treated by the periodic boundary conditions, first introdu
in Wisdom and Tremaine (1988) and in Toomre and Kaln
(1991). The particle motion between impacts is governed by

ẍ − 2Äẏ+ (Ä2
r − 4Ä2

)
x = Fx,

ÿ+ 2Äẋ = Fy, (1)

z̈+Ä2
zz = Fz,

where thex-axis points in the radial direction, they-axis is in
the direction of orbital motion, and thez-axis is perpendicular to
the equatorial plane. The reference point of the coordinate
tem moves with angular velocityÄ in a circular orbit at a radial
distancea. In the case of a central point mass, the epicyclic f
quencyÄr and the frequencyÄz of vertical oscillations are both
identical toÄ. The symbolsFx, Fy, and Fz denote additional
forces (e.g., self-gravity). The boundaries are treated by ass
ing that each particle with a position (x, y, z) has an infinite
set of image particles at (x + nLx, y+mLy − 3/2nLxÄt, z),
wherem andn are integers,Lx andL y denote the dimensions
of the actual calculation region, andt is the time reckoned from
the beginning of the simulation. Equations (1) are invariant
der this transformation. Each time a particle crosses the bou
ary, one of its images enters the calculation region and repla
the leaving particle. If the crossing occurs across the inne
outer boundary, the velocity of the particle is thus modified
1ẏ = ±3/2ÄLx, which corresponds to the difference of she
velocity acrossLx. In this manner the evolution of the system
independent of the choice of the origin of the coordinate syst
The results are also independent of the size of the calcula
region, provided that it is large compared to the mean free p
between impacts (Wisdom and Tremaine 1988, Salo1991).

inIn the current simulations we ignore the spin of particles and

assume frictionless impacts. The velocity change in impacts is
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thus determined by the normal coefficient of restitutionεn, de-
scribing the ratio of the post- and precollisional relative veloc
components in the direction joining the particle centers. For
εn we use the standard velocity-dependent elasticity mode
Bridgeset al. (1984),

εn(vn) = (vn/vc)
−0.234, (2)

wherevn is the normal component of the relative velocity
the impacting bodies and the scale parametervc equalsvB =
0.077 mm s−1 in Bridgeset al.’s (1984) measurements. Th
type of velocity dependence follows also from theoretical m
els for dissipative impacts (Spahnet al.1995, Brilliantovet al.
1996). Two methods are used for the treatment of impacts
the current section we use the force model introduced in S
(1995), while the simulations in Sections 3 and 4 are car
out by following the evolution piecewise from one impact
the next, and using instantaneous velocity changes in imp
(“event-driven” method). As shown in Salo (1995) both me
ods yield identical results, but the former one is generally fa
for self-gravitating runs. However, the event-driven method
preferred in Sections 3 and 4, as it allows easier identifica
of the individual impacts and the associated velocity chan
required for the evaluation of nonlocal transport quantities.

The main difference in the current self-gravitating simu
tions as compared to our previous simulations is the impro
calculation of mutual gravitational forces. Instead of the
rect particle–particle method used in Salo (1995), now only
nearby forces are calculated by a direct summation, wherea
gravitational forces from distant particles are calculated b
three-dimensional FFT method, utilizing the double periodic
of the simulated system in the planar components of a she
coordinate system. This method, while still correctly includ
the effects of close gravitational encounters, enables cons
ably larger calculation regions and a larger number of simula
particles (by a factor of 20), which is essential for the pres
study. Numerical checks also indicate that the distant forces
culated with the FFT-method deviate insignificantly from tho
obtained with direct summation. Details of this method will
published elsewhere.

The linear stability analysis of ST predicts that the condit
for overstability is thatβ := (dν/dτ )(τ/ν) > βcr , whereβcr =
1
9. Thus, nongravitating simulations, which indicate a nea
linear ν vs τ dependence forτÀ 1 (β ∼ 1) (e.g., Salo 1991
Section 4) should lead to overstability. For typical B-ring p
rameters, the predictede-folding growth times are only a few
orbital periods for the most overstable wavelengths of the o
of 100 m. However, we have not seen any traces of such beh
in any nongravitating simulation performed up toτ = 3.

The generalized linear stability analysis in Spahnet al.(2000)
indicates that the criticalβ required for overstability might in
fact be larger, if the effects of heat conductivity are includ
Also, βcr might rise close to or even above unity if the bu

viscosity significantly exceeds the kinematic viscosity. Supp
for this was also given by the recent two-dimensional (2-D) e
T, AND SPAHN
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periments reported in Salo (2001). Namely, in the 2-D case
impact frequency increases very strongly withτ , once the max-
imal packing density (τmax= π/

√
12≈ 0.91) is approached

corresponding toβ ≈ 2 for τ ≈ 0.5. In this case, the system
is indeed strongly overstable, on time scales of a few ten
orbital periods. However, 2-D simulations are rather artific
even as an approximation for a strongly flattened 3-D syst
Another, more realistic way to increaseβ is the proper inclu-
sion of self-gravity. For example, the vertical self-gravitation
field leads to a strong enhancement of the impact freque
both via increased frequency of vertical oscillations and via
reduced scale height, and thus, to a strong increase of visc
with the surface density. In the case of actual particle–part
gravity the situation is more complicated than this, becaus
the appearance of gravitational wake structures.

In dense self-gravitating rings the particles have a tendenc
form elongated trailing particle groups, dissolving and reeme
ing in time scales of few orbital revolutions. These are analog
to the transient wakes produced by orbital mass enhanceme
a stellar disk, studied in the classical work by Julian and Too
(1966). In particulate rings the wakes can achieve a statis
steady state as the collisional dissipation is able to balance
extra heating due to scattering by the wakes themselves. Acc
ing to simulations (Salo 1992a, 1995, Daisaka and Ida 1999
resulting velocity dispersion, measured with the ToomreQT

parameter (Toomre 1964),

QT = crÄr

πGσ
, (3)

attains a time-averaged equilibrium value of the order of 2 in
case of strong wake structure. The typical radial scale of wa
is close to Toomre’s critical wavelength,

λcr = 4π2Gσ

Ä2
r

, (4)

wherecr andσ stand for radial velocity dispersion and surfa
density, respectively. For the Keplerian case the most unst
azimuthal wavelength is 4λcr . According to the survey in Salo
(1995; see also Ohtsuki and Emori (2000)) a rough criterion
the emergence of wakes is that the radial velocity dispers
maintained by impacts alone (about a few timesrÄ, wherer is
the particle radius) or by two-particle gravitational encount
(of the order of the surface escape velocity) does not exceed
corresponding toQT ≈ 2.

Compared to the simulations of nongravitating particles, wh
typically a few hundred particles are sufficient to obtain re
able results for the collisional steady-state properties, the
gravitating simulations require much larger particle numbe
This follows because to obtain realistic amplitudes for the wa
the size of the calculation region must exceed their scale. A
of thumb (Salo 1995) is that the calculation region covers
ort
x-
leastLx × L y = 4λcr × 4λcr and that the gravitational forces
from each particle are calculated at least up to a distance of
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FIG. 1. Snapshots from self-gravitating simulations after evolution of 50 orbital periods. In each case a local region of 583 m× 233 m is followed, corresponding
to 10λcr × 4λcr . The simulation parameters areτ = 1.4, σ = 840 kg m−2, and the Saturnocentric distance is 100,000 km (Ä = 1.945× 10−4 s−1). The four
different examples correspond to different combinations of particles’ internal densityρ and radiusr : To maintain fixedσ andτ the productrρ is kept fixed. The
number of particles is between 15,000 and 60,000. In the leftmost column the system is shown from above (the planet is to the left, and the direction oe mean
orbital motion is up), while in the middle column the system is shown from the side (the vertical extent of the frame is±0.25λcr ). In the right column the radial
velocity profile is shown (vertical range is±0.8 cm s−1, corresponding to 20rÄ for 1-m particles). The elasticity of impacts is described by the Bridgeset al.(1984)

formula. The self-gravity is calculated with FFT, using annx × ny × nz = 256× 64× 8 density grid, combined with a pairwise calculation of particle–particle

d

f
i

i
e
t

a

i
i

io
e
l

max-
ulta-
re

r of

lta-
ym-

even
re

sta-
a-
th
if-
ow

ith
loci-
ility
the
nt
of
is
forces for mutual distances smaller thanλcr/5. In each of the runs the Toomre

2λcr . For simulations describing Saturn’s B ring these con
tions imply that at least about 104 particles are needed, eve
when limiting the simulation to identical particles. To search
possible overstable behavior even larger regions are requ
especially in the radial direction.

In principle, the presence of wakes makes the distinct
of overstable behavior in simulations somewhat difficult,
pecially because the radial scale of the wakes falls to abou
same parameter region as that expected for overstability, and
because of the rapid growth rates and the saturation of w
to large amplitudes. Nevertheless, with suitable parameter
ues both wakes and overstabilities can be seen simultaneo
Such a demonstration is provided by Fig. 1, for an optically th
(τ = 1.4) ring. Four different simulations are shown, differing
the internal density of particles (ρ = 225−450 kg m−3), while
the surface density is kept constant (σ = 840 kg m−2). The size
of the simulation region coversLx × L y = 10λcr × 4λcr , with
λcr = 58.3 m.

For the case withρ = 450 kg m−3 the behavior is dominated
by nonaxisymmetric transient wakes, inclined by about 20◦ with
respect to the tangential direction, in accordance with prev
studies. Also, the most prominent radial wavelength of th
inclined structures is close toλcr . However, due to low interna
density of particles the Toomre parameter is only aboutQT ∼ 1,

in contrast toQT ∼ 2 found in earlier simulations performed
mainly for solid ice density. As the internal density further d
parameter isQT ∼ 1, before the onset of overstability.
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creases, the wake structure weakens, basically because the
imal mass density the wakes can attain is reduced. Sim
neously, a new type of oscillating, axially symmetric structu
becomes visible in wavelengths of 100–150 m. Thee-folding
times of the amplitude of these structures is of the orde
few tens of orbital periods. In the caseρ = 360 kg m−3, both
axisymmetric and nonaxisymmetric structure is seen simu
neously. Fourier analysis reveals the presence of weak axis
metric waves also in the wake-dominated caseρ = 450 kg m−3,
as well as the presence of weak nonaxisymmetric wakes
in theρ = 225 kg m−3 case. The axisymmetric oscillations a
also visible in the velocity profiles.

A demonstration that we are indeed dealing with an over
bility is provided by Fig. 2, where the evolution of perturb
tions is followed for one orbital period for the simulation wi
ρ = 300 kg m−3. Different time steps are represented by d
ferent curves in the same frame. All studied quantities sh
oscillations with a period close to one orbital revolution, w
phase shifts between density and radial and tangential ve
ties in accordance with theoretical expectations for overstab
(Paper II). Figure 2 also shows two simpler cases, where
overstability is retained. In Fig. 2b only the vertical compone
of self-gravity is included, whereas the planar components
self-gravity are set to zero, and in Fig. 2c the self-gravity
e-
approximated by the aforementioned increase of vertical fre-
quency. Here we have takenÄz/Ä = 3.6, the same value studied
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FIG. 2. The evolution of radial perturbation profiles over one orbital period (after evolution of 100 periods). The thick solid and dashed lines cor
to the beginning and the end of the interval, respectively. Three different cases are compared: In (a) the run corresponds to the self-gravitatingρ = 300 kg m−3

example of Fig. 1, (b) is similar except that only the vertical component of self-gravity is included, while the planar components are set to zero, andn (c) the

particle–particle self-gravity is altogether ignored but the frequency of vertical oscillations is increased by a factor of 3.6. Perturbations in optical depthτ , local
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vertical thicknessH =
√

6〈z2〉, radial velocityvx , and shear corrected tangen

by Wisdom and Tremaine (1988) and in Salo (1991). Except
the different dominant wavelength and different amplitude
perturbations, the qualitative behavior in all three cases is v
similar. This suggests that the overstability is not tied to the
clusion of self-gravity itself but rather to the modified visco
properties of the system.

A qualitative difference between true self-gravitating syste
and those with an enhanced vertical frequency (or with just
vertical component of self-gravity) is however seen in the f
quency of overstable oscillations (Fig. 3). For the approxima
cases the frequency of overstable oscillations always exceed
orbital frequency, with the difference increasing toward sma
wavelengths. In the case of actual particle–particle gravity

oscillation period is generally longer than the orbital perio
although the frequency turns again into a rise at smaller wa
tial velocityvy + 1.5Äx are shown (velocity unit isrÄ, while the unit ofH is r ).
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lengths. As will be shown in Paper II, the increased frequen
as compared to orbital frequency is just what is expected fr
pressure and viscosity effects, while the reduced frequency
flects the slowdown of epicyclic oscillations due to self-grav
(e.g., Toomre 1964).

Figure 4 shows another comparison of the above runs, disp
ing the evolution of the dispersion of the radial velocities,

√〈v2
x〉,

calculated for the whole simulation system. The behavior of t
quantity provides a good indication of overstable behavior.
the absence of systematic oscillations

√〈v2
x〉will equal the local

velocity dispersion, thus attaining a steady-state value after a
tens of impacts/particle. In the case of overstability

√〈v2
x〉 be-

comes more and more dominated by the total squared ampli∑

d,
ve-
of systematic oscillations,〈v2

x〉 = k A2
k, whereAk denote the

velocity amplitudes of different axisymmetric modes allowed
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FIG. 3. The frequency of axisymmetric oscillations as a function of wa
length, in the case of particle–particle gravity (τ = 1.4, ρ = 225 kg m−3) and in
the case of an enhanced vertical frequency (Ä/Äz = 3.6). The runs correspond
to those in Fig. 1, except that radial length is 20λcr = 1166 m. The frequencie
are calculated with the Lomb normalized periodogram (see Presset al. 1992,
p. 569), using radial velocities from the first 20 orbital periods of evolution.

by the calculation region (θk stands for the phase of the mode

vx(x) =
∑

k

Ak cos

[
k

(
2πx

Lx
− θk

)]
, k ≥ 1. (5)

FIG. 4. Evolution of the total rms radial velocity in simulations. In the le
three self-gravitating runs of Fig. 1 with differentρ’s are compared, while in the
right several types of simulations corresponding toρ = 300 kg m−3 are shown,
The curve labeled “Fz” corresponds to only vertical gravity, while the r

labeled “3.6” and “2.0” correspond to nongravitating runs with enhanced vert
frequency. The curve “1.0” stands for a nongravitating simulation (Ä=Äz).
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In the case with only weak overstability (ρ = 450 kg m−3) the
rms velocity dispersion is mainly determined by the wak
whose transient nature leads to irregular fluctuations in

√〈v2
x〉.

The other two curves in Fig. 4a indicate the signature of grow
overstable amplitudes. Also shown in Fig. 4b are comparis
between the realistic particle–particle self-gravity and the t
above-mentioned approximations. It can be seen how increa
the ratioÄz/Ä leads to a more rapid growth of overstabilitie
Also shown is a nongravitating simulation whereÄz = Ä, show-
ing the establishment of a steady state with no signs of overst
fluctuations.

During the simulations there is a tendency for the promin
axisymmetric wavelength to increase. For example, in the
with ρ = 225 kg m−3, the dominant radial wavenumberk = 4
seen in Fig. 1 is gradually displaced byk = 3, as the run was
continued to 200 orbital periods. Note that, due to the period
ity of the simulation region, only wavelengths which are integ
fractions of its radial extent can grow. It is thus important
check that the size of the calculation region is large enough
that the periodic boundaries do not affect the growth of domin
overstable modes. For this purpose an additional simulation
performed, corresponding to theρ = 225 kg m−3 case shown
in Fig. 1, except for twice the number of particles and with
twice larger radial extent (same run as studied in Fig. 3). T
run retained the growth on the same absolute radial scales (
k = 7 was dominant after 200 orbital periods), and with si
ilar e-folding times. This confirms that the periodic bounda
conditions are not responsible for the obtained overstabilit
nor do they affect the observed behavior, at least not in sc
which are a few times smaller than the calculation region. Al
in all the above simulations a small initial seed was given for
axisymmetric velocity perturbations, amounting to 2× 10−4 m
s−1 for eachAk with k = 1–30. A comparison simulation with
out such a seed (amplitudes of initial noise are about 10 tim
smaller than the amplitude of seed) yielded practically identi
behavior, except for a time delay of about 20 orbital perio
before the overstability became visible. Similarly, the onset
overstability is delayed if the tangential size of the calculati
region is increased, leading however to identical evolution.

A brief survey of self-gravitating simulations similar to th
ρ = 225 kg m−3 case in Fig. 1 indicated that overstability star
when τ ≈ 1.2 (Fig. 5). For largerρ’s the strong wake struc-
ture appears to limit the growth of overstable modes. Never
less, forρ = 450 kg m−3 the system is clearly on the verge o
overstability: A small reduction in the amplitude of the wake
induced by cutting the region from which the gravity is ca
culated (see Salo 1995), is sufficient to allow the growth
prominent axisymmetric oscillations similar to those seen
smallerρ’s. For example, by limiting gravity to that exerte
from the region within oneλcr around each particle, signs o
overstability are visible already forτ = 1. The onset of over-
stability is also sensitive to the elasticity assigned to the
icalpacts as well as to the particle size distribution. For example, the
overstability was still obtained (forτ = 1.4, ρ = 225 kg m−3)
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FIG. 5. The onset of overstability in simulations with differentτ , εn, and
size distribution, measured in terms of the total rms radial velocity. In the up
left frame four different values ofτ are compared, while in the upper right th
velocity scale parameter in Bridgeset al.’s formula is varied. The two lower
frames display two runs with a power-law size distribution (rmin = 0.5, rmax=
5 m, exponentq = 3), with two different elasticity models: The evolution o
velocity dispersion is shown separately for six logarithmic size bins (sma
particles have larger dispersion). In all cases the internal density of partic
ρ = 225 kg m−3.

when the velocity scale parametervc in Bridgeset al.’s for-
mula (Eq. 2) was doubled, whereas withvc/vB = 5 the system
became stable (increasedvc/vB implies increased steady-sta
velocity dispersion). Also, when using a power-law size distri
tion,n(r ) ∼ r−q, with rmin = 0.5, rmax= 5 m, andq = 3, yield-
ing the sameτ andσ , the system remained stable for Bridgeset
al.’s formula. This increased stability is likely to be related to t
increased velocity dispersion achieved by small particles. H
ever, with increased dissipation and constantεn = 0.1, oversta-
bility was again achieved even with size distribution. These
examples already indicate that the onset of overstability in de
rings is very dependent on the various, still poorly constrai
parameter values.

A more detailed analysis of the overstable behavior in s
ulations, utilizing the transport coefficients derived in the n
two sections for systems with enhanced vertical oscillation
quency, is left to Paper II. The main emphasis will be on
caseÄz/Ä = 3.6. This value is chosen, partly because it e
ables the comparison to some previous simulations (e.g., t
by Wisdom and Tremaine 1988) and also because it lead
a rapid growth of overstabilities, so that they are more ea
followed to the nonlinear regime.

3. EVALUATION OF QUANTITIES NEEDED
IN HYDRODYNAMICAL ANALYSIS

In this and the next section we will study the approximati

where the particle–particle self-gravity is replaced by an e
hanced vertical frequency. As shown above this simplificati
, AND SPAHN
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can also lead to overstable behavior, retaining the same q
tative characteristics as the more realistic self-gravitating c
The main advantage is that for systems whose dimension
below the regime of overstable behavior, the evolution now le
to a uniform stationary steady state, as required when appl
linear stability analysis.

In the analysis of ST the ground state was described by
surface densityσ and by the distance from the planet, throu
Ä. The isotropic kinetic pressurep was identified withσT ,
whereT = c2

0 is the kinetic temperature (c0 is the 1-dim velocity
dispersion) and the kinematic viscosityν was assumed to b
of the formν = ν0(σ/σ0)β . Values forσ0, Ä, c0, andν0 where
chosen to represent the dense parts of Saturn’s B ring. In the
isothermal stability analysis of Spahnet al.(2000), which takes
into account the energy equation, several additional quant
are required. For example, we will need the cooling function0,
giving the dissipative loss of energy, and the heat conducti
κ, connecting the kinetic heat flux to the temperature gradi
In addition we need to know the derivatives ofp, ν, and0
with respect toT for a fixed density. Besides shear viscosi
related to the flow of momentum in the presence of veloc
shear, we also need the bulk (expansion) viscosityζ , related to
the irreversible flow of energy into internal degrees of freed
due to compression. For all components of the pressure te
we will consider both local and nonlocal contributions; the lat
arises because the particle locations in impacts correspon
slightly different mean radial distances (Araki and Trema
1986, Shukman 1984). In dense systems the latter contribu
to pressure and viscosity is often dominant.

3.1. Equations for Transport Quantities

Let us denote the particle positions byxi = {x, y, z} and their
velocities byvi = {ẋ, ẏ, ż}. Further, denote the mean velo
ity u = 〈v〉 so that a particle’s random velocity isc= v− u.
The kinetic temperature is defined asT = 1

3 tr〈ci cj 〉. In a spa-
tially uniform steady state there is a linear shear profileu =
{0,−3/2Äx, 0}. However, we will also study cases where the
is an additional perturbationδu = {δux, δuy, 0} depending on
thex-coordinate.

The flow of momentum consists of the local contribution, re
ted to the momentum carried by particles’ random motions,
the nonlocal contribution, resulting from momentum trans
from one particle to another during a collision. The former c
be expressed as (averaging over vertical direction is assum
what follows)

Plocal
ij = σ 〈ci cj 〉, (6)

while the nonlocal contribution is

Pnonlocal
ij = σ

∑
1xi δcj

Nδt
. (7)
n-
on
Here the sum is over all impacts taking place during the time in-
tervalδt , while1xi is the absolute difference of thei-coordinates
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of the impacting particles, andδcj is the change in thej -
coordinate of the velocity of the particle with largerxi . The num-
ber of particles is denoted byN. The same formulations hav
been used by Wisdom and Tremaine (1988) and by Mosqu
(1996).

In the hydrodynamical description the pressure tensor is w
ten as

P̂ = pÛ − 2ηD̂ − ξÛ∇ · u, (8)

wherep is the isotropic pressure,η andξ stand for the dynamic
shear and bulk viscosities (η = σν, ξ = σζ ), respectively,̂U is
the unit tensor, and̂D the shear tensor

Di j = 1

2

(
∇i u j +∇ j ui − 2

3
δi j∇kuk

)
. (9)

Since trD̂ = 0 and in the steady state we have∇ · u = 0, it
follows that

p = 1

3
tr P̂ = 1

3
tr(P̂local+ P̂nonlocal) ≡ plocal+ pnonlocal.

(10)

We will determine both pressure components separately. S
ilarly, for the nondiagonal component we haveD12 = − 3

4Ä+
1
2∂xδuy + 1

2∂yδux, affording an equation from which shear vi
cosity can be derived. Specifically, if there are no system
motions (δux = 0, δuy = 0) this yields

η = 2

3Ä
P12 ≡ ηlocal+ ηnonlocal, (11)

with similar identification of local and nonlocal components
for the pressure.

Equation (8) also provides means for the estimation of b
viscosity. Assume that the system is perturbed so that the c
pression∇ · u is nonzero. Further, assume that various qu
tities are separately collected for different radial zones of
system. Due to compression the instantaneous isotropic
surep(t) in each zone will then deviate frompc(σ (x, t)), which
is the steady-state pressure corresponding to the instanta
densityσ . Taking the trace of Eq. (8) affords

p− pc = −ξ∇ · u, (12)

providing a relation from whichξ can be obtained. Again, th
division to local and nonlocal components will be made.

The kinetic heat fluxq is related to the transport of rando
kinetic energy,E = c2/2 (here we use energy/particle mas
which also takes place both via particles’ motion and dur
impacts. For the local flux we have

qlocal
i = σ 〈Eci 〉 = 1

2
σ 〈c2ci 〉. (13)
The treatment of nonlocal energy flux is somewhat more pr
lematic, as we must separate the dissipational loss of kin
OUS OVERSTABILITY 303
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energy from the transfer in the impacts. This is achieved
splitting the velocitiesvk of impacting particles (withk = 1, 2)
into the center of mass velocityvc = 0.5 (v1+ v2) and the rel-
ative velocityg= v2− v1. With these definitions we obtain fo
the velocities and the related kinetic energies of the parti
(with + and− signs corresponding to particlesk= 2 and 1,
respectively)

vk = vc ± 1

2
g, (14)

Ek = 1

2
v2

k =
1

2

{
v2

c +
1

4
g2± vc · g

}
. (15)

Taking into account that only the relative velocity is altered d
to the collision according to

g′ = g− (1+ ε) (g · n) n, (16)

where the prime labels the value after the collision andn is the
unit vector pointing from particle 1 to 2, we obtain the chan
of the kinetic energy for the particlek:

δEk= E′k− Ek= ε
2− 1

8
(g · n)2± 1+ ε

2
(g · n)(vc · n). (17)

The first term is the energy dissipation in the impact; the sec
is the transported energy. To separate the transport part we d

Es
k = Ek − 1

2
(E1+ E2), k = 1, 2, (18)

where E1 and E2 are kinetic energies of the particles parti
ipating in the impact. Now we defineδEs

k = E′sk − Es
k, which

equals, except for the sign, the last term in Eq. (17). The nonl
energy flux can then be written as

qi
nonlocal= σ

∑
1xi δEs

Nδt
, (19)

where1xi is as before andδEs is the change associated wi
the particle with the largerxi -coordinate. Note that the last term
in Eq. (17) is related to the “dynamical friction” term in Ohtsu
(1999), which in the case of unequal-sized particles works
ward energy equipartitioning between different size populatio

In the hydrodynamical treatment the heat flux is assume
depend linearly on the temperature gradient,

q = −κD∇T, (20)

whereκD is the dynamic heat conductivity. Again, identifyin

ob-
etic
this with Eqs. (13) and (19) offers means for evaluating both the
local and nonlocal heat conductivity.



t

o
y
-

o
m

(

o

e

i
o

tes
s
bols

ave

e
nt
he
and
-
tic
h

e
te
, a
den-
for

ll
m-
is
ing
is-
this
304 SALO, SCHMID

3.2. Practical Evaluation of Transport Quantities

The most important advantage of the local method is tha
optical thickness of the system is controlled by the numbe
particles and the size of the calculation region. It is thus poss
to determine the density dependence of all quantities of in
est by conducting a series of separate experiments for diffe
densities. The above formulas forX = {p, 0,q, η, ξ, κD} use
dynamic quantities containing the surface mass density, whe
the current simulations operate with massless particles. T
cilitate the application of hydrodynamic equations we will s
tematically replaceσ by optical thicknessτ and define the cor
responding simulation quantities by

Xsim≡ K X, (21)

where K = τ/σ is the mass extinction coefficient. Thus, f
example,2 plocal

sim ≡ τT . Also, what we actually measure fro
simulations are the kinematic transport quantitiesν = η/σ, ζ =
ξ/σ , andκ = κD/σ .

3.2.1. Shear Viscosity

The evaluation of the shear viscosity is based on Eq.
and is carried out in a straightforward manner, as in Wisd
and Tremaine (1988) and Salo (1991). A good accuracy
be achieved, asν can be measured in a uniform steady sta
and thus averages can be taken over all particles in the sy
and over arbitrarily long periods of time once the steady s
is achieved. The same runs are also used for the evaluati
steady-state values ofT, p, and0sim as functions ofτ .

The values of the viscosities obtained can be checked by
serving that the values of implied viscous gain balance the c
sional dissipation of energy, measured directly by summing
individual energy losses in impacts. In the steady state we m
have0sim= 9

4Ä
2τν. As shown in Fig. 6 this balance is satisfi

to great accuracy, for both small and largeτ . Since different
contributions to the viscosity are dominant in these two l
its, this confirms the correctness of both the local and nonl
viscosities.

3.2.2. Bulk Viscosity

Compared to the evaluation of shear viscosity, the basic
ficulty is that bulk viscosity can only be measured in a prese
of compression. In practice we proceed as follows: An initial
dial velocity gradient is introduced in thex-direction by adding
a sinusoidal velocity increment,
δvx(x) = Av cos (2πx/Lx), (22)

2 We drop the subscript “sim” from pressure, to avoid using simultaneous
and superscripts, but we retain its use for0 andq.
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FIG. 6. Check of the shear viscosity measurements. Solid line indica
the total viscous gain of energy,Gsim = 9

4Ä
2ντ , while dotted and dashed line

show separately the local and nonlocal contributions, respectively. The sym
indicate the directly measured energy dissipation0sim in impacts. The overlap of
Gsim and0sim indicates that the energy balanceGsim− 0sim = 0 is very accurately
satisfied. The energies are normalized by (rÄ)2 and they correspond to the
change of energy/particle/orbital period.

to each particle. This causes a standing radial compression w
with a decaying amplitude. The instantaneous pressuresplocal

andpnonlocaland the values ofτ are then tabulated for short tim
intervals (typically 20 intervals per orbital period) for differe
radial zones of the system (typically for 20 zones). Similarly, t
mean radial velocities are collected for these time intervals
zones, to obtain1 =∇ · u = ∂δux/∂x (since there is compres
sion only in thex-direction; the system also develops systema
y-motions, due to the addedδux-perturbation, but these are muc
weaker, and most importantly depend only onx, not ony).

The steady-state values of pressure,pc(x, t) corresponding
to instantaneousτ (x, t), are calculated with the help of th
plocal(τ ) and pnonlocal(τ ) relations, constructed in the separa
runs utilized in the evaluation of shear viscosity. In practice
second-degree interpolation between the tabulated discrete
sity values is sufficient. With the above procedure we have
each time interval and radial zone certain values of1 and pres-
sure deviationsp− pc. A least-mean-square fit is made to a
of these values. The initial evolution, when the system’s te
perature is still evolving toward equilibrium, is eliminated: Th
relaxation period can be made very short by carefully choos
initial values close to equilibrium. Also, to have better stat
tics, the velocity perturbation can be repeated several times;
is important in cases where the compression wave is rap
decaying.

To check this method we must be sure that the relation betw
1 andp− pc is indeed linear and that the proportionality fact
sub-is independent of the applied velocity perturbation, as long as
this is small. For systems with potentially overstable behavior
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FIG. 7. Example of the determination of bulk viscosity, forτ = 0.5 and
Äz/Ä = 3.6. In the upper frames the solid line and the dash-dotted line
note the instantaneous pressurep and the equilibrium pressurepc correspond-
ing to the instantaneous density, respectively. The dashed line denotesp− pc,
while the thick solid line is the instantaneous compression. One single
lection interval of 0.05 orbital periods is shown. In the lower frames, all d
points (20 zones and 400 collection intervals) from the same run are disp
simultaneously, together with a linear fit whose slope gives the bulk viscosit
efficient. Simulation quantities are used (see Section 4) and the units of pre
and the kinematic bulk viscosity are (rÄ)2 andr 2Ä, respectively. The amplitude
of initial radial velocity perturbations amounted to 2rÄ.

care must be taken so that the dimensions of the calculatio
gion are small enough or that the measurement is short en
because otherwise the amplitude of oscillations might grow
excessively large values. The upper row of Fig. 7 displays
example of how the pressure deviations relate to compres
for a single instant of time. When collected over the whole
(lower row), the overall linear trend is evident, although th
is considerable noise present. In the example shown the
plitude of velocity perturbation amounted toAv = 2rÄ. This
is a fairly large perturbation (comparable to the radial vel
ity dispersion), causing about a 20% oscillation of the o
cal depth. Nevertheless, the meanT in this run is only about
2% larger than in the absence of extra velocity perturbat
A corresponding run withAv = rÄ yields similar values for
bothζ local andζ nonlocal, within about 3% accuracy. If the ampl
tude is further decreased the results become excessively aff
by noise. In all the subsequent measurementsAv = 2rÄ was
used.

3.2.3. Heat Conductivity

As in the measurements of bulk viscosity, the heat cond
tivity could in principle be evaluated by introducing an initia
decaying temperature perturbation to the system. However,

is an alternative way, enabling a more accurate determinat
Namely, we can create a steady, nonuniform temperature
OUS OVERSTABILITY 305
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file, by making the elasticity of impacts depend slightly on t
position. Since we are interested in the radial heat conduc
this is done by

vc(x) = vB[1+ Aε cos (2πx/Lx)], (23)

wherevc is the velocity scale parameter used in the Bridg
type elasticity law andvB is the original parameter for Bridge
et al.’s formula. Similarly, if we are interested in a syste
with a constant coefficient of restitution, a small sinusoid
variation with x is introduced to the desired mean valu
of εn.

As long asAε is small, this produces an almost sinusoid
radial variation in the equilibriumT which is continuous over the
radial boundaries. The advantage is that once the (nonunifo
steady state has been established, all quantities necessa
the evaluation ofκ can be time-averaged from the simulatio
which can be made arbitrarily long. This removes the proble
one has ifκ is estimated from runs with an initially nonuniform
T-profile rapidly decaying toward a uniformT .

In practice the evaluation ofκ requires the tabulation ofT in
radial zones, as well as the tabulation of the local and nonlo
energy fluxes in the radial direction. As for the bulk viscos
we must make sure that the linear trend assumed by Eq. (2
indeed valid and that the proportionality factor is independen
Aε in the limit of vanishing perturbation. Figure 8 provides a
example of theκ evaluation, withAε = 0.2. Altogether, the de-
rived values ofκ local andκnonlocaldiffered by less than about 5%
between runs withAε = 0.01–0.5. For still smaller amplitudes

FIG. 8. Example of the determination of heat conductivity, forτ = 0.5
andÄz/Ä = 3.6. The frame on the upper left shows the steady tempera
profile (vc is varied by 20% according to Eq. (23)). In the upper right the so
line represents the radial temperature gradient, while the dashed and d
curves show the local and nonlocal heat fluxes, respectively. The lower fra
show linear fits to values from all different zones, yielding the heat conduc
ion.
pro-

coefficient. The units of temperature, heat flux, and kinematic heat conductivity
are (rÄ)2, (rÄ)3, andr 2Ä, respectively.
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FIG. 9. Example of the energy balance in runs with steady nonuniform radial temperature profile. In the upper frame the viscous gain,Gsim = τν[− 3
2Ä+

∂xδuy]2, and dissipation0sim are shown. The lower frame shows the (negative of) heat conductionHsim, calculated both directly from the measured energy flu
(Hsim = ∂x(τqsim); thin line+ open squares) and from the temperature gradient utilizing the fitted value ofκ (Hfit

sim = −∂x(κτ∂xT); solid thin lines). On the same
frameGsim− 0sim (dashed line, large solid squares) is also shown. Note the difference in the scales between the upper and the lower frame: The near

Gsim− 0sim and−Hsim indicates that the balanceGsim− 0sim+ Hsim = 0 is very accurately satisfied. As in Fig. 6, change of energy/particle/orbital period is shown,
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the values ofκnonlocalbecome strongly affected by noise. All th
subsequent measurements were made withAε = 0.2.

The derived values ofκ can be verified by checking that th
energy balance equation holds, not only for the system
whole, but for each radial zone separately. Here we also
into account that due to the nonuniform temperature profileδux

andδuy do not necessarily vanish. In the presence of heat
the energy balance reads

3

2
σ (∂t + u ·∇)T = −P̂ :∇u−∇ · q− 0. (24)

It follows that for the pressure contribution we have

P̂ :∇u = p ∂xδux −
(

4

3
η + ξ

)
(∂xδux)2

− η
[
−3

2
Ä+ ∂xδuy

]2

. (25)

For anx-dependent temperature profile this implies

3

2
σ δux ∂xT = −p ∂xδux +

(
4

3
η + ξ

)
(∂xδux)2

[
3

]2
+ η −
2
Ä+ ∂xδuy + ∂x(κD∂xT)− 0. (26)
e

e
s a
ake

ow

In practice theδux terms turn out to be insignificant compared
δuy, which in itself provides a small correction to the systema
shear. Dropping the terms containingδux, and using kinematic
quantities, the energy equation implies

τν

[
−3

2
Ä+ ∂xδuy

]2

+ ∂x(τκ∂xT)− 0sim= 0. (27)

Figure 9 provides an example of the magnitude of the visc
gain and dissipative loss terms, as well as the heat conduc
The caseτ = 0.5 is chosen, since then both local and nonlo
terms contribute significantly to the heat conduction. As can
seen the energy balance is fairly well satisfied in each zone

3.3. Evaluation of Derivatives with Respect
to Kinetic Temperature

The temperature derivatives ofp, ν, and0sim are evaluated by
introducing a small uniform temperature deviation to the syste
This is made by multiplying the shear corrected velocities
each particle,{ẋ, ẏ+ 3/2Äx, ż}, by a constant factorf . This
changes the temperature by a factorf 2 while maintaining the
orientation of the velocity dispersion tensor. The various qu

tities of interest are then tabulated during short time intervals
while the system returns to the steady state withT = Tst. The
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derivatives are estimated with a linear fit between1T = T − Tst

and the deviation of the collected quantities from their stea
state values. The same procedure can be repeated several
during each run to improve the statistics of the fit.

However, there are some difficulties in the method outlin
above. Most importantly, the modification of particles’ veloc
ties introduces vertical oscillations to the system. In princip
this could be avoided by multiplying thez-coordinates of the
particles with the same factorf . This however has the draw
back that only f > 1 can be applied, since forf < 1 possible
particle overlaps will invalidate the measurement. Also, alter
the vertical profile can in itself modify the properties, so that
measurement might not correctly describe the partial deriva
with respect toT alone. A possible solution would be to lim
attention to just horizontal components of the velocity disp
sion tensor, but this is not in accordance with the hydrodyna
approximation we are utilizing. Another way to reduce the infl
ence of vertical oscillations is to perform several measurem
with a different f and average over these runs that each p
sess slightly different oscillations. Figure 10 gives an exam
of such a measurement, forτ = 1,Äz/Ä = 3.6. Altogether 11
runs are superposed, withf = 0.5–2.0. In the linear fit only a
certain range of|1T | is used. The upper limit is chosen to ma
sure that derivatives correspond to the steady state, and the
limit eliminates the noise around the steady state. Note tha
stead of the derivative of the cooling0sim, we fit directly the

FIG. 10. Example of measuring the derivatives with respect to temperat
for τ = 1 andÄz/Ä = 3.6. The frame on the upper left shows the decay
temperature perturbations to steady state: Each curve denotes a single sim
run and represent an average of 8 successive perturbations. Altogether 1
are shown, with velocity modification factor ranging between 0.5 and 2.0 (se
text for more explanations). The horizontal dashed lines indicate the temper
range used: In the current example only points where 0.05< |T − Tst/T |< 0.2
are used, whereTst indicates the steady-state temperature of the system.

three other frames show the fits to pressure, viscosity, and the difference betw
energy loss and gain, with respect to temperature.
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ET := 2

3Ä
∂T

(
0sim− 9

4
Ä2τν

)
, (28)

where the quantity in parenthesis measures the difference
ween the dissipational loss and viscous gain of energy. T
quantity is chosen because this is the combination in wh
the cooling term enters the nonisothermal stability analysis
Paper II).

In principle, we would also need to know the gradients
the above quantities with respect to surface density, for a fi
temperature. This is even more problematic to realize in s
ulations: Any change in the mean density, say by expand
the calculation region during the run, will also lead to rap
temperature adjustments. Therefore, we will approximate th
derivatives by the differences of the above quantities between
steady-state values at various densities. This should be a f
good approximation, especially since the steady-state tem
ature varies only weakly with density (see Fig. 11 in the n
section).

4. RESULTS

We have carried out systematic measurements of the
ious steady-state quantities forτ up to 5 for three different
values of the vertical frequency enhancement factor,Äz/Ä =
1, 2, and 3.6. In each case the particle radius is 1 m, the S
urnocentric distance is 100,000 km (Ä = 1.945× 10−4 s−1),
and the Bridgeset al. impact model is assumed. The simul
tions utilizeN = 1000 to 10,000 particles. Table I lists some
the parameters measured from simulations for selected va
of τ .

Figure 11 (upper row) displays the dependence of the kin
temperatureT , pressurep, and shear viscosityν on the optical
depth. Both local and nonlocal contributions top andν are dis-
played. Pressure has been normalized byτ , so that the curves
are more easily comparable;plocal/τ andν local are directly pro-
portional to the trace and to the nondiagonal component of
velocity dispersion tensor, respectively. In accordance with p
vious simulationsT first drops withτ but then starts to rise
for largerτ . This decrease inT follows from the finite volume
of particles, limiting the effective mean path between impa
and thus also the gain of energy from the systematic motion
local shear viscosity. In contrast, for a large enoughτ nonlo-
cal viscosity dominates the total viscosity and accounts for
rise of the steady-state temperature. The optical depth w
the nonlocal viscosity component starts to exceed the local
depends on the vertical enhancement. ForÄz/Ä = 1 and 3.6
this takes place atτ ≈ 0.8 and 0.3, respectively. Similarly, the
nonlocal pressure exceeds the local one forτ ≈ 1.0 and 0.4. The
eenenergy dissipation0sim as a function ofτ was already shown in
Fig. 6.
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TABLE I
Various Quantities Measured from Simulations

τ wc/Ä T p pl /pnl ν ζ κ Dp/Dτ β Dp/DT Dν/DT ET

Ä/Äz = 3.6
0.25 1.77 4.46 1.57 0.710 1.52 5.49 22.8 1.28 0.57 0.85 0.34 0
0.50 4.53 2.54 3.09 0.411 2.15 6.65 13.9 1.79 0.67 0.53 −0.04 0.72
1.00 14.8 1.73 10.8 0.160 3.87 8.27 16.1 2.19 1.15 0.21 −0.12 2.50
1.50 32.3 1.77 29.2 0.091 6.69 13.4 27.7 2.41 1.19 0.15 −0.10 3.79
2.00 55.8 1.91 59.4 0.064 9.52 20.2 38.9 2.72 1.55 0.18 0.08 4

Ä/Äz = 2.0
0.25 1.26 4.60 1.48 0.776 1.11 4.11 22.9 1.18 0.62 0.87 0.42 0
0.50 2.72 2.84 2.59 0.547 1.48 4.70 14.9 1.42 0.49 0.67 0.21 0
1.00 6.73 1.81 6.59 0.275 2.27 5.26 11.8 1.87 0.85 0.41 0.02 1
1.50 12.3 1.63 14.3 0.171 3.35 6.91 14.3 2.11 1.06 0.28 −0.12 2.23
2.00 19.8 1.63 26.9 0.121 4.63 9.24 18.1 2.26 1.16 0.28 −0.10 3.14

Ä/Äz = 1.0
0.25 0.71 5.03 1.45 0.867 0.66 2.93 17.5 1.11 0.80 0.92 0.57 0
0.50 1.44 3.85 2.62 0.733 1.03 3.93 19.9 1.22 0.57 0.82 0.39 0
1.00 3.07 2.48 4.98 0.498 1.42 4.15 13.6 1.45 0.51 0.66 0.17 0
1.50 5.01 1.96 8.47 0.346 1.82 4.28 11.5 1.67 0.70 0.51 0.13 0
2.00 7.30 1.74 13.6 0.257 2.27 4.84 11.7 1.85 0.88 0.39 −0.04 1.31
or
Note.Temperatures and pressures are scaled by (rÄ)2 and transport coefficients byr 2Ä, as in the figures.D/DT andD/Dτ denote logarithmic derivatives.

FIG. 11. The upper frames show the dependence of temperature, simulation pressure (divided byτ ), and shear viscosity as a function of optical depth, f

Äz/Ä = 1.0 and 3.6. In the lower left, the dependence of impact frequency onτ is shown, while the two remaining frames displayp/τ andν as a function
of wc.
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FIG. 12. Shape and orientation of the velocity dispersion tensor. The q
tities c1, c2, andc3 denote the principal axis values of the velocity dispers
tensor, whileδmeasures the deviation of the major principal axis from the ra
direction (in radians). For smallτ , c1 andc2 correspond to radial and tangenti
velocity dispersion, whilec3 measures the vertical dispersion for all values oτ .

One of the main effects of the increasedÄz/Ä is to enhance
the impact frequency, so that the behavior of the system is sim
toÄz = Ä but with a higherτ . Indeed, when we look atp/τ and
ν as functions of impact frequencywc instead ofτ (lower row
of Fig. 11) it is clear thatwc is the actual quantity determinin
their behavior. In terms of impact frequency, the domina
of nonlocal terms begins whenwc/Ä ≈ 2–3, corresponding to
roughly 15 impacts per orbital revolution.

The shape and orientation of the velocity dispersion ten
are shown in Fig. 12. The oscillations seen in the curves
Äz/Ä = 3.6, especially in the ratioc3/c1, are real, correspond
ing to the tendency of forming a layered vertical structure in
system, as found in Wisdom and Tremaine (1988). Again the
locity dispersion tensor depends mainly onwc. Note that even for
τ = 5 the system is still fairly far from having an isotropic v
locity dispersion tensor.

The different transport coefficients are compared in Fig.
For clarity only the caseÄz/Ä = 3.6 is shown; the other two
studied values lead to a same type of behavior (except for sm
values of coefficients; see Table I). For all values ofτ we have
totalκ > ζ > ν, and the same order holds also separately for
local and nonlocal contributions. The local contribution toκ also
peaks at smallerτ than that forζ or ν. This again follows from
the effect of reduced mean free path due to the finite volum
particles. Namely,κ is related to the energy flow, so it is dom
inated by the particles with the largest velocity deviations,
these are most prone to experience impacts. The nonlocal
tribution toκ for smallτ is relatively large, leading to a slante
S-shaped curve for the totalκ, whereas bothζ andν are mono-

tonically increasing withτ . In general, the differences betwee
local contributions are larger than those for the nonlocal on
OUS OVERSTABILITY 309
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FIG. 13. Transport coefficients as a function of optical depth, forÄz/Ä =
3.6. In the left local and nonlocal contribution are shown separately, while
the right total values are displayed.

Because of this the ratiosκ/ν andζ/ν attain rather large values
for smallτ (Fig. 14). For largeτ where nonlocal contributions
dominate, the ratios seem to approach roughly constant va
κ/ν ≈ 4 andζ/ν ≈ 2. The measurements are increasingly
accurate forτ → 0, but it seems that the ratios at smallτ are
also limited, toκ/ν ≈ 30–40 andζ/ν ≈ 6–7. Again the behav-
ior is dominated by the impact frequency, so that the ratios
differentÄz/Ä are practically the same for a givenwc.

Figure 15 shows the logarithmic derivatives of viscosity a
pressure with respect toτ . For smallτ both p andν are propor-
tional toτ as the local contribution dominates. For intermedia
τ , β ≡ ∂ log(ν)/∂ log(τ ) decreases to about 0.5, near the ma
mum ofν local, whereas for still largerτ the derivative rises above

FIG. 14. Ratio of the transport coefficients (total values) for different valu

n
es.
of Äz/Ä. In the right all measured ratios are shown together as a function of
impact frequency.
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FIG. 15. Derivatives of shear viscosity and pressure with respect to den
In the upper frames the total values are shown as a function ofτ for different

values ofÄz/Ä, while in the lower frames the local and nonlocal contribution
are shown as a function of impact frequency.

s a function

it

T , as expected since they are dominated by local contributions.
FIG. 16. Derivatives of pressure, shear viscosity, and net energy loss with respect to temperature. In the upper frames the derivatives are shown a

As τ increases, both∂ log(p)/∂ log(T) and ∂ log(ν)/∂ log(T)
of τ , separately for the three different values ofÄz/Ä. In the lower frames the
measurements where many individual runs were combined, as in Fig. 10.
T, AND SPAHN

ity.

s

unity, due to the nonlocal contribution. This rise is stronger
a largerÄz/Ä ratio, with β attaining unity atτ = 0.9, 1.3,
and 2.5 forÄz/Ä = 3.6, 2.0, and 1.0, respectively. This corre-
sponds in each case towc/Ä ≈ 10, or about 60 impacts/orbita
revolution. Again the curves forÄz/Ä = 3.6 show strong un-
dulations, arising from the aforementioned tendency for a l
ered structure. For example, thez-distribution develops two den-
sity peaks betweenτ = 0.9 and 1.04, three peaks between 1.5
and 1.75, and four between 2.25 and 2.5. The corresponding
values of impact frequency arewc/Ä ≈ 15, 35, and 80, which
in the lower frames are seen to be associated with the max
and minima in the derivatives of local and nonlocal visco
ties, respectively. The overall behavior ofβ for 1< τ < 2 in the
caseÄz/Ä = 3.6 agrees well withβ = 1.26 used in Schmit and
Tscharnuter (1995). For the derivative of0sim (not shown in the
plot) we always find∂ log(0sim)/∂ log(τ ) ≈ β + 1.

Figure 16 collects the measurements of temperature der
tives. Again the dependence on bothτ andwc is displayed to
emphasize the dominant role of the latter quantity. At the lim
of small τ both p andν react roughly linearly to changes in
derivatives are shown as a function of impact frequency. Larger symbols indicate
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SIMULATION OF VISC

decrease toward zero, with the latter achieving even slig
negative values forwc/Ä ∼ 10. This indicates that for dens
rings nonlocal pressure and viscosity are only weakly dep
dent on velocity dispersion, being rather dominated by the
tematic velocity shear, manifesting the strongly non-Newton
character of such granular flows. Note that the actual der
tive ∂p/∂T = [∂ log(p)/∂ log(T)][ p/T ] increases monotoni
cally with τ , sincep increases strongly withτ while T varies
only weakly. The quantityET rises almost linearly withwc for
wc/Ä<10 but slows down somewhat for a larger impact f
quency. The positive values ofET indicate thermal stability a
any temperature deviation will then tend to decay, with lar
values indicating more rapid establishment of energy balanc
a larger density. Altogether, the uncertainty of these derivat
is much larger than that of the steady-state quantities themse

In conclusion, the simulation measurements described a
indicate that the main effect of enhanced vertical freque
comes through the increased impact frequency, thus shi
to smallerτ the behavior that would be seen in the nongr
itating Äz/Ä = 1 case at larger densities. This holds for t
steady-state quantities themselves and also for their deriva
with respect to temperature. Since the nonisothermal stab
analysis predicts that the onset of overstability depends on
above quantities, most importantly onβ, this means that als
in the nongravitating case the overstability would be expec
for a very largeτ . In the caseÄz/Ä = 3.6 our experiments
with large simulation regions indicate that overstability sets
for τ ∼ 0.85, corresponding toβ ∼ 0.93. To check the behavio
with Äz=Ä, three new large-scale experiments were car
out, with τ = 3, 4, and 5, each extending for 500 orbital pe
ods. In agreement with our previous, somewhat shorter runs
first run withτ = 3 is stable, althoughβ = 1.05. The run with
τ = 4 (β = 1.17) shows some signs of marginal overstabi
(weak growth, limited to 150-m wavelength), but only the l
run (β = 1.25) shows a clear overstability, although only t
largest wavelength corresponding tok = 1, λ = Lx = 310 m
grew in this run, withe-folding time of roughly 450 orbital pe
riods. This suggests thatβcr ∼ 1 is required for overstability
for these parameter values (uni-sized particles of 1 m, Brid
et al.’s coefficient of restitution); the small difference betwe
the cases reflects the slight difference in other parameter
Paper II we show more detailed comparisons between pred
and measured growth times.

All the experiments so far have referred to the elasticity mo
of Bridgeset al.To briefly check whether the derived transp
coefficients have more general validity a few experiments w
different scale parametervc in Eq. (2) were carried out. We chos
vc/vB= 5, for which case the steady-state velocity dispersio
roughly doubled as compared tovc/vB= 1, and carried out mea
surements ofν, ζ,and κ for τ = 1 (see Table II). The ratiosκ/ν
andζ/ν seem to be fairly little affected by this change in t
elasticity model. The values ofβ are also shown in Table I an
indicate that in the casevc/vB = 5 the system withÄz/Ä= 3.6

now falls marginally outside the parameter region of overs
bility estimated above (β ≈ 0.9). Indeed, in a corresponding
US OVERSTABILITY 311
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TABLE II
Transport Coefficients for τ = 1 for Two Different Scale

Parameters in Bridges et al.’s formula

Äz/Ä vc/vB
√

T ν ζ κ κ/ν ζ/ν β

1.0 1 1.57 1.42 4.2 13.6 9.6 2.9 0.51
1.0 5 3.07 3.06 7.7 29.9 9.8 2.5 −0.20
3.6 1 1.31 3.87 8.3 16.1 4.2 2.1 1.15
3.6 5 2.08 4.68 11.0 19.8 4.2 2.3 0.8

Note.Velocity dispersion
√

T is scaled byrÄ and transport coefficients by
r 2Ä, as in the figures.

large-scale run no overstability was obtained. However, wh
τ is increased to 1.5, thevc/vB= 5 case leads to overstability
(β ≈ 1.1) as well.

It is also of interest to estimate the criticalβ for overstability in
self-gravitating runs. For the case studied in Fig. 5 (ρ = 225 kg
m−3, τ varied) the onset of overstability takes place in the ran
τ = 1.0–1.2. If the viscosities are evaluated in the same man
as for the runs with enhancedÄz/Ä, this corresponds again to
β = 1.0–1.1. However, this is only approximative, as it neglec
the gravitational viscosity, corresponding to momentum flo
due to the gravitational scattering by the wakes (Daisakaet al.
2000). Nevertheless, wakes are fairly weak in this case.

Finally, we also made runs with the three different ring mod
studied in detail in Mosqueira (1996), corresponding to t
Uranian δ and ε rings and Saturn’s B ring (τ = 0.62, 1.04,
and 1.8, respectively). Since the calculation region has a fi
radial size these runs correspond to theq = 0 experiments in
Mosqueira (1996), i.e., no streamline distortion. In these exp
iments the enhancement factor for vertical frequency was
culated from the instantaneous vertical thickness of the syst
in the same manner as in Mosqueira (1996),

Ä2
z = Ä2+ 8πG τrρ

3Heff
, (29)

where Heff =
√
〈z2〉 + r , with r denoting the particle radius

Also, the appropriate values ofÄwere used. The mean enhanc
ment factors obtained in this manner wereÄz/Ä = 1.59, 2.04,
and 3.14 for these three models. In agreement with the pertur
runs carried out in Mosqueira (1996), the first two models we
stable also in the unperturbed case (no growth of oscillatio
during 150 orbital periods), whereas in the third model a cle
axisymmetric overstability was seen: in a run with total rad
extent of 620 m the fastest growing mode withk = 5, λ= 124
m had a ten-fold time of about 20 orbital periods.

5. SUMMARY AND DISCUSSION

Our self-gravitating simulations provide a first direct demo
stration of viscous overstability in a dense unperturbed co
sional ring. For parameters resembling those typically infer
for dense parts of Saturn’s B ring this instability manifests
ta-systematic axisymmetric density, velocity, and temperature os-
cillations, with radial scales∼100 m and oscillation periods
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close to the orbital period. Several tests ensured that the re
are not affected by the periodic boundary conditions emplo
in the simulations, thus supporting the hypothesis that sim
free axisymmetric oscillations could spontaneously grow in
ring systems. The requirement for the onset of overstabilit
that the rings have a high filling factor, which is the case fo
Bridgeset al. (1984) elasticity model for meter-sized particl
in self-gravitating rings withτ >1.

A hydrodynamical treatment of dense unperturbed ri
(Schmit and Tscharnuter 1995) has predicted overstable be
ior. However, the conditions we find for overstability are clea
more stringent than predicted by their hydrodynamic treatm
as indicated by the stability of simulated non-self-gravitat
rings for τ ∼ 1. Oscillatory instability was theoretically sug
gested also by Borderieset al.(1985) for forced density waves i
dense rings, under conditions which were subsequently exp
by simulations of Mosqueira (1996). Specifically, Mosque
(1996) found that the condition for density wave overstabi
was fulfilled in his B-ring model withτ = 1.8, but not for his
ε-ring model withτ = 1.04, in qualitative agreement with ou
results for unperturbed free oscillations. Still, based on th
two examples it is not yet completely clear weather these
cases have similar stability boundaries.

Our experiments with particle–particle self-gravity indica
that axisymmetric overstability can coexist with nonaxisymm
ric Julian–Toomre wakes forming in dense self-gravitating rin
However, the presence ofstrongwakes seems to suppress ov
stable oscillations, as seen by comparing runs with fixed sur
density but with different internal density of particles. When
are near the stability boundary, any small reduction in the am
tude of wakes can promote overstable oscillations. For exam
when the calculations of Fig. 1 forρ = 450 kg m−3 are repeated
by limiting the region from which the self-gravity is calculated
oneλcr , axisymmetric oscillations become clearly visible in t
direct plots forτ ∼ 1. The same is also true when using sma
rectangular calculation regions (size< 2λcr ). However, in such
a small-scale simulation it may be difficult to recognize
axisymmetric overstability, as complete unstable wavelen
do not fit into the calculation region. Indeed, it is very likely th
the coherent velocity oscillation reported recently by Dais
and Ida (1999), seen in their local simulations, manifests s
incompletely covered viscous overstability, rather than be
caused by any gravitational scattering by wakes. Unluckily,
current computational resources do not allow extended sim
tions with largerρ’s for τ ’s exceeding unity (this follows from
theρ2τ 3 dependence of the required number of particles) (S
1995). For example, to study particles with solid ice dens
ρ = 900 kg m−3, with τ = 2 would requireN ∼ 106 even if
limiting the study to identical particles.

The presence of gravitational wakes complicates any
lytical study of overstability, as the system cannot be descr
by a spatially uniform ground state. However, we have sho

that a qualitatively similar viscous overstability can be obtain
when particle–particle self-gravity is approximated by an e
T, AND SPAHN
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hanced frequency of vertical oscillations,Äz/Ä > 1. As shown
by previous simulations (Wisdom and Tremaine 1988) this
proximation leads to strongly enhanced impact frequency
a steeper dependence of viscosity on density. Indeed, with
valueÄz/Ä = 3.6, chosen in Wisdom and Tremaine (1988)
represent the dense B ring, this method also leads to overst
ity in the regimeτ ∼ 1. Besides being computationally muc
faster than the inclusion of particle–particle self-gravity, th
treatment has the important advantage that it leads to a unif
ground state, from which the growth of overstable oscillatio
can be analyzed.

We have employed local simulations also for the direct ev
uation of transport coefficients for simulations withÄz/Ä =
1.0–3.6. A large number of individual runs were performe
with calculation regions small enough to prevent the growth
overstable modes. For shear viscosity the method devised
Wisdom and Tremaine (1988) was used. Shear viscosity is
lated to the radial flow of tangential momentum in the presen
of the systematic velocity shear. The local component of v
cosity was obtained from the flow of momentum accompany
the epicyclic random motions of particles and is related to
nondiagonal component of the velocity dispersion tensor.
steady-state systems this could be measured with good a
racy by averaging the whole ensemble of simulation particl
and also over time, a fact first utilized extensively by Wisdo
and Tremaine (1988). However, in the case where typical pa
cle excursions between impacts are not large compared to
sizes, there is another important, so-called nonlocal compon
Araki and Tremaine 1986, Shukman 1984), related to the fl
of tangential momentum in impacts between particles wh
centers are at slightly different radial distances (hence the t
“nonlocal”). The nonlocal flow can also be directly measur
in simulations by time averaging over collisional momentu
changes in impacts. In fact, this nonlocal component domina
in systems with high optical depth and large filling factor a
leads to the strongly nonlinear behavior of viscosity as a fu
tion of τ . The measurement of nonlocal viscosity also follow
the method of Wisdom and Tremaine (1988).

For the evaluation of heat conductivity a somewhat diffe
ent procedure was employed, since in the steady state there
temperature gradient in the local system (however, the tange
velocity shear is always present). In principle, we could intr
duce an initial gradient of temperature and observe the heat
connected to it. However, this poses problems as the tempera
gradient itself and the other properties of the system are t
continuously changing. A more reliable way to measure h
conductivity is to make the amount of dissipation (via elast
ity) depend on the radial position. A slightly different collisiona
steady state then follows in various parts of the system, acc
panied by a steady temperature gradient and heat flux. Prov
that the elasticity is only slightly different at different position
this will provide an estimate of heat conductivity characteristic
ed
n-
the mean value of dissipation in the system. As in the case of vis-
cosity, heat conductivity also contains a nonlocal contribution.
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Bulk (or expansion) viscosity has not been previously m
sured in connection to planetary rings. This quantity is rela
to what happens in the compression of the system. If the w
delivered to the system when it is compressed is not balance
the work relieved in the expansion phase, this extra dissipati
attributed to bulk viscosity. The measurement of bulk visco
from simulations was made directly from its definition. We
troduced a sinusoidal standing radial velocity perturbation to
system and observed the proportionality between compres
and the deviation of the instantaneous pressure from its equ
rium value. Again, both local and nonlocal components, as
ciated with local and nonlocal pressure, were significant. N
that bulk viscosity could also be measured by the simulatio
method of Mosqueira (1996), where the azimuth-dependen
dial width of the local simulation region induces compressi
In principle this could provide an even more accurate meas
ment, as averages over arbitrarily long collection periods co
be used.

Besides the transport coefficients, the nonisothermal stab

analysis also requires knowledge of how the dissipation, pres-

Chapman

local contribution to both pressure and viscosity exceed local

sure, and shear viscosity depend on temperature for a fixed den-

FIG. 17. Comparison of the ratio of transport quantities obtained in simulations (upper row) with those calculated for dense hard-sphere gases by

ones at largeτ ’s, corresponding to impact frequencywc/Ä >
and Cowling (1970) (middle row) and by Jenkins and Richman (1985) for
whenwc/Ä > 10, corresponding to mean volume filling factor within|z| < H/2
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sity. These were also measured directly from local simulatio
with methods similar to those used for the evaluation of tra
port coefficients. The derivatives with respect to density w
estimated from the differences between steady-state value
different densities, justified by the weak dependence of tem
ature on density.

Our measurements indicated that bothκ andζ generally ex-
ceedν, with the asymptotic values at largeτ being κ/ν ≈ 4
andζ/ν ≈ 2. Strictly speaking this is valid only for the param
eter combination we have adopted: meter-sized identical
ticles with Bridgeset al.’s elasticity model. However, a few
examples with somewhat thicker systems gave similar rat
although the absolute values of transport coefficients were lar
Interestingly, the above asymptotic ratios for transport quanti
are qualitatively similar to those derived from the Enskog kine
theory of dense systems, which givesκ/ν ≈ 4 andζ/ν ≈ 1.3
(Chapman and Cowling 1970), while if allowance for a sm
amount of dissipation is made (Jenkins and Richman 1985),κ/ν

decreases whileζ/ν increases slightly (Fig. 17). Typically, non
dissipative particles (lowermost row). In simulations asymptotic values are obtained
exceeding about 0.4.
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2–3. In general,wc was found to be the dominant factor d
termining all quantities, especially in the limit where nonlo
contributions were large.

The main factor determining the onset of axisymmetric ov
stability is the dependence of viscosity on density. In the cur
simulations we foundβcr ∼ 1 as a rough condition for the ons
of overstability. ForÄz/Ä = 3.6 this is achieved forτ ∼ 1, as in
our self-gravitating runs, whereas forÄz/Ä = 1 the overstable
regime is shifted toτ ∼ 4, explaining the lack of overstabilit
in our previous nongravitating simulations. Theβcr ∼ 1 limit is
clearly larger than theβcr ∼ 0 suggested by the isothermal line
stability analysis in Schmit and Tscharnuter (1995). Howe
the increased stability is in accordance with the nonisother
analysis in Spahnet al. (2000). In part the stability seems to b
due to the temperature oscillations accompanying the de
and velocity oscillations, and in part it is due to bulk viscos
exceeding shear viscosity. A detailed comparison between
ulations and hydrodynamical analysis is presented in a sep
paper (Paper II).
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