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Abstract. We investigate the evolution of structures in plane-
tary rings in the neighbourhood of the orbit of an embedded
moonlet (small satellite). The effects of collisions have been
taken into account by introducing the velocity dependent resti-
tution coefficient according to experimental and theoretical re-
sults. Here we present results of recent many-particle simula-
tions which show a significant influence of the interparticle col-
lisions on the formation and persistence of wake structures in a
model ring. In contrary to the collision-free model, a stationary,
non-mirrorsymmetric wake pattern with decreasing intensity in
azimuthal direction is observed. The azimuthal damping rate of
the wake intensity is estimated from the data obtained in the
simulation.
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1. Introduction

Collisions between particles in granular systems play an impor-
tant role for the formation of dynamical structures and their per-
sistence in time. A famous example are planetary rings, notably
those of Saturn, where the Voyager spaceprobe observations re-
vealed a wealth of interesting features. We took particular inter-
est in the structures which showed in the Encke division where
the satellite Pan (1981 S 13) is orbiting (Cuzzi & Scargle 1985,
Showalter 1991). The gravitative influence of this moon causes
three main features: a faint ringlet following the orbit of the
satellite and spreading only over the immediate vicinity of
this orbit (Spahn et al. 1992, Spahn et al. 1994), broad gaps
flanking the ringlet, and wave-like structures, called wakes
(Showalter et al. 1986), beyond the edges of the gaps.

Extending former work on the kinematics in planetary rings
(Spahn et al. 1994) we have considered inelastic collisions in
our numerical experiments in order to investigate their influence
on the moon-induced structures mentioned above.

The model for the particle motion is introduced in Sect. 2.
There we describe also the treatment of collisions between the
particles. The results of the simulations are presented in Sect. 3.

In Sect. 4 the damping rate of the wake intensity is estimated
from the numerically obtained data, and a simple analytical ex-
planation is proposed. Finally, we suggest a possibility to derive
the damping rate from observational material.

2. Numerical modelling of the particle motion and treatment
of collisions

We have simulated the evolution of a model ensemble of 219 =
524288 particles of equal size on the Connection Machine CM-
200 in Sophia-Antipolis. The computations are based on the
solution of the elliptic three-body problem (Spahn et al. 1994).
This means that we consider only the gravitational influence
of the planet and the satellite (primaries) on each other and on
the ring particles, but neither the influence of the latter on the
primaries nor the self-gravity of the ring.

The mass ratio moonlet/planet was chosen to M =
Mm/Mp = 10−6 in order to provide a sufficiently rapid
evolution of the system. This is a mere scale procedure so
that the results can be mapped onto realistic circumstances
(Hill 1878, Szebehely 1967, Petit & Hénon 1986). Initially, the
particles were distributed homogeneously on a ring extending
radially between −0.1h∗a and +0.1h∗a from the circular or-
bit of the moon. The orbital radius of the satellite is a, and
h∗ ≈ (

M
3

)1/3
is the radius of the Hill sphere of the moon, i.e.

the region where its gravitational influence dominates.

The number of particles in our simulations is much higher
than in other numerical investigations. This was required by
the aim to resolve sufficiently well the structures of interest
which extend over the whole range of azimuth. On the other
hand, since we were mainly interested in the development of
radial and azimuthal structures, we have assumed a monolayer
of equally-sized particles. Other simulations did include a size
distribution and inclined orbits (Salo 1992), or took into account
the gravitational action of the smaller particles on the larger body
(Ida & Makino 1992), but were performed with much lower par-
ticle numbers.

We have followed the evolution of the structures of a
collision-dominated particle ensemble for 60 orbital periods of
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Fig. 1. Dependence of the normal restitution coefficient on
the normal component of the impact velocity. Dash-dotted: ex-
perimental results (Bridges et al. 1984). Solid: theoretical results
(Hertzsch et al. 1995). Dashed : theoretical results using a simplified
model (Spahn et al. 1995).

the moon and compare it with the behaviour of a system without
interactions between the ring particles.

For the treatment of the collisions we relate the relative ve-
locities of two particles in normal and tangential direction after
the collision to those before (gN and gT , respectively) with the
help of the restitution coefficients εN and εT :

g ′
N = −εN · gN (0 ≤ εN ≤ 1)

g ′
T = εT · gT (−1 ≤ εT ≤ 1) (1)

For icy particles, εN has been measured in the labora-
tory (Bridges et al. 1984). In order to find a theoretical expla-
nation for the measured dependency εN (gN ), Hertz’s contact
theory (Hertz 1881) has been extended (Hertzsch et al. 1995,
Brilliantov et al. 1996) towards dissipation. The experimentally
obtained dependency εN = 0.32 · g−0.234

N (see Fig. 1) has been
used in our simulations while we have kept εT = 1 as first simple
step since there is up to now no sufficient experimental evidence
for the dependence εT (gN , gT ).

The number of particles in our simulations is still too low
to provide a sufficient collision frequency for realistic particle
sizes in the order of centimeters. On the other hand, a higher
number of particles would have required an impractical long
computation time. Therefore, we increased the collision proba-
bility by enlarging the active cross section of the particles so that
in the average each particle will undergo one collision per or-
bital period. This leads to an effective optical depth of τeff ≈ 0.1
(Shu et al. 1985). The rapidity of the evolution of a system of
colliding particles in a gravitational field is proportional to the
number of particles time the squared ratio of enlarged vs. origi-
nal radii (Trulsen 1971). In the case of a monolayer, this means
that the speed of evolution is proportional to the optical depth of
the system. Since τ ≈ 0.4 at the borders of the Encke division,
the evolution of our model system is slowed down again by a
factor of 1/4.

enlarged particles

original particles

virtual collision partners

Fig. 2. The concept of ”virtual particles”: the radii of the particles
are artificially enlarged in order to enhance the collision probability.
After the detection of a collision, the simulation continues as if each
particle had collided with another of the original size, but also at a
distance which corresponds to the sum of the radii of the original and
the ”virtual” particles.

For the further treatment of the collisions, we follow the
concept of “virtual particles” (see Fig. 2). Once a collision is
detected, e.g. between particles A and B, then we assume that
A collides with a a virtual particle B’, and B with a virtual parti-
cle A’. Those virtual particles have the original (realistic) radii.
The formulae for the restitution coefficient are applied in the
following way: The virtual particle B’ has the velocity of parti-
cle B, its position in the moment of the collision is on the line
connecting the centres of particles A and B. The distance be-
tween A and B’ is equal to the sum of the radii of the (original)
particles A and B. This allows the application of the depen-
dence of εN on the size of the particles in further numerical
experiments.

However, due to the enlarged active cross sections the rel-
ative velocity of the particles is significantly enhanced due to
the larger inter-particle radial distance. According to the rela-
tion εN (gN ) this leads to a higher energy dissipation rate and
consequently to a more effective damping of the deviations of
the particles from their circular orbits, which are induced by the
passing moon and are responsible for the formation of the wake
structures (Showalter et al. 1986, Spahn et al. 1994). In addi-
tion, due to the enlarged particles the nonlocal component of
the transport processes is increased (Araki & Tremaine 1986).
This causes problems in a scaled comparison with realistic sys-
tems.

3. Influence of the collisions

A first inspection of the density plots (Figs. 3 and 4) shows that
all structures – ringlet, gaps, and wakes – which have been found
in the collision–free case (Spahn et al. 1994) are also formed in
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Fig. 3. Snapshots of the evolution of a gap forming under the influence
of an embedded moon in an initially homogeneous planetary ring after
20 (top), 40 (middle), and 60 (bottom) orbital periods of the moon.
Collisions are neglected. The moon is at (0,0). Dark: low density. Light:
high density. Abscissa: impact parameter. Ordinate: azimuth.

the case of collisions. However, there are several significant
differences.

The most prominent one is that the formation of the forward-
backward symmetry in the wake structures (superposition of
successive wake generations in the collision-free case) is hin-
dered by damping effects due to the inelasticity of the collisions.
This difference is only the more important if one keeps in mind
that for very long times of integration “phase mixing” comes
into play which causes the structures to disappear altogether
(Spahn et al. 1994). In this case, only resonant features will re-
main visible. Dissipation, on the other hand, leads to a damping
of the wakes. If the damping is strong enough, the first wake
generation at a certain point will be suppressed so much that
its contribution to the superposition with the following genera-

Fig. 4. The same as in Fig. 3, but inelastic collisions between the par-
ticles are taken into account: εN (gN ) according to Bridges et al. 1984,
εT = 1.

tions is negligible. More rigorously, only the most recent wake
generation will contribute considerably to the visible pattern
which is, of course, an unsymmetric one (with respect to time).
This stationary asymmetry accounts for a permanent torque be-
tween ring and moon and corresponds to the observed structures
(Greenberg 1983). Therefore one can conclude that it is the en-
ergy dissipation in the system which causes the visibility of the
wake structures.

The density in the gaps is considerably lower than in the
collisionless (kinematic) case. In particular, the edges of the
wake structures which continue into the gaps in the kinematic
case have disappeared. Apparently, the inelastic character of the
collisions enforces the depletion of these regions. Nevertheless,
the gaps appear to be even narrower and the ringlet even larger
than in the collisionless case. In reality, the gaps are wider,
and the ringlet should be very faint. This discrepancy must be
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Fig. 5. Azimuthal section of the simulated ring in Fig. 4 near the edges
of the gap showing the decay of the wake intensity after the passage
of the moon. The strong fluctuations are due to the comparatively low
number density of the particles. In order to reduce them, density values
of points which are situated axisymmetric with respect to the moon have
been summed. The solid line corresponds to a exponential decay of the
density maxima according to I = 7.8 exp (0.1 · φ).

attributed to the neglect of some of the gravitational interactions
in the system ring – satellite (Petit & Henon 1988).

A count of the particles after the end of the corresponding
computer runs shows a decrease of the number of the particles in
the latter case which must be attributed to the energy loss of par-
ticles during the inelastic collisions which causes a net inward
migration of the particles. In addition, also in the collisionless
case some particles are ”lost” which fall onto the surface of
the moonlet. Therefore, for the stability of the structures over
very long time scales – even for a low collision probability – a
mechanism is required which compensates the particle loss.

4. Estimation of the damping rate of the wakes

For an estimation of the damping rate of the particle density
from our simulations we have examined sections of the com-
puted density field in azimuthal direction. In Fig. 5 an azimuthal
section at a distance of about 5 · h∗ from the moonlet’s orbit is
plotted. It shows the decay of the wake intensity with rising az-
imuthal distance from the moon. This plot illustrates also the
main problem we have to deal with in our simulations: the com-
paratively low particle number causes considerable fluctuations
of the density. Therefore, the estimation of the wake damping
rate must be considered as an approximate one. In order to re-
duce the influence of the fluctuations on our results, we have
summed the density values at locations point-symmetric with
respect to each other (in an azimuth–impact-parameter coordi-
nate system centered at the moon).

The decay of the intensity of the wake maxima follows
approximately an exponential law I(φ) = I0 exp

(
Dwake · φ

)
where we denote the intensity with I and the azimuth with φ.
The constants I0 and Dwake are the (hypothetical) initial in-
tensity which would be caused by the moonlet’s action in the

impulse approximation and the wake damping coefficient, re-
spectively. We can derive from the ratio of the density values
of subsequent wake maxima at the corresponding distance the
values I0 ≈ 7.8 and Dwake ≈ 0.1 rad−1.

This exponential damping can be roughly explained by the
action of a collective dissipative force on the ring particles
caused by the inelastic collisions. As a first approximation,
we assume this force Fdis to be proportional to the relative
velocity c of the particles: Fdis = γ · c. Here γ denotes the
(hypothetical) internal friction coefficient of the ”granular gas”
which the ring consists of. The relative velocity of particles
(corresponding to interacting streamlines) is roughly in the or-
der of c ≈ 2ae

T . e is the eccentricity induced by the moon
after the point of streamline crossing (Showalter et al. 1986,
Borderies et al. 1982, Borderies et al. 1989). The decay of this
induced eccentricity e with time (caused by Fdis) can be ex-
pressed by the Gauß equation (Burns 1977):

de
dt

=

√
a(1 − e2)

µ
· γ · 2ae

T
(2)

In all cases of interest (embedded moons in planetary rings)
holds e� 1. Omitting terms of higher than first order in e, the
solution of this equation is found to

e(t) = e(0) exp

(
−
√

a

µ
· γ · 2a

T
· t
)

. (3)

Since the azimuth of a particle with respect to the moonlet is
proportional to time:

φ =
Ωs

m
t (4)

where Ωs is the orbital period of the moon and m the inverse
relative angular velocity of the particle with respect to the moon
(see e. g. Spahn et al. 1994), we can also formulate an exponen-
tial dependence of e on φ:

e(φ) = e(0) exp (−Decc · φ) (5)

with Decc = m
Ωs

√
a
µ · γ · 2a

T being the eccentricity damping

constant.
However, it must be noted that this is a rather simplified pic-

ture of the processes connected with collisional damping. In par-
ticular, this concerns the assumption of a velocity-proportional
friction force which has to be proven for granular material like
planetary rings. We have used it nevertheless since it explains
the exponential decay fairly well. Also, the relationship between
the damping constant Decc resp. the friction coefficient γ and
the collisional properties (restitution coefficients) of the parti-
cles must be subject of further work.

We introduce the above dependency e(φ) in the stream-
line model which has already proven to be a useful tool
for the description of wake phenomena in planetary rings
(Showalter et al. 1986, Spahn et al. 1994). The gravitational ac-
tion of the moonlet on a ring particle is expressed by the
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change of the eccentricity e = kh∗ of the particle’s orbit which
is determined by the Gauß equation (Showalter et al. 1986,
Petit & Hénon 1986). Damping of the induced eccentricity of
the ring particles leads to a damping of the induced density
changes of the streamlines. The density of the streamlines can
be expressed (Borderies et al. 1982) by

σ (r, φ) =
σ0 (r, φ)
|J (r, φ)| . (6)

After n encounters of the streamline with the moon the factor
J (r, φ) takes the form (Spahn et al. 1994):

J (r, φ) = 1 − sgn(b)
n∑
j=0

qj sin {m (φ− 2sgn(b)jπ) + γj} (7)

where the phase angle γj and the nonlinearity parame-
ter qj are given by tan γj = m(φ−2sgn(b)jπ)

2 and q2
j =

(3kmh∗)2
{[

m(φ−2sgn(b)jπ)
2

]2
+ 1

}
with m = 2

3bh∗ and k = e
h∗ .

This leads to the following relation between streamline density
and induced eccentricity:

σ (r, φ) =
σ0 (r, φ)

1 − e(φ)g (b, φ)
(8)

Using the above exponential dependency e (φ) we find:

σ(t) =
σ0

1 − e(0)g (b, φ) exp (−Deccφ)
(9)

where g (b, φ) comprises all dependencies on the coordi-
nates b and φ which are given in detail in an earlier article
(Spahn et al. 1994). For small e(0) the time dependence can be
approximated as

σ(t) ≈ σ0 [1 + e(φ)g (b, φ)]

= σ0
[
1 + e(0)g (b, φ) exp (−Deccφ)

]
. (10)

The streamline density can be considered proportional to the
wake intensity resp. the particle density. Therefore, we can prac-
tically identify the damping rates Decc and Dwake for the ec-
centricity and the wake density, respectively.

Although the results of the simulations show a strong sim-
ilarity with the observed structures, one has to be aware of the
simplifications in the model which require a certain caution in
a comparison with the real system:

The cross sections of the model particles have been en-
larged artificially in order to provide a more rapid evolu-
tion (Hänninen & Salo 1992). This leads to relative veloc-
ities which are too high and consequently to lower values
of the restitution coefficient than to expect in reality. In ad-
dition, the nonlocal transport component is enhanced, and
too much of the collective hydrodynamic motion of the par-
ticles is transformed into thermal one. The effects of these
deviations and the appropriate scalings have to be addressed
in the future.

The assumption of a monolayer of particles may not be com-
pelling. Although planetary rings have a very small thick-
ness, it is unlikely that they consist of a single layer of small
particles so that the observed structures could be attributed
to a superposition of several sub-structures with different
(but small) inclinations.

Furthermore, the values of the damping rate which are obtained
from simulations and from observations can not be compared
directly because of the scalings made in our simulations in order
to obtain an evolution rapid enough to follow with the computer.
In our example, we have to take into account the higher mass ra-
tio of satellite and planet which affects the size of the Hill sphere.

Since Decc = 3Ω0bh
∗

2φ ln
(
e(0)
e(φ)

)
with h∗ = 1

a

(
Mm

3(Mp+Mm))

)1/3

and Mm

Mp
= 10−6 in our example compared with Mm

Mp
= 10−12

for the Encke gap moon, the mapping of our model system to
the real one results in a value of Decc ≈ 10−3 rad−1.

Unfortunately, a determination of the damping rate from
observational material is difficult because of the following rea-
sons:

The data from high-resolution measurements for the inner and
outer wake of Pan for several azimuthal locations show even
that the wakes survive for more than one synodic period
(Horn et al. 1996), but were obtained by different methods
(PPS and RSS scans) where different particle sizes con-
tribute to the observed optical depth. If the distribution of
particle sizes were known, one could derive from these data
an “overall” optical depth whose changes will allow an es-
timation of the damping constant Decc of the induced ec-
centricity.

An approximate estimation of the damping coefficient using
information on the Encke division from the Voyager image
data (Cuzzi & Scargle 1985) is only possible – if at all – with
a considerable uncertainty because the estimated amplitudes
of the ”waves” at the edges of the gap had to be normalized
by the respective background brightness. This may cause
deviations from the original amplitude ratios.

It is therefore necessary to re-examine the observation data in
order to provide a solid base for a comparison with results of
simulations and theoretical investigations.

5. Conclusions

Inelastic collisions between the particles in a planetary ring have
considerable consequences for the evolution and stability of
structures. Our model is able to take into account some of the
effects in a realistic way. In particular, we found that the inelas-
ticity of the collisions is responsible for the very existence of
visible wake structures.

An exponential law for the decay of the wake intensity has
been applied to estimate the damping rate from numerical data.
The exponential dependence can be motivated by the assump-
tion of a velocity-proportional friction force which is made re-
sponsible for the wake damping. For the purpose of this paper,
this rather crude picture yields fairly sufficient results for the
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stimation of the damping coefficient. However, the influence
of the dissipative collisions on the decay of the magnitude of
collective structures should be investigated in greater detail in
future.

Further topics of future interest are the investigation of the
influence of tangential friction (rotational degrees of freedom)
and of the self gravity of the ring matter on the formation of the
observed structures, the derivation of the wake damping rate
from observational material, and the more complete estimation
of the dependence of the restitution coefficients on the particles’
properties. This will reveal a deeper insight in the processes not
only in planetary rings, but also (in particular the last topic) in
granular materials.
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