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Abstract

We propose a simple theoretical model for aggregative and fragmentative

collisions in Saturn’s dense rings. In this model the ring matter consists of

a bimodal size distribution: large (meter sized) boulders and a population

of smaller particles (tens of centimetres down to dust). The small particles

can adhesively stick to the boulders and can be released as debris in binary

collisions of their carriers. To quantify the adhesion force we use the JKR

theory (Johnson, Kendall and Roberts, 1971). The rates of release and ad-

sorption of particles are calculated, depending on material parameters, sizes,

and plausible velocity dispersions of carriers and debris particles. In steady

state we obtain an expression for the amount of free debris relative to the

fraction still attached to the carriers. In terms of this conceptually simple

model a paucity of subcentimeter particles in Saturn’s rings (French and

Nicholson, 2000; Marouf et al., 2008) can be understood as a consequence of

the increasing strength of adhesion (relative to inertial forces) for decreas-

ing particle size. In this case particles smaller than a certain critical radius

remain tightly attached to the surfaces of larger boulders, even when the
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boulders collide at their typical speed. Furthermore, we find that already a

mildly increased velocity dispersion of the carrier-particles may significantly

enhance the fraction of free debris particles, in this way increasing the optical

depth of the system.

Keywords: Planetary rings, Saturn, rings, Collisional physics

1. Introduction

Saturn’s dense ring system consists of a large number of water ice par-

ticles, which, owing to frequent mutual dissipative collisions, flattened into

a thin disk (Colwell et al., 2009; Cuzzi et al., 2009; Schmidt et al., 2009).

Light scattering properties of the rings are consistent with a power-law size

distribution n (r) ∼ r−β with a slope near β = 3, ranging from centimetres

to tens of meters, varying with the radial distance from the planet (French

and Nicholson, 2000; Showalter and Nicholson, 1990; Zebker et al., 1985, see

also Cuzzi et al. 2009; Schmidt et al. 2009). In particular, a lack of particles

smaller than, roughly, 1 cm (French and Nicholson, 2000) is implied by com-

parison of the optical depth of the main rings at different wavelength (from

microwaves to UV), and detailed photometry of the A ring (Dones et al.,

1993). Such a size distribution may arise from a balance of aggregation be-

tween particles and fragmentative collisions of aggregates (Davis et al., 1984;

Weidenschilling et al., 1984). The adhesive forces, leading to aggregation, are

strongest for small particles (Chokshi et al., 1993). Although small debris

should be steadily created in hypervelocity impacts of micrometeoroids on

the rings (Cuzzi and Durisen, 1990; Durisen, 1984), it seems plausible that it

is rapidly and permanently adsorbed on the surfaces of the larger particles,
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which would explain the small contribution of this particle size to the opti-

cal depth of the rings. This scenario was qualitatively discussed by Dones

et al. (1993), who estimated the critical radius for sticking using the adhesion

model proposed by Chokshi et al. (1993).

In this paper we investigate this idea quantitatively in terms of a kinetic

model with a bimodal distribution of particle sizes, for binary adhesive and

dissipative particle collisions. We consider consistently the kinetics of co-

agulation and fragmentation of particles. The balance of fragmentation of

particles and their gravitational aggregation, leading to the establishment of

the power-law size distribution in Saturn’s rings was studied by Longaretti

(1989). A simple model for ballistic aggregation and fragmentation was in-

troduced recently by Brilliantov et al. (2009), however, without specifying a

detailed mechanism of fragmentation.

We discuss the possibility that an increased velocity dispersion of the

carrier-particles may significantly enhance the fraction of free debris particles,

in this way increasing the optical depth of the system. Such a process may be

important to understand quantitatively the observed brightness variations in

perturbed ring regions, like satellite resonances (Dones et al., 1993; Nicholson

et al., 2008) and the lobes of the propellers (Spahn and Sremčević, 2000)

observed in the A ring (Sremčević et al., 2007; Tiscareno et al., 2006).

The plan of the paper is as follows. In Section 2 we present the theoretical

model, and calculate release and sticking rates of debris particles on the

surfaces of carriers. The balance of these processes is analyzed in Section 3,

establishing a steady distribution of free debris, depending on the parameters

of the model. We discuss our results and their applications to Saturn’s rings
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in Section 4, and give our conclusions in Section 5.

2. Model

We consider a bimodal system consisting of identical large boulders (car-

riers) of radius R and smaller particles with a range of radii r << R (Fig.

1). Due to adhesion small particles can attach to the surface of bigger ones.

We assume that boulders and debris particles are indestructible, while the

fragmentation of the aggregates formed by carriers and attached debris is

possible. Thus the total number of small particles of size r per unit volume

Nd(r) is comprised of free debris with number density nv(r) and a population

covering the surface of boulders with surface density ns(r). Then the mass

conservation implies:

Nd(r) = nv(r) + 4πR2ns(r)Nc , (1)

where Nc is the number density of carriers. We neglect the change of carrier

size due to the attached debris particles.

The equilibrium number density of small particles nv(r) (debris) arises

from the balance of their aggregation with boulders and detachment in col-

lisions of carriers. The kinetic equation, describing these processes reads

dnv(r)

dt
= I+(r)− I−(r) , (2)

where I+ is debris production rate (the number density of debris of radius r,

released per unit time in unit volume), I− - their adsorption rate (the number

density of smaller particles, adsorbed at the surface of carriers per unit time

in unit volume). I+ and I− are calculated below. We neglect the interaction

of debris particles with each other.
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Figure 1: A bimodal system consisting of carriers of radius R ∼ 1 m and debris of radii

r < 10 cm. The debris can either move freely or be attached to the surface of carriers due

to adhesive forces. Debris can be released during the collision of carriers, if the normal

component of inertial force, acting on debris Fin cos θ (Eq. 14) exceeds the adhesion force

Fsep (Eq. 7). (Here θ is the angle between the line, connecting the centres of colliding

carriers and the line, connecting the centres of the carrier and the debris particle, resting

on its surface.) Debris particles can be re-adsorbed in subsequent collisions.
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Let ~Vc and ~Vd be the velocities of carriers and debris particles measured

in a frame that co-rotates with the local Keplerian speed at given distance

from the central planet. We define the relative velocity of debris and carriers

as ~Vcd = ~Vc − ~Vd. Let us also denote the velocity dispersions of carriers and

debris as vc,d =
√
〈V 2

c,d〉.
Although the velocity distribution function of particles in Saturn’s Rings

is anisotropic (Goldreich and Tremaine, 1978), we do not expect a significant

influence of this anisotropy on the average outcome of aggregation and frag-

mentation. For sake of simplicity we assume here an isotropic Maxwellian

distribution of random (thermal) speeds of particles

f
(

~Vc,d

)
=

(
3

2πv2
c,d

)3/2

exp

(
−3

2

V 2
c,d

v2
c,d

)
(3)

For simplicity we assume, that the velocity dispersion vd is equal for debris

of all radii (Salo, 1992b). We also do not take into account the deviation

of velocity distribution function from the Maxwellian (which corresponds to

the Rayleigh distribution in orbit elements), found by Ohtsuki and Emori

(2000) in the computer simulation of dense self-gravitating systems.

We assume, that all particles are composed of ice with Young modulus

Y = 7 · 109 Pa and Poisson ratio ν = 0.25 (Chokshi et al., 1993). It is also

common to introduce the elastic constant D = 3
2

(1−ν2)
Y

= 2 · 10−10 Pa−1. The

material densities of carriers and smaller particles are also assumed to be

equal: ρc = ρd = 900 kg/m3.

The adhesive interactions are characterized by the adhesion coefficient

γ, which is twice the surface tension coefficient. The adhesion coefficient

was estimated theoretically for pure ice surfaces as γ = 0.74 N/m (Chokshi
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et al., 1993). Hatzes et al. (1991) have shown experimentally, that adhesive

interactions of ice particles significantly depend on their surface structure.

In the recent experiments of Gundlach et al. (2011) the adhesion coefficient

of micrometer-sized ice particles was found to be γ = 0.19 N/m.

Adhesive interactions become important only in the final phase of a colli-

sion, while generally the impact phase is governed by elastic and dissipative

forces. The latter tend to damp the relative motion. These dissipative losses

are usually quantified by the restitution coefficient, defined as the ratio of

the normal components of the relative velocity after and before an impact:

ε =
∣∣∣
(

~V ′
cd · ~e

)
/
(

~Vcd · ~e
)∣∣∣ , where ~V ′

cd is the relative velocity after the collision

and ~e is a unit vector, along the line, joining centres of particles during their

impact. In general, the restitution coefficient is velocity-dependent (Bridges

et al., 1984; Brilliantov et al., 1996; Ramirez et al., 1999), but in the present

study we assume it to be constant. We take here ε ' 0.3 as a typical value

for the restitution coefficient for ice particles, colliding with relative velocities

∼ 1 cm/s and effective radii ∼ 1 cm (Bridges et al., 1984).

2.1. Debris adsorption rate

If ~Vcd is small enough, carriers and debris can form aggregates due to

adhesion. The adhesive interaction can be described in the framework of

JKR theory (Johnson, Kendall and Roberts, 1971).

The force, acting during the collision of a boulder with a smaller particle,

consists of two parts (Johnson et al., 1971):

Fa =
a3

DRcd

−
√

6πγ

D
a3/2 (4)

The first term corresponds to the Herzian elastic force, the second one -
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leading to detachment of debris
of size r from their surface.

  ga

  gc

g a, g
c [m

/s
]

r [m]

Sticky collisions 
between debris and carriers

Figure 2: Maximal relative velocity of debris and carriers, leading to adhesion of debris ga

(Eq. 8) (dashed line) and minimal relative velocity of carriers gc, leading to the detachment

of debris of size r from their surface (Eq. 17) (solid line). The adhesion coefficient γ =

0.74 N/m, the radius of carriers R = 6 m. In the upper corner of the diagram all collisions

between carriers lead to detachment of debris, while the lower corner corresponds to sticky

collisions between carriers and debris.
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to adhesion. Here a is the contact radius of the colliding particles, Rcd =

Rr/ (R + r) – their effective radius.

The work, required to release a bound debris particle from a carrier sur-

face, can be written in the form (Brilliantov et al., 2007; Brilliantov and

Spahn, 2006):

Wa =

∫ asep

a0

Fa
dξ

da
da = q0

(
π5γ5D2

)1/3
(Rcd)

4/3 , q0 ' 1.457 (5)

Here the deformation ξ is related to the contact radius according to (Johnson

et al., 1971):

ξ =
a2

Rcd

−
√

8πγDa

3
(6)

The contact radius and the deformation in the equilibrium (Fa (a0) = 0) can

be written in the following way: a0 = (6πγDR2
eff)

1
3 , ξ (a0) = 1

3
(6πγD)

2
3 R

1
3
eff .

The contact radius of separation asep =
(

3
2
πγDR2

) 1
3 can be found from the

condition: dFa/da = 0. It corresponds to the minimal value of adhesive force

(Eq. 4) or to maximal external pulling Fsep, which the adhesive interactions

between carriers and debris can resist (Johnson et al., 1971):

Fsep = −Fa (asep) =
3

2
πγRcd . (7)

If the kinetic energy of colliding boulders and debris with effective mass

mcd = mcmd/(mc +md) (here mc and mc are respectively the mass of carrier

and of a debris particle) in the final stage of the collision Wkin = 1
2
mcdV

′,2
cd is

too small to overcome the adhesion barrier Wa ≥ Wkin, then

Vcd < ga =

√
2Wa

mcdε2
∼ r−5/6, (8)

and the particles stick (Brilliantov and Spahn, 2006). The dependence of ga

on the radius of debris r is depicted on Fig. 2. The smaller the particles, the

easier they stick to the surface of larger ones.
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The amount of debris particles per unit volume, attaching to a carrier

per unit time (debris adsorption rate) reads

I−(r) = (R + r)2 Nc (R) nv (r)

∫
d~Vdd~Vcd~ef

(
~Vd

)
f

(
~Vc

)

×
∣∣∣~Vcd · ~e

∣∣∣ Θ
(
−~Vcd · ~e

)
Θ (ga − Vcd)

(9)

Here the Heaviside step-functions select particles which approach with the

relative normal velocity, smaller than ga.

Note that in Eq. (9) we do not account for effects induced by the flattening

of the ring in the equatorial plane of the central planet. This implies the

dependence of the particles density on the respective velocity dispersion.

However, it will affect in the same manner the corresponding gain term I+

(section 2.2). Because the steady state balance of free and adsorbed debris

depends solely on the ratio of the kinetic coefficients I− and I+, the effect is

expected to cancel out.

Performing the integration with the velocity distribution function (3), we

obtain:

I−(r) = A(r)nv(r) (10)

where

A(r) =

(
8π

3

)1/2

Nc (R) (R + r)2 (
v2

c + v2
d

)1/2 ×
[
1−

(
1 +

3Wa(r)

ε2mcd

1

v2
c + v2

d

)
exp

(
−3Wa(r)

ε2mcd

1

v2
c + v2

d

)]
(11)

Expanding the exponent for r << R or Wa << mcd (v2
c + v2

d), one gets the

following expression for the kinetic coefficient A:

A (r) = 3
√

6π
W 2

a (r)NcR
2

ε4m2
d

1

(v2
c + v2

d)
3/2

∼ r−10/3 (12)
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2.2. Collisional production of debris

Let us consider a collision of two boulders, covered by small particles.

Let ~r1 and ~r2 denote their positions and ~Vc1, ~Vc2 their velocities. The vector

connecting their centres at the collision instant is ~r12 = ~r1 − ~r2 = r12 · ~e,
their relative velocity is ~V12 = ~Vc1 − ~Vc2, and the normal component of their

relative velocity reads: g =
∣∣∣
(

~V12 · ~e
)∣∣∣. During the collision particles undergo

the deformation ξ = 2R − r12. For the purpose of calculation of debris

production, we neglect the dissipative forces. Then the elastic force acting

between the boulders during the collision obeys the Hertzian law:

FH =

√
Reff

D
ξ3/2 . (13)

Here Reff = R/2 is the effective radius of the carriers. We also denote the

effective mass of colliding carriers as meff = mc/2. In the collision the maxi-

mal inertial force acting on debris particles sitting on the surface of carriers

occurs in the moment, when the compression of the boulders is maximal:

Fin =
1

2
mdr̈12 =

1

2

FH (ξmax)

meff

md . (14)

This maximal compression of boulders ξmax is achieved, when the elastic

energy Wel =
∫ ξmax

0
FHdξ equals the initial kinetic energy 1

2
meffg2 of the

normal component of the relative motion:

ξmax =

(
5

4

Dmeff

R
1/2
eff

)2/5

g4/5 (15)

We assume, that the debris particle leaves the surface of the carrier, if the

projection of the maximal inertial force (Eq. 14) on the carrier’s surface
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normal (see Fig. 1) exceeds the maximal external pulling (Eq. 7), which the

adhesive interactions between carriers and debris can resist:

Fin cos θ ≥ Fsep (16)

The debris can release from both boulders, from the side facing the collision

partner. We ignore the process of immediate re-attachment of a debris par-

ticle on the collision partner. Small particles that are sitting on the contact

surfaces of the colliding carriers are compressed during collision and do not

release. However, the radius of a contact surface is much smaller, than radii

of colliding icy boulders, therefore, this effect can be neglected. For simplic-

ity we also neglect possible release of debris due to lateral motion of debris

over the boulders’ surface (rolling or sliding) induced by the action of inertial

forces and shearing away of debris during grazing collisions of carriers.

Substituting Eqs. (13)-(15) in Eq. (16) and setting cos θ = 1, we obtain

the minimal relative velocity of carriers, leading to the detachment of debris

of size r from their surface:

gc(r) =
(324π)1/3

√
5

(
γ5/2D

)1/3

(
ρc

ρ
5/2
d

)1/3 (
Reff

1 + r
R

)5/6

r−5/3 (17)

The dependence of gc on the radius of debris r is depicted in Fig. 2. For

smaller particles a larger impact velocity is needed to release them in an

impact. The total number of small debris particles produced in a collision of

two carriers is

∆ns(r) = 4πR2ns(r)

∫ π/2

0

dθ sin θ Θ (Fin cos θ − Fsep) . (18)

Evaluating the integral yields

∆ns(r) = 4πR2ns(r)Θ(g − gc)×
(

1−
(

gc

g

)6/5
)

. (19)
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The total number density of debris particles of size r, released per unit

time and unit volume in boulders collision, is given by:

I+(r) = (2R)2N2
c (R)

∫
d~Vc1 d~Vc2 d~e f

(
~Vc1

)
f

(
~Vc2

)

×Θ
(
−

(
~V12 · ~e

)) ∣∣∣~V12 · ~e
∣∣∣ ∆ns(r) . (20)

Performing the integration, we obtain:

I+ = B (Nd − nv) (21)

B = 16R2Nc

√
πv2

c

3

[(
1 +

5

2
α

)
exp(−α)− 5

2
α

3
5 Γ

(
7

5
, α

)]
(22)

with the incomplete Gamma-function:

Γ (x, α) =

∫ ∞

α

dyyx−1e−y , (23)

where

α (r) =
3g2

c (r)

4v2
c

∼ r−10/3 (24)

The expression (22) for B may be further simplified if we estimate the

Gamma-function, using the steepest descend (Laplace) method, which yields:

B ' B1 exp (−α) , (25)

where

B1 = 16R2Nc

√
πv2

c

3

3

5α
, if α ≥ 2

5
(26)

and

B1 = 16R2Nc

√
πv2

c

3

[
1 +

5

2
α−

(
5

2
α

)3/5 (
29

50
+

α

10
− 3

4
α2

)]
,

if α ≤ 2

5
(27)
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Figure 3: Dependence of the fraction of free debris nv/Nd in the steady state on debris

radius r for different values of velocity dispersion of carriers: vc = 0.001m/s (dashed

line), 0.005m/s (solid line) and 0.01m/s (dotted line). The velocity dispersion of debris

is vd = 0.01m/s. The radius of boulders is taken as R = 6 m. Two regions are observed:

if r < rcr, where rcr is some critical radius, practically all debris are adsorbed, while all

particles of radius r > rcr are free. The critical radius of transition rcr can be roughly

determined as the point where nv/Nd = 1/2. The transition between two regimes is very

sharp, moreover, the width of the transition ∆r decreases with the decreasing rcr.
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Figure 4: Dependence of the critical radius rcr on velocity dispersion of carriers vc for

vd = 0.01m/s (left panel) and on velocity dispersion of debris vd for vc = 0.005m/s (right

panel). The critical radius rcr does not change significantly even if vd varies in the range of

several orders, however, it sensitively depends on the velocity dispersion of carriers vc. The

radius of carriers R = 6m. The adhesion coefficient γ = 0.74N/m (solid line) corresponds

to theoretical value, calculated for a pure ice surface (Chokshi et al., 1993), γ = 0.19N/m

(dashed line) was found in experiments of Gundlach et al. (2011).
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3. Steady state abundance of small particles (debris)

The kinetic equation for the time evolution of the number density of free

debris particles of size r reads:

dnv(r, t)

dt
= B(r) (Nd(r)− nv(r, t))− A(r)nv(r, t) (28)

The solution of the equation has the form:

nv(r, t) = nv(r,∞) + (nv(r, 0)− nv(r,∞)) exp(−t/τ) , (29)

that is, nv(r) evolves exponentially to the steady-state value:

nv(r,∞) =
Nd(r)

1 + A (r) /B (r)
(30)

with the relaxation time:

τ = 1/ (A + B) ∼ 1/Nc(R) (31)

The relaxation time is inversely proportional to Nc(R), while the number

density of free debris in the steady state nv(r,∞) does not depend on the

number density of carriers Nc(R) (since both A ∼ Nc(R) and B ∼ Nc(R)).

The fraction of free debris particles, calculated from Eq. (30) is shown in

Fig. 3. Above a certain radius rcr +
1
2
∆r all small particles remain free, while

below rcr− 1
2
∆r they are all attached to the surface of carriers. The transition

between regimes of completely adsorbed and completely free debris is very

sharp.

The critical radius of transition rcr can be roughly determined as the

point where nv/Nd = 1/2 or A (rcr) = B (rcr) in the following way:

rcr = r̃cr

(
ln

B1(rcr)

A(rcr)

)−3/10

, (32)
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where

r̃cr =

(
3

5v2
c

)3/10 (
9γReff

4ρd

)1/2 (
16πρcD

3

)1/5

(33)

Taking into account the fact that the last factor in Eq. (32) only weakly

depends on rcr, we can approximate rcr with a sufficient accuracy as

rcr ' r̃cr

(
ln

B1(r̃cr)

A(r̃cr)

)−3/10

(34)

The transition becomes smoother with increasing rcr. This is seen in Fig. 3

and may be easily shown analytically. Let us assume, that the fraction δ of

debris of radius rcr − 1
2
∆r, as well as the fraction 1 − δ of debris of radius

rcr +
1
2
∆r, remains free, where δ is some small number. The transition width

∆r has then the following form:

∆r ' 3

5
rcr

ln (1/δ − 1)

ln (B1 (rcr) /A (rcr))
(35)

Note, that if no fragmentation occurs in the system (B (r) = 0), nv(r,∞)

becomes equal to zero: all debris will eventually stick to large particles even

if vd >> ga. The critical radius rcr tends to infinity in this case.

The magnitude of the critical radius rcr is primarily governed by the

inertial forces, acting on debris during collision of carriers and leading to the

detachment of debris.

Therefore, according to Eqs. (32)-(33), the critical radius depends mostly

on quantities, which are essential in the detachment processes (radii R and

the velocity dispersion vc of carriers) and has much weaker (logarithmic) de-

pendence on quantities, assotiated with aggregation (the velocity dispersion

vd of debris). This statement is illustrated at Fig. 4. The larger the thermal

velocity of colliding carriers, the smaller particles are released, therefore the

17



  

critical radius significantly decreases with increasing of vc (left panel). In

contrast, the dependence of rcr on the debris velocity dispersion is very week:

Fig. 4, right panel shows no significant variations of rcr, when vd varies over

several orders of magnitude.

If the carriers become larger and more massive, their acceleration during

the collision decreases and less debris leaves their surface. Therefore, the

critical radius increases with increasing carrier size (Fig. 5, Eqs. (33)-(34)).

The value of adhesion coefficient γ = 0.74 N/m was estimated theoreti-

cally for collisions of completely smooth particles (Chokshi et al., 1993). The

adhesion coefficient of realistic ice particles can be few times smaller (Gund-

lach et al., 2011), which leads to a decreasing rcr, due to reduction of the

adhesion strength (see Figs. 4 and 5).

4. Application to planetary rings

Before we consider the application of our model to real systems it is worth

to discuss some idealizations of the model and its impact on the adequate

description of the planetary rings.

4.1. Justification of some model’s idealizations

In the present study we propose the following simplified model: The

system of interest is comprised of a population of large particles, the carriers

of the same size, and smaller particles, debris, with some size distribution.

Aggregation between carriers and debris is driven by surface adhesion. For

given velocity dispersions of the two populations, their sizes, and material

properties, we quantify the amount of the steady-state fraction of free debris

particles, i.e. those not attached to the carrier particles. The balance depends
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Figure 5: Contour graph, showing the dependence of the critical radius for debris release rcr

on velocity dispersion vc and radii R of carriers. Solid contour lines are for the adhesion

coefficient γ = 0.74N/m (Chokshi et al., 1993) and the dashed lines for γ = 0.19N/m

(Gundlach et al., 2011). Parameter ranges plausible for Saturn’s rings are highlighted in

grey.
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Figure 6: The case of micron sized dust: Carrier radius and velocity dispersion for fixed

critical radius rcr = 10 µm. The adhesion coefficient is γ = 0.19N/m (Gundlach et al.,

2011). The abundant release of microscopic particles may be relevant in perturbed regions

of the F ring. In this case fairly large collision velocities for the carriers are required and

dominant carrier sizes not larger than few centimeters.
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sensitively on the size of the debris particles. We obtain a critical radius, such

that all smaller debris are practically absorbed by the carriers, while debris

larger than the critical radius are all free.

In our model all debris particles are assumed to stick on the surfaces

of carriers directly. There is no interaction between debris particles them-

selves, i.e. we neglect the process of particles attaching to debris that already

sticks on a carrier, as well as the collisional aggregation of small particles.

Effectively, these processes should tend to make the absorption of debris

more efficient, since the relative strength of adhesion (compared to inertial

forces) increases for smaller particles. Thus, qualitatively the inclusion of

these processes should result in a somewhat larger critical radius than the

one given directly by the model.

We also neglect the release of debris in collisions of carriers by lateral,

shearing forces, and by the direct action of the carriers, shrugging off debris

from their collision partner during a collision. These processes would make

the collisional release more efficient and should work in the direction of a

smaller value of the critical radius. One may expect that the two neglected

effects compensate each other.

We can qualitatively estimate the influence of tangential motion of carri-

ers in the following way. The maximal inertial force, acting on debris parti-

cles, can not exceed

Fin =
1

2

Ftotal (ξmax)

meff

md , (36)

where the total force Ftotal =
√

F 2
H + F 2

T consists of Herzian force FH and

tangential force FT . The tangential force FT ≤ µFH , where µ is the friction

coefficient. So if we take into account tangential interactions, the maximal
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inertial force, acting on debris, will be only
√

1 + µ2 times larger. Taking

into account that the friction coefficient of ice is estimated to be in the order

of µ = 0.03 according to the experimental data (Kietzig et al., 2010; Oksanen

and Keinonen, 1982; Serway, 1995), it may be concluded that the effect of

tangential interactions is negligible. One should note, however, that the

friction coefficient of ice depends on temperature, velocity and normal load

(Kietzig et al., 2010; Oksanen and Keinonen, 1982), and the effective friction

coefficient of actual ring particles is unknown.

An impact of the rotational degrees of freedom may be also easily es-

timated. Indeed, the centrifugial force Fcen = 2Rmeffω2, where ω ≈ g/2R

is the characteristic rotational velocity of carriers, and g - their normal ve-

locity, is significantly smaller than a typical Herzian force
√

Reffξ3/2/D for

carriers of size up to 20 m. Therefore we do not take the centrifugial force

into account in the present study.

Finally, we neglect any tidal forces and self-gravity in the system. Tidal

forces should work against adhesion, leading to a lower critical radius, while

self-gravity would enhance the tendency for clumping. Realistically, in Sat-

urn’s rings one expects the formation of self-gravity wakes (Salo, 1992a),

i.e. clusters of ring particles, formed by gravitational instability, tempo-

rally bound but destroyed by shear when revolving under differential rotation

around the planet. From the viewpoint of our model, one would expect the

carrier particles to be arranged in such a wake pattern. In the wakes the

population of debris particles, smaller than rcr, should be absorbed on the

carriers, while there still exists free debris in the rarefied regions between the

wakes. The simplified kinetics of our model then describes average properties
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of the rings, averaged over a spatial domain larger than the typical length

scale of the wake pattern.

Note that we assume that only adhesive forces are responsible for the

adsorption of small particles on the large ones, that is we, ignore gravitational

forces. This is justified, since a simple analysis shows, that for the sizes of

carriers (less than ∼ 10 m) and debris (less than ∼ 0.1 m) and for the values

of adhesion coefficient, adopted in the present work, the gravitational forces

indeed may be neglected, see also Fig.1 of Albers and Spahn (2006).

Strictly, our mathematical approach applies to a system with a bimodal

size distribution. However, if we neglect any debris-debris interaction, the

results can be interpretated for a system with a continuous size distribution of

each of the sub-populations consisting of debris particles or carriers. On the

one hand, if we vary the size of the debris particles, we observe a very abrupt

transition from a state where practically all debris is attached to the carriers

to a state where all debris is free (Fig. 3). This leads us to the definition of

the critical radius, where we expect for a system with a distribution of debris

particle sizes that all debris smaller than rcr is absorbed. On the other hand,

we observe a monotonic increase of the critical radius with increasing carrier

size (Eqs. 33-34) so that for two carrier sizes R(1) < R(2) in the system we

expect r
(1)
cr < r

(2)
cr . Thus, in steady state all particles r

(1)
cr < r < r

(2)
cr , which

cannot be absorbed by carriers of size R(1), will eventually be absorbed by

the larger carriers of size R(2). Therefore, the effective critical radius for the

total system is r
(2)
cr . More generally, for a system with continuous distribution

of carrier sizes we expect that the effective rcr depends mostly on the largest

carrier size Rmax and we expect that the results presented in Fig. (3-5) hold,
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if we replace R by Rmax. In this case, the velocity dispersion of the largest

carriers is on the order of a few times ΩRmax and the velocity dispersion

of smaller carriers increases mildly with decreasing radius (Salo, 1992b). In

such a way, the arguments developed in this paper for a bimodal system

can be extended to the description of debris adsorption in systems with a

continuous power-law size distribution n (r) = n0r
−β.

The maximal size of the main population of Saturn’s ring particles is

constrained to be on the order of Rmax ≈ 1 . . . 10 m (French and Nicholson,

2000; Zebker et al., 1985). The ring also contains a population of larger

embedded moonlets, tens to hundreds of meters in size (Sremčević et al.,

2007; Tiscareno et al., 2006; Tiscareno et al., 2008). However, these moonlets

are rare and their distribution falls of much steeper towards larger sizes than

for the population of main ring particles. Thus, for the moonlets the timescale

to establish a collisional balance of debris absorption and release, Eq. 31) is

huge and their effect on the amount of free debris particles can be neglected.

4.2. Absorption of dust in dense rings

Photometry of Saturn’s A ring implies a very small fraction of free dust,

if any. This conclusion seems to hold more generally for parts of the ring

system with optical depth τ > 0.1 but also for the dense rings of Uranus and

Neptune (see discussion in Dones et al. (1993)). However, if not present in

the system, dust should be rapidly replenished as the result of micromete-

oroid bombardment on the rings (Cuzzi and Durisen, 1990; Durisen, 1984;

Ip, 1983). One possibility is that non-gravitational forces rapidly remove

dust from the system, such as electromagnetic and radiation forces (Burns

et al., 1979; Burns et al., 1984; Rubincam, 2006; Vokrouhlický et al., 2007).
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Although these forces can provide significant perturbations for micron sized

particles, however, the unavoidable collisional interaction of the dust and

macroscopic ring particles should enforce a locked dynamical evolution of

both species and a preferential removal of dust by these processes appears

unlikely. Alternatively, it has been suggested that sweep up of dust particles

and their sticking on larger ring particles is responsible for the paucity of dust

(Dones et al., 1993). This conclusion is supported by our results. In Fig. 6

we show the (maximal) carrier size R and velocity dispersions consistent with

a micron sized critical radius rcr. In fact, the release of micron sized dust

from ring particles would require either implausibly large collision speeds or

implausibly small radii of the carrier population. This large distance of the

boundary for dust release from the domain of realistic ring parameters may

explain why no free dust component is seen even in the highly perturbed

regions of Saturn’s main rings, such as the outer A ring beyond the Keeler

gap, or the density waves at the strongest resonances in the rings (Dones

et al., 1993).

The situation is different for the F ring of Saturn. Here, the confinement

of the ring by Prometheus and Pandora, as well as the gravitational stirring

of embedded moonlets and clumps (Cuzzi and Burns, 1988; Dermott, 1981;

Kolvoord et al., 1990; Kolvoord and Burns, 1992; Lissauer and Peale, 1986;

Showalter and Burns, 1982; Showalter et al., 1992; Winter et al., 2007) can

lead to a fairly large velocity dispersion as high as several meters per second.

The size of small particles in F ring is estimated to be in the order of several

microns (Hedman et al., 2011), which corresponds according to our model

to the dominant carrier size not exceeding few centimeters (Fig. 6). The
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local or temporal perturbations may lead to detectable changes in the size

distribution of the F ring dust (Hedman et al., 2010, 2011). Significant

perturbations in the F ring, such as transitions of clumps of material through

the core ring, are implied by Cassini data (Esposito et al., 2008; Charnoz,

2009), and they may occur even daily (Murray et al., 2008).

4.3. Lower size cut-off in Saturn’s dense Rings

The lower size cut-off of the particles in Saturn’s dense rings is to date

probably best constrained (French and Nicholson, 2000) by a ring occultation

of the star 28Sgr, observed from Earth (Nicholson et al., 2000), combined with

Voyager photopolarimeter (PPS) stellar occultation data (Esposito et al.,

1983). Assuming a power law size distribution, modelling of the scattered

signal implies 1 cm as the lower size cut-off in the C ring and in the outer

A ring, but 30 cm in the B ring and the inner to mid A ring (French and

Nicholson, 2000). This is consistent within a factor of two with the analysis

of radio occultations performed with the CASSINI Radio Science Subsystem

(Marouf et al., 2008, see also Cuzzi et al. 2009), giving 5 mm in C and outer

A, and 50 cm in the inner A ring.

If adhesion is the origin for the observed lack of small particles in the

rings, then our expression for the critical radius should give a prediction

for the lower size cut-off. In Fig. 5 we show the critical radius for various

values of the velocity dispersion and (largest) size of carrier particles. The

dependence on other parameters is weak, and the values used are given in the

figure caption. From the identification of gravitational wakes in large parts of

Saturn’s rings (Colwell et al., 2006, 2007; French et al., 2007; Hedman et al.,
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2007), it follows that the Toomre parameter for gravitational instability

Q =
vcΩ

3.36GΣ
(37)

should assume values around 2, or slightly smaller values. Here, Σ is the

surface mass density of the rings, G is the gravitational constant, and Ω the

Kepler frequency. This gives a rough constraint for the velocity dispersion of

the carriers

vc ≈ 1.1× 10−3m

s

[
Q

2

] [
Σ

500kg/m2

] [
2× 10−4s−1

Ω

]
(38)

On the other hand, dense, collision dominated rings should maintain a veloc-

ity dispersion on the order of Ω times particle diameter (Araki and Tremaine,

1986; Shukhman, 1984; Wisdom and Tremaine, 1988) so that

vc ≈ 4× 10−3m

s

[
Ω

2× 10−4s−1

] [
R

10m

]
(39)

Shu et al. (1985) have estimated the collision velocity in the region of density

waves, excited by of Mimas’s 5:3 resonance in the A ring, as 0.4− 3cm/s.

In the figure we indicate plausible ranges for the velocity dispersion

(0.1 cm/s to 1 cm/s) and largest particle sizes (5 m to 15 m, (French and

Nicholson, 2000; Marouf et al., 2008; Tyler et al., 1983)) in grey. In this

parameter range an adhesion coefficient of γ = 0.74 N/m gives critical radii

from a few centimetres to a few tens of centimetres. This value of the adhe-

sion coefficient follows from calculation of the strength of hydrogen bonding

of clean ice surfaces in contact (Chokshi et al., 1993). For more realistic

surfaces the effective γ might be lower. For comparison, we also show crit-

ical radii for γ = 0.19 N/m (Gundlach et al., 2011). In this case we obtain

somewhat smaller values for rcr around one to a few centimetres.
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In conclusion, our results show that the observed lower size cut-off in

Saturn’s rings is consistent with the process of adhesional sticking of small

particles on larger ring particles, taking into account a kinetic balance of

sticking and release.

4.4. Increase of optical depth in perturbed regions

A local change of the steady state velocity dispersion of the ring mat-

ter can change the balance of adhesion and release of debris from the main

ring particles. As a consequence, the input of energy and angular momen-

tum in perturbed ring regions can lead to the collisional release of small

debris particles, previously attached to larger ring particles, which could re-

sult in an observable increase of optical depth. This process was suggested

as an explanation for the bright halos observed around the radial location

of strong density waves in the A ring (Dones et al., 1993; Nicholson et al.,

2008; Salo and Karjalainen, 2003). For example, the brightening measured in

Dones et al. (1993) for the Mimas 5:3 resonance, was well fitted by Salo and

Karjalainen (2003) with a photometric model. Salo and Karjalainen (2003)

assumed the power-law size distribution with the slope β = 3 in the range

from rcr = 50 cm to Rmax = 5 m in the background region, while the lower

size cut-off was reduced to rcr = 15 cm in the resonance zone due to release

of small debris.

Another example are the propeller structures, forming as a response

to the gravitational action of moonlets embedded in the rings (Spahn and

Sremčević, 2000), which were observed in the A ring (Tiscareno et al., 2006).

These structures appear brighter in the images, than the surrounding back-

ground, which indicates the increasing effective optical depth in the vicinity
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Figure 7: Upper panel: Critical radius rcr(vc) and rcr for a 50% enhanced carrier velocity

dispersion vc. Also shown are the expected relative changes of optical depth (from equation

41) in the case of increasing of carrier velocity from vc to 1.5vc, for two values of the size

slope β. Lower panel: Relative change in optical depth depending on relative enhancement

of vc for fixed vc = 2mm/s. The size of the largest carrier R and the adhesion coefficient

γ have a small influence on the optical depth variation. For comparison we also show

symbols (diamonds) from dynamical and photometric simulations of a propeller structure

(Salo and Schmidt, 2007) analyzed and compared to Cassini images by Sremčević et al.

(2007) (see text for details).
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of propellers (Tiscareno et al., 2008). Tiscareno et al. (2008, 2010) suggested,

that this phenomena may be attributed to the disruption of the self-gravity

wakes by the moonlet. In the present manuscript we consider another hy-

pothesis, proposed by Sremčević et al. (2007), which assumes, that the addi-

tional material can be released in those regions where the perturbation of the

moonlet induces collisions with a somewhat larger speed, when compared to

the unperturbed ring.

An increase of the velocity of carriers by the factor of ten can decrease

the critical radius by a factor of several (Eqs. (33)-(34)). If the critical radius

decreases from rcr,2 to rcr,1 then material in the size range rcr,1 < r < rcr,2

adds to the system the (dynamical) optical depth

∆τ =

∫ rcr,2

rcr,1

πr2n (r) dr (40)

if n(r) is the size distribution of this material. If all ring material, including

debris and carriers, follows the same size distribution in form of a power

law n(r) ∼ r−β, then the relative enhancement of the optical depth can be

expressed as

∆τ

τ
=

r3−β
cr,2 − r3−β

cr,1

R3−β − r3−β
cr,1

(41)

where R is the size of the largest carrier and β the slope of the size distrib-

ution.

Examples for the so obtained estimate of the optical depth enhancements

in perturbed ring regions are shown in fig. 7. One expects ∆τ/τ on the

order of a few percent up to tens of a percent if the velocity dispersion is

enhanced by a factor of five. For comparison we also show numbers derived

from dynamical and photometric simulations of a propeller structure (Salo
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and Schmidt, 2007) analyzed and compared to Cassini images by Sremčević

et al. (2007). Here, debris particles were added to a ring background (dy-

namical optical depth τ = 0.5, particle albedo $ = 0.5, steady state velocity

dispersion 2 − 3 mm/s, including self-gravity wakes) at those locations per-

turbed by an embedded moonlet where the perturbed impact velocity of ring

particles exceeded 1 cm/s. The debris followed Keplerian trajectories, with

probabilities for re-absorption given by the particle positions obtained from

the dynamical simulations. The radii of debris particles then were scaled, to

adjust for the optical depth necessary to match the brightness of the pro-

peller structure in images. Sremčević et al. (2007) obtained for the debris an

optical depth of ∆τ = 0.025, using an albedo of $ = 0.9 for the debris par-

ticles. This value is shown in the lower panel of Fig. 7 as a diamond symbol.

A roughly doubled optical depth of the debris is needed if debris particles

have albedo $ = 0.5 (upper diamond symbol). We note that the debris

optical depth from the simulations of Sremčević et al. (2007) represents an

average over the whole simulations box. Locally, the optical depth enhance-

ment is higher or lower. Also, the criterion for debris release vc > 1 cm/s

does not strictly correspond to the perturbed velocity dispersion, which was

used to derive the theoretical curves in Fig. 7. Nevertheless, the comparison

demonstrates that the optical depth perturbations predicted by the theory

developed in this paper are at least in reasonable agreement with available

preliminary analysis of perturbed ring regions in Cassini data.
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5. Conclusion and future work

We have presented a simple theoretical model to describe processes of

adsorption and detachment of small debris particles on the surface of larger

carrier particles. We have shown, that below a certain critical radius all

debris particles are resting on the surface of the carriers. For parameters

plausible for Saturn’s rings, the value of this critical radius is consistent

with an absence of subcentimeter particles in the dense rings. Particles with

dimension greater than the critical radius may move freely in space. The

critical radius decreases with decreasing effective adhesion coefficient, carrier

size, and especially with increasing relative velocity of colliding boulders. In

such a way, a perturbed velocity dispersion in the vicinity of moonlets or

at the locations of satellite resonances in the rings may lead to the release

of additional debris particles, enhancing the optical depth and affecting the

brightness of satellite-generated structures in the images.

In future work we plan to improve the model of debris production, taking

into account release of debris due to rolling (Dominik and Tielens, 1997),

induced by the action of inertial forces.The theory could be extended by

taking into account the dependence of velocity dispersion on the masses of

particles. As for the comparison to data, it would be useful to evaluate the

actual magnitude of the enhancement of velocity dispersions in perturbed

regions of Saturn’s rings. As a next step it would be worth to quantify the

influence of released debris particles on the brightness of perturbed regions

of the main rings and in certain regions of the F-ring.
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