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Editors’ Note: Following the in-principle acceptance of this Stage 1 Registered Report, the timelines have been updated as follows: the Competition will run from December 1, 2023, to July 15, 2024; the “Development Phase” will run from December 1, 2023, to April 30, 2024; and the “Challenge Phase” will run from July 1, 2024, to July 15, 2024.
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FIG. 1. Rationale for the challenge organization. a, The interactions of biomolecules in complex environments, such as
the cell membrane, regulate physiological processes in living systems. These interactions produce changes in molecular motion
that can be used as a proxy to measure interaction parameters. b-c, Time-lapse single-molecule imaging allows us to visualize
these processes with high spatiotemporal resolution (b) and, in combination with single-particle tracking methods, provide
trajectories of individual molecules (c). d-e, Analytical methods can be applied to imaging data, either raw (b) or processed in
the form of trajectories (c), to infer interaction kinetics and quantify their dynamic properties at the ensemble (e.g., probability
distributions, d) or single-trajectory level (e.g., changepoints, e).

detect and quantify these behaviors [33, 34], also involv-
ing machine-learning techniques [35–41].

To gain insights into the performance of methods to de-
tect anomalous diffusion from individual trajectories, in
2021 we successfully ran the 1st AnDi Challenge [42]. The
discussion that developed between members of diverse
research communities working on biology, microscopy,
single-particle tracking, and anomalous diffusion (includ-
ing experimentalists, theoreticians, data analysts, and
computer scientists) emphasized the necessity for deeper
insights into biologically relevant phenomena. First,
there is a need to evaluate methods to determine the
switch between different diffusive behaviors, as often ob-
served in experiments. Second, it is necessary to assess
the methods’ crosstalk in detecting inherent anomalous
diffusion from nonlinearity in the MSD due to motion
constraints or heterogeneity. Third, there is a need to
determine whether the bottleneck of the analysis process
is at the level of the analysis of the single trajectories
or associated with their extraction from the experimen-
tal videos. These needs shaped the design of the 2nd

AnDi Challenge, defining its scope with a focus on char-
acterizing and ranking the performance of methods that
analyze changes of dynamic behavior. While we have re-
tained the name of the 1st AnDi Challenge to build upon
its already-established community, we would like to em-
phasize that the main focus of this 2nd AnDi Challenge is
on revealing heterogeneity rather than anomalous diffu-
sion. In the simulated datasets, anomalous diffusion will

either emerge from heterogeneity itself or be intentionally
introduced for evaluation purposes.

There is a multitude of methods that have been de-
signed to identify and characterize heterogeneous diffu-
sion (Table I). They can be classified based on the het-
erogeneity they aim to identify or on the kind of analysis
they perform. We consider three heterogeneity classes
that these methods aim to identify: (i) changes in the
value of the diffusion coefficient D; (ii) changes in the
anomalous diffusion exponent α (often classified as sub-
diffusion, diffusion, or superdiffusion); and (iii) changes
in the phenomenological behavior associated with inter-
actions with the environment (often classified as immobi-
lization, confinement, (free) diffusion, and directed mo-
tion). While changes in the diffusion coefficient and
in the phenomenological behavior have been widely re-
ported, the exploration of changes in the anomalous dif-
fusion exponent is a more recent development [43–46],
which is attracting increasing interest also from the the-
oretical point of view [47–50]. The introduction of new
methods for data analysis, as promoted by the Challenge,
could push the performance for detecting subtle changes
in these diffusion properties in systems where they have
so far been overlooked. Along this line, it must be pointed
out that the traditional analysis based on the calculation
of the scaling exponent of the mean-squared displace-
ment (MSD) can create some ambiguity between the last
two classes. Just to provide an example, a particle per-
forming Brownian diffusion in a confined region has an
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exponent α = 1 in terms of the generating motion, but
its MSD features a horizontal asymptote at long times,
corresponding to α = 0. In the following, we will re-
fer to the exponent α as the characteristic feature of the
generating motion.

From the analysis point of view, we can identify two
classes of methods: (i) ensemble methods, meant to de-
termine characteristic features out of an ensemble of tra-
jectories (Fig. 1(d)) and (ii) single-trajectory methods,
meant to identify changepoint (CP) locations through
trajectory segmentation (Fig. 1(e)). While most avail-
able methods rely on the analysis of trajectories obtained
from video processing [51], recent advances in computer
vision have led to methods capable of directly extract-
ing information from raw movies without requiring the
explicit extraction of trajectories [52, 53]. Each method
has its own set of advantages and disadvantages, and its
performance may depend on the specific problem under
consideration. However, there is currently no universally
accepted gold standard for determining which method to
use to address each specific problem.

To cater to these more advanced needs, we decided to
run an open competition as the 2nd Anomalous Diffusion
(AnDi) Challenge. The rationale described above shaped
the scope of the challenge, defining the choice of the
datasets and the design of the tasks. To rely on objective
ground truth, we will assess the methods’ performance on
simulated datasets inspired by models of diffusion and in-
teractions documented in biological systems. Datasets
will describe particles undergoing fractional Brownian
motion (FBM, [54]) with piecewise-constant parameters.
FBM-type motion has been widely observed in biological
systems by means of microrheology, a technique that uses
large tracer particles as probes to study the properties
of the environment [55]. Anomalous diffusion compati-
ble with FBM has also been reported for telomers and
macromolecular complexes in living cells [20, 23–28, 56].
Beyond this evidence, in the context of the Challenge,
FBM serves as a tool to enable the tuning of diffusion
parameters. The combination of parameter values and
interaction models might produce situations that do not
correspond to previously documented biological scenar-
ios but will be valuable to test the methods’ performance
in a wide range of conditions. In biological experiments,
other kinds of motion and even non-Gaussian behavior
have been reported [21]. However, the choice of FBM
does not limit the generality of the Challenge since other
models of diffusion and non-Gaussian behavior can be
obtained by properly tuning the parameters of the sim-
ulations. Datasets provided for the last phase of the
competition will also include actual experiments for their
comparative analysis with the Challenge methods (these
data will not be used for the ranking).

The standard and straightforward approach in live-
cell single-molecule imaging primarily captures informa-
tion related to lateral motion. In cases involving flat
membranes or isotropic systems, employing 2D imag-
ing and tracking techniques suffices for obtaining accu-

rate motion-related parameters. However, when dealing
with motion on non-flat surfaces or within anisotropic
3D environments, relying solely on 2D projections can re-
sult in critical information being overlooked, potentially
leading to the misinterpretation of diffusion coefficients
or the appearance of apparent anomalous diffusion ef-
fects [57, 58]. Consequently, drawing definitive conclu-
sions under such circumstances should be avoided or ap-
proached with caution. To study motion occurring in
3D space, it is advisable to employ 3D tracking meth-
ods, such as off-focus imaging (i.e., the analysis of ring
patterns in the defocused point spread function) [59], in-
terference/holographic approaches [60], multifocus imag-
ing [61], or point spread function engineering [62]. Al-
though more challenging, these methods can measure
also the motion along the axial dimension, facilitating
a more accurate characterization. For the purposes of
the Challenge, we have chosen to concentrate on study-
ing changes in diffusion behavior occurring within a 2D
context, driven by particle interactions of various types.

While this challenge focuses on data from biological
systems, the use of regime-switching detection and tra-
jectory segmentation extends well beyond the domain
of living cells. Particularly interesting applications also
include, e.g., the analysis of biomedical signals [63],
speech [64], traffic flows [65], seismic signals [66], econo-
metrics [67, 68], ecology [69], and river flows [70].

METHODS

Datasets and ground truth

In order to benchmark the different methods on data
with known ground truth, we rely on numerical simula-
tions. We developed the andi-datasets Python pack-
age [71] to generate the required datasets to train and
evaluate the various methods. Details about available
functions can be found in the hosting repository [71].

Particle motion is simulated according to fractional
Brownian motion (FBM, [54]), a model that reproduces
Brownian and anomalous diffusion processes by tuning
the correlation of the increments through the Hurst ex-
ponent H. FBM is a Gaussian process with a covariance
function

E[BH(t)BH(s)] = K
(
t2H + s2H − |t− s|2H

)
, (1)

where E[·] denotes the expected value and K is a con-
stant with units length2 · time−2H. In order to generalize
FBM in two dimensions (2D), a trajectory R(t) is rep-
resented as R(t) = {X(t), Y (t)}, where X(t) and Y (t)
are independent FBM along the x and y axes, respec-
tively [33]. The anomalous diffusion exponent is related
to the Hurst exponent as α = 2H [54], and the MSD for
an unconstrained FBM in 2D scales with time t as

MSD(t) = 4Ktα. (2)
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When α = 1, FBM reverts to Brownian motion and K
corresponds to the diffusion coefficient D. FBM can thus
produce subdiffusion for 0 < H < 1/2 (0 < α < 1),
Brownian diffusion for H = 1/2 (α = 1), and superdiffu-
sion for 1/2 < H < 1 (1 < α < 2).

We will consider the following physical models of mo-
tion and interactions(Fig. 2(a)):

• Single-state model (SSM) — Particles diffusing ac-
cording to a single diffusion state, as observed for
some lipids in the plasma membrane [14, 15, 72].
This model also serves as a negative control to as-
sess the false positive rate of detecting diffusion
changes.

• Multi-state model (MSM) — Particles diffusing ac-
cording to a time-dependent multi-state (2 or more)
model of diffusion undergoing transient changes of
K and/or α. Examples of changes of K have been
observed in proteins as induced by, e.g., allosteric
changes or ligand binding [73–76].

• Dimerization model (DIM) — Particles diffusing
according to a 2-state model of diffusion, with tran-
sient changes of K and/or α induced by encounters
with other diffusing particles. Examples of changes
of K have been observed in protein dimerization
and protein-protein interactions [77–81].

• Transient-confinement model (TCM) — Particles
diffusing according to a space-dependent 2-state
model of diffusion, observed for example in proteins
being transiently confined in regions where diffu-
sion properties might change, e.g., the confinement
induced by clathrin-coated pits on the cell mem-
brane [82]. In the limit of a high density of trapping
regions, this model reproduces the picket-and-fence
model used to describe the effect of the actin cy-
toskeleton on transmembrane proteins [9, 83].

• Quenched-trap model (QTM) — Particles diffus-
ing according to a space-dependent 2-state model
of diffusion, representing proteins being tran-
siently immobilized at specific locations as in-
duced by binding to immobile structures, such as
cytoskeleton-induced molecular pinning [17, 84].

While the interaction mechanisms producing the het-
erogeneous diffusion are inspired by biological scenarios,
some of the combinations of diffusion parameters and
models lead to situations that may not correspond to
previously documented biological contexts. Nevertheless,
this approach holds substantial value as it enables the
comprehensive assessment of method performance across
a broad spectrum of conditions.

In the simulations, each dynamic state is characterized
by a distribution of values for the parameters K and α.
For each trajectory, the values of K and α for each state
are randomly drawn from Gaussian distributions with
bounds α ∈ (0, 2) and K ∈ [10−12, 106] pixel2/frameα.

The interaction distance and the radius of confinement
or trapping have constant values across each experiment.
Simulations are provided in generalized units (i.e., pixels
and frames) that can be rescaled to meaningful temporal
and spatial scales.

A detailed description of the simulation procedure is
presented in Appendix A. Table II summarizes all the
parameter values used to generate the Pilot Dataset that
can be downloaded at https://drive.google.com/drive/
folders/1R41I5Y8ynXdXbUFLWOtQXx1nkUh3bWw3?
usp=share_link. The Pilot Dataset provides typical
numerical experiments that will be made available to
the participants in the different phases of the challenge.

Datasets provided for the last phase of the compe-
tition will also include results from actual experiments
that have reported the occurrence of heterogeneous dif-
fusion but for which the ground truth is not established
beyond any doubt. Therefore, these data will not con-
tribute to the challenge scoring. Nevertheless, the predic-
tions provided by different methods will be comparatively
analyzed and discussed also with respect to the conclu-
sions reached in the original publications. Together with
the quantitative results obtained from simulations, these
analyses will assess the applicability of the methods to
real-world experimental data.

Competition design

To enable the assessment of the performance of pre-
viously established methods while fostering the devel-
opment of new approaches and the participation from
diverse disciplines, the challenge is organized along two
tracks:

• Track 1 — based on the analysis of raw videos.

• Track 2 — based on the analysis of trajectories.

For each track, datasets are provided according to a
hierarchical structure (Fig. 2(b-c)) that includes:

• Experiment — A given biological scenario defined
by a model of interactions and a set of parameters
describing the dynamic interplay of the particles
and the environment.

• Field of view (FOV) — A region of the sample
where the recording takes place. Particles within
the same FOV can undergo interactions among
themselves and/or with the environment.

• Video (Track 1 only) — Videos corresponding to
each FOV.

• Trajectory (Track 2 only) — Trajectory corre-
sponding to the motion of an individual particle.

For both tracks, all the particles used in the simulations
are provided/visualized (i.e., full labeling conditions).
The effect of blinking or photobleaching is not taken into

https://drive.google.com/drive/folders/1R41I5Y8ynXdXbUFLWOtQXx1nkUh3bWw3?usp=share_link
https://drive.google.com/drive/folders/1R41I5Y8ynXdXbUFLWOtQXx1nkUh3bWw3?usp=share_link
https://drive.google.com/drive/folders/1R41I5Y8ynXdXbUFLWOtQXx1nkUh3bWw3?usp=share_link


5

Experiment
Field of view (FOV)

time-dependent
changes

co-diffusion

compartment

trap

single-state model (SSM)a

b c

multi-state model (MSM) dimerization model (DIM) transient-confinement model (TCM) quenched-trap model (QTM)

Trajectory 1 (3 CPs)

Trajectory 2 (6 CPs)

Trajectory 3 (no CPs)

FIG. 2. Physical models of interaction and structure of the simulated datasets. a, Examples of 2-dimensional
trajectories undergoing interactions inducing changes in their motion. From left to right: single-state model (SSM) without
changes of diffusion; multi-state model (MSM) with time-dependent changes between different diffusive states (red and blue);
dimerization model (DIM) where a particle (red) selectively interacts with another particle (gray) and the two transiently co-
diffuse with a different motion (blue trajectory); transient-confinement model (TCM) where a particle diffuses inside (blue) and
outside (red) compartments with osmotic boundaries (gray area); quenched-trap model (QTM) where a particle is transiently
immobilized (blue) at specific loci through interactions with static features of the environment (gray areas). b An experiment
(left panel) consists of simulations performed according to one of the models of interactions described in a (here shown a TCM
experiment), with a set of parameters describing the dynamic interplay of the particles and/or the environment. From the
same experiment, several fields of view (FOVs) are selected. Particles within the same FOV (right panel) diffuse and undergo
interactions among themselves and/or with the environment (gray areas) that affect their trajectories. c, Time traces of the
coordinates of exemplary trajectories from the experiment depicted in b displaying changes of diffusion properties at specific
times (dashed vertical lines). For the challenge, the motion analysis can be either performed directly from the video recording
of the FOV (Track 1), or from detected trajectories linking the coordinates of individual particles at different times (Track 2).

account. In each track, participants can compete in two
different tasks, as typically done in the analysis of exper-
imental data:

• Ensemble Task — Ensemble-level predictions pro-
viding for each experimental condition the model
used to simulate the experiment, the number of
states, and the fraction of time spent in each state.
For each identified state, participants should de-
termine the mean and standard deviation of the
distribution of the generalized diffusion coefficients
K, and the mean and standard deviation of the
distribution of the anomalous diffusion exponent α
corresponding to the underlying motion.

• Single-trajectory Task — Trajectory-level predic-
tions providing for each trajectory a list of M in-
ner CPs delimiting M + 1 segments with different
dynamic behavior. For each segment, participants

should identify the generalized diffusion coefficient
K, the anomalous diffusion exponent α correspond-
ing to the underlying motion, and an identifier of
the kind of constraint imposed by the environment
(0 = immobile, 1 = confined, 2 = free (uncon-
strained), 3 = directed (α ≤ 1.9)). For Track 1,
predictions must be provided for a subset of parti-
cles (in the following, we will refer to them as VIP,
very important particles) identified through a label
map of the first frame of the movie. For Track 2,
predictions must be provided for all trajectories in
the FOV.

For each task, several metrics will be evaluated (see sec-
tion Scoring and evaluations). Participants can provide
partial submissions, e.g., including predictions for a lim-
ited subset of experiments or for specific parameters. For
ranking purposes of the challenge, missing predictions
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will be scored with the worst possible value of the corre-
sponding metric.

Competition timeline

We plan to run the 2nd AnDi Challenge as a time-
limited competition from October 1, 2023, to June 15,
2024 (the competition dates may be shifted depending on
the duration of the Stage 1 review). The competition will
be hosted on the Codalab platform and will be divided
into three phases, namely Development, Validation, and
Challenge.

The Development Phase (December 1, 2023, to March
31, 2024) is intended for the participants to set up their
methods, test them, and familiarize themselves with the
datasets and the scoring platform. An unlabeled dataset
will be available and the public leaderboard will show
scores obtained on this dataset. The code to generate
further data will also be available.

The Validation Phase (May 1, 2024, to June 30, 2024)
will be a test of the actual final challenge. A new dataset
will be provided and the public leaderboard will show the
scores for each task.

The Challenge Phase (July 1, 2024, to June 15, 2024)
will be the final stage of the competition. Only teams in
the top 10 ranking of each task will be allowed to partic-
ipate in this phase. A new dataset will be provided and
the number of submissions will be limited to 1 per day.
Results obtained by other participants will not be pub-
licly disclosed, as the leaderboard will be made publicly
available only after the deadline.

The analysis of the final results will be performed from
July to October 2024. If Stage 1 review is successful, the
manuscript will be submitted by the end of October 2024.
Members of the teams in the top-5 ranking of each task
will be invited to contribute to the article as authors.

The results of the challenge will be discussed with the
participants and other experts from the field during the
2nd Anomalous Diffusion Workshop that will be held in
December 2024.

Dataset structure

The datasets used in the challenge (Fig. 3) include dif-
ferent experiments, each contained in a folder labeled
with a sequential number (EXP_[exp number]) and cor-
responding to a specific model and a fixed set of pa-
rameters. The information about the model and the
parameters is unknown to challenge participants. Each
experiment folder contains a list of files labeled with a
sequential number (FOV_[fov number]) associated with
30 FOVs. Each FOV reports data from a variable number
of particles diffusing on a 128× 128 pixel2 area.

For Track 1 (Fig. 3(a)), the coordinates of particles
in the same FOV are used to generate 200-frame videos
as a series of 8-bit images in the multi-tiff format using

Deeptrack 2.1 [5]. Noise is added to the synthetic images
to account for background fluorescence and shot noise. A
map corresponding to the segmentation of VIP particles
at the first frame for which CPs and diffusion parameters
must be detected is also provided as a tiff file. Connected
components of the map are labeled with unique integer
values that correspond to the particle index.

For Track 2 (Fig. 3(a)), we provide a csv file for each
FOV containing a table whose columns contain trajectory
index, time step, x-coordinate, and y-coordinate. Coordi-
nates of simulated trajectories are corrupted with Gaus-
sian noise corresponding to finite (subpixel) localization
precision. The trajectories have a maximum length of
200 frames.

Besides localization precision, motion blur can intro-
duce a significant contribution to noise, in particular if
the camera frame rate is slow compared to particle mo-
tion [85]. However, this aspect will not be included in the
Challenge datasets since it would introduce complexities
in the definition of the ground truth that could detract
from the focus of the work. Nevertheless, the simulation
software incorporates the capability to introduce the ef-
fect of motion blur both in videos and trajectories.

Exemplary data for all the models are shown in Fig. 4.
Files in different tracks labeled with the same experiment
and the FOV index (e.g., Track_1/EXP_4/FOV_3.tiff
and Track_2/EXP_4/FOV_3.csv) include simulations ob-
tained with the same set of dynamics parameters but do
not correspond to the motion of the same set of particles.

A. Scoring and evaluation

The performance of the methods will be evaluated us-
ing specific metrics for each Task. For ranking purposes
in the challenge, composite metrics will be used, as de-
scribed below.

1. Ensemble Tasks

Participation in an ensemble task requires predictions
of the type of model used for simulating each experiment,
the number of states S of the model, and the parameters
of each state. The type of model will be simply evalu-
ated as correct or wrong. The prediction of the number
of states will be assessed by measuring the difference with
the ground truth. For both the generalized diffusion coef-
ficient and the anomalous diffusion exponent, predictions
must include the mean, the standard deviation, and the
relative weight of each state. From these values, we will
compute the associated multi-modal distributions Pα and
PD. The similarity of these distributions to the ground-
truth distributions Qα and QD will be assessed by means
of the first Wasserstein distance (W1),

W1(P,Q) =

∫
supp(Q)

|CDFP (x)− CDFQ(x)|dx (3)

https://competitions.codalab.org/competitions/
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FIG. 3. Structure of the dataset. Datasets for each track are contained in the respective directories, namely, Track 1 and
Track 2. These include a folder for each experiment labeled with a sequential number (EXP_[exp number]). Each experiment
folder contains a list of 30 files labeled with a sequential number (FOV_[fov number]) associated with different non-overlapping
FOVs. For Track 1, the files consist of 200-frame videos and an additional map corresponding to the segmentation of VIP
particles at the first frame. For Track 2, the files contain a table whose columns correspond to the trajectory index, time step,
x-coordinate, and y-coordinate.

where CDFQ is the cumulative distribution function of
the distribution Q and supp(Q) is the support (α ∈ (0, 2)
and K ∈ [10−12, 106] pixel2 · frame−α).

2. Single-trajectory Tasks

Participation in a single-trajectory task requires pre-
dictions of the M CPs and the dynamic properties, i.e.,
the generalized diffusion coefficient K, the anomalous ex-
ponent α, and diffusive-type identifiers of the resulting
M+1 segments. Different metrics will be used to evalu-
ate the methods’ performance.

a. CP detection metrics Following Ref. [51], given a
ground-truth CP at locations t(GT),i and a predicted CP
at locations t(P),j , we define the gated absolute distance:

di,j = min(|t(GT),i − t(P),j |, εCP), (4)

where εCP is used as a fixed maximum penalty for CPs
located more than εCP apart. For a set of MGT ground-
truth CPs and MP predicted CPs, we can solve a rect-
angular assignment problem using the Hungarian algo-
rithm [86] by minimizing the sum of distances between
paired CPs:

dCP = min
paired CP

(∑
di,j

)
. (5)

The distance dCP allows to define a pairing metrics:

αCP = 1− dCP

dmax
CP

, (6)

where dmax
CP = MGT εCP is the distance associated with

having all predicted CPs unpaired or at a distance larger
than εCP from all ground-truth CP. The metric αCP is
bound in [0, 1], taking a value of 1 if all ground-truth and
predicted CPs are matching exactly. Similarly, we define
a CP localization metric:

βCP =
dmax
CP − dCP

dmax
CP + dCP

, (7)

where dCP is the distance associated with having all unas-
signed predicted CPs at a distance larger than εCP from
all ground-truth CPs. This metric measures the pres-
ence of spurious CPs and is bound in [0, αCP], taking
value αCP if no spurious CPs are present. We also cal-
culate the number of true positive (TP), i.e., the paired
true and predicted CPs with a distance smaller than εCP .
Spurious predictions, i.e., not associated with any ground
truth or having a distance larger than εCP are counted
as false positive (FP). Ground truth CPs not having
an associated prediction at a distance shorter than εCP

are considered false negative (FN). Given an experiment
containing N trajectories, we compute the overall num-
ber of TP, FP, and FN. We then use these values to
calculate the Jaccard similarity coefficient (JSC) over the
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SSM MSM TCMDIM QTM
a

b

c

d

FIG. 4. Examples of challenge datasets. a, b, Frames of exemplary videos (FOVs) provided for Track 1 corresponding
to the different diffusion models and reproducing low (a) and high number density (b). c, d, The upper rows show plots of
the trajectories for exemplary FOVs provided for Track 2 corresponding to the different diffusion models and different sets of
parameters exhibiting evident (c) or subtle changes (d) of diffusion, i.e., data in c reproduce conditions were diffusion changes
are easier to identify as compared to d. For example, for the SSM, all trajectories in c have the same generalized diffusion
coefficient, whereas in d they have a broad distribution of K. For the MSM, trajectories in c undergo large changes of diffusivity
and show long dwell times in each state, as compared to d. For the DIM, trajectories in c undergo large changes of anomalous
diffusion exponent and show long dwell times in each state, as compared to d. For the TCM, trajectories cannot leave the
confinement zone once they get inside c, whereas in d the compartments have a finite transmittance. For the QTM, the dwell
times in the traps are much longer in c than in d. The lower rows show time traces of the x-coordinate of representative
trajectories. The different colors indicate different diffusive states.

whole experiment as:

JSC =
TP

TP + FN+ FP
. (8)

For the predicted CPs classified as TP, we also compute
the root mean square error (RMSE), defined as:

RMSE =

√√√√√ 1

N

∑
paired CP
di,j<εCP

(
t(GT),i − t(P),j

)2

. (9)
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b. Metrics for the estimation of dynamic properties
For the evaluation of methods performance for the esti-
mation of the dynamic properties, we first follow a pro-
cedure similar to the one described above for the pair-
ing of the CPs. Predicted CPs are used to define the
predicted trajectory segments. We define a distance be-
tween predicted and ground-truth segments based on the
JSC calculated with respect to their temporal support,
where time points at which predicted and ground-truth
segments overlap are considered as TP, predicted time
points not corresponding to the ground truth as FP, and
ground-truth time points not predicted as FN. The Hun-
garian algorithm is used to pair segments by maximizing
the sum of the JSC. Only paired segments are used to
calculate metrics assessing methods performance for the
estimation of dynamics properties. For the generalized
diffusion coefficient K, we use the mean squared loga-
rithmic error (MSLE) defined as:

MSLE =
1

N

∑
paired

segments

(
log(K(GT),i + 1)− log(K(P),j + 1)

)2

.

(10)
For the anomalous diffusion exponents α, we use the
mean absolute error (MAE):

MAEα =
1

N

∑
paired

segments

|α(GT),i − α(P),j |, (11)

where N is the total number of paired segments in the ex-
periment, α(GT),i and α(P),j represent the ground-truth
and predicted values of the anomalous exponent of paired
segments, respectively. For the classification of the type
of diffusion, we use the F1-score:

F1 =
2TPc

2TPc + FPc + FNc
, (12)

where TPc, FPc, and FNc represent true positives, false
positives, and false negatives with respect to segment

classification. The metric is calculated as a micro-
average, which aggregates the contributions of all classes
to compute the average metric and is generally preferable
when class imbalance is present.

B. Metrics for challenge ranking

For ranking purposes, we will use the mean recipro-
cal rank (MRR) as a summary statistic for the overall
evaluation of software performance [42]:

MRR =
1

N
·

N∑
i=1

1

rankMi

, (13)

where rankMi corresponds to the position in an ordered
list based on the value of the corresponding metrics Mi.

For Task 1, the metrics involved in the calculation will
be the F1-score of the model, the MAE of the distribu-
tions of K and α. For Task 2, the JSC and the RMSE of
CPs, the MSLE of K, and the MAE of α.

DATA AVAILABILITY

A Pilot Dataset is available for down-
load at https://drive.google.com/drive/folders/
1R41I5Y8ynXdXbUFLWOtQXx1nkUh3bWw3?usp=
share_link
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Experiment Model Numb. of states State
K (pixel2/frameα) α distrib.

Diffusion class Model-specific parameters
µ σ µ σ

0 SSM 1 1 1 0.01 0.5 0.01 2 -

1 SSM 1 1 0.1 0.01 1.9 0.01 3 -

2 MSM 2
1 1 0.01 1.5 0.01 2

M =

(
0.99 0.01

0.01 0.99

)
2 0.05 0.01 0.5 0.01 2

3 MSM 3
1 1 0.01 1.5 0.01 2

M =


0.98 0.01 0.01

0.01 0.98 0.01

0.01 0.01 0.98

2 0.5 0.01 0.5 0.01 2
3 0.01 0.01 0.75 0.01 2

4 QTM 2
1 1 0.01 0.8 0.01 2

rt = 0.6, Nt = 300, Pb = 1, Pu = 0.01
2 0 0 0 0 0

5 QTM 2
1 1 0.01 1.5 0.01 2

rt = 1.0, Nt = 150, Pb = 1, Pu = 0.05
2 0 0 0 0 0

6 DIM 2
1 1 0.01 1.2 0.01 2

r = 0.6, N = 100, Pb = 1, Pu = 0.01
2 1 0.01 0.8 0.01 2

7 DIM 2
1 1 0.01 1.2 0.01 2

r = 1.0, N = 80, Pb = 1, Pu = 0.01
2 3 0.01 0.5 0.01 2

8 TCM 2
1 1 0.01 0.8 0.01 2

rc = 5, Nc = 30, T = 0.1
2 1 0.01 0.4 0.01 1

9 TCM 2
1 1 0.01 1 0.01 2

rc = 10, Nc = 30, T = 0.0
2 0.1 0.01 1 0.01 1

TABLE II. Parameters of the pilot dataset. Example of a dataset composed of 10 experiments reproducing the models of
diffusion employed in the 2nd Anomalous Diffusion Challenge: single-state model (SSM); multi-state model (MSM); dimerization
model (DIM); transient-confinement model (TCM); quenched-trap model (QTM). The diffusion class correspond to 0 =
immobile, 1 = confined, 2 = free (unconstrained), 3 = directed. The parameters specific to each model are: for MSM, the
transition matrix M ; for QTM, the trap radius rt, the number of traps Nt, the probability of trapping Pb and untrapping
Pu; for DIM, the interactions radius r, the number of particles N , the probability of binding Pb and unbinding Pu; for TCM,
the compartment radius rc, the number of compartments Nc, and the boundary transmittance T . Simulations are provided in
generalized units (i.e., pixels and frames) that can be rescaled to meaningful temporal and spatial scales. See Appendix A for
further details. For all experiments, we simulated N = 100 particles (Experiment 7 has N = 80) in a box of size L = 230 pixel
with a FOV size LFOV = 128 pixel, and a maximum trajectory length of 200 frames. For Track 1, movies were rendered using
a FWHMPSF = 2.1 pixel and a SNR = 7.1. For Track 2, trajectories were corrupted with Gaussian localization noise with
σN = 0.12 pixel.
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Appendix A: Simulations of diffusion and interaction models

Trajectories are simulated according to a 2-dimension fractional Brownian motion (FBM) [54]. FBM is a continuous-
time Gaussian process BH(t) with stationary increments and a covariance function E[BH(t)BH(s)] = 1

2 (|t|
2H+|s|2H−

|t−s|2H), where H represents the Hurst exponent and is related to the anomalous diffusion exponent α as H = α/2 [54].
The FBM features three regimes: one where the increments are positively correlated (1/2 < H < 1, i.e., 1 < α < 2,
superdiffusive); one where the increments are negatively correlated (0 < H < 1/2, i.e., 0 < α < 1, subdiffusive); and
one where the increments are uncorrelated (H = 1/2, i.e., α = 1, diffusive Brownian motion).

The models included in the challenge describe trajectories where diffusion properties are piecewise constant along
segments of varying duration Ts and undergo sudden changes. To obtain a trajectory segment of length Ts with
given anomalous diffusion exponent α and generalized diffusion coefficient K, a set of Ts − 1 displacements for each
dimension are sampled from a fractional Gaussian noise generator [114]. The displacements are then standardized to
have variance σ2 = 2K∆t, where ∆t is the sampling time.

Simulations are performed considering particles diffusing in a square box of size L with reflecting boundary condi-
tions. However, to avoid boundary effects, the fields of view used for the challenge datasets correspond to a square
region of size LFOV ≪ L within the central part of the original box (Fig. 2(b)).

For Track 1, trajectory coordinates are used as sub-pixel localizations of individual particles to simulate movie
frames as in single-molecule fluorescence experiments [5]. Each particle has a random intensity Ii that corresponds
to the total number of photons collected by the detector. Ii is drawn from a uniform distribution in the interval
[Imin, Imax] and fluctuates over time according to a normal distribution with mean Ii and standard deviation σI . Each
particle is rendered as a diffraction-limited spot using an Airy disk as a point-spread function (PSF) with full width
at half maximum FWHMPSF = 2.1 px. A constant background of Ibg = 100 counts is added to each frame. Images
are corrupted with Poisson noise.

For Track 2, trajectory coordinates are corrupted with noise from a Gaussian distribution with zero mean and
standard deviation σN to take into account the finite localization precision obtained in tracking experiments.

All the models share a set of parameters required for the simulations that are described here. Model-specific
parameters are defined when describing the details of the models in the following sections.

• [K1,K2, . . . ,Kn]: average values of the (Gaussian) distribution of the generalized diffusion coefficient for each
of the n diffusive states considered in a given experiment, with support [10−12, 106] pixel2 · frame−α.

• [σK1 , σK2 , . . . , σKn ]: standard deviations of the (Gaussian) distribution of the generalized diffusion coefficient
for each of the n diffusive states considered in a given experiment. If not provided, it is considered to be equal
to 0 (i.e., the distribution is δ(K −Ki)).

• [α1, α2, . . . , αn]: average values of the (Gaussian) distribution of the anomalous diffusion exponent for each of
the n diffusive states considered in a given experiment, with support (0, 2).

• [σα1
, σα2

, . . . , σαn
]: standard deviations of the (Gaussian) distribution of the anomalous diffusion exponent for

each the n diffusive states considered in a given experiment. If not provided, it is considered to be equal to 0
(i.e., the distribution is δ(α− αi)).

• L: size of the box where trajectories are simulated with reflecting boundary conditions.

• LFOV: size of the box defining the FOV used for the challenge datasets. The same particles can enter and exit
the FOV over time but, for evaluation purposes, they will be considered as generating different trajectories.

• ∆t: sampling time at which the original motion of the particle is tracked. For the challenge datasets, we consider
∆t = 1.

• T : duration of the recording over each FOV, given as the number of time steps ∆t. It also corresponds to the
maximum trajectory duration. For the challenge, we set T = 500;

• Tmin: minimum duration of a trajectory to be included in the dataset. For the challenge, we use T = 20;

• Ibg (Track 1): background level of noise (counts) used in the simulation of videos.

• FWHMPSF (Track 1): full width at half maximum in pixels of the point-spread function used to render fluorescent
particles.

• Itot (Track 1): mean value in counts of the total fluorescence collected for the detected particles.
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• σtot (Track 1): standard deviation in counts of the distribution of total fluorescence collected for the detected
particles.

• Ipeak (Track 1): mean value in counts of the peak fluorescence collected for the detected particles. Can be
calculated as Ipeak = Itot

4 ln 2
πFWHMPSF

2

• SNR (Track 1): typical signal-to-noise ratio of the movies, calculated as the average peak intensity over the
standard deviation of the noise [51] and thus equal to

SNR =
Ipeak√

Ipeak + Ibg
. (A1)

• σN (Track 2): standard deviation of the Gaussian localization noise used to corrupt trajectory coordinates.

• tmin: minimum distance between changepoints, corresponding to the minimum amount of time that a particle
spends in a state. Shorter segments are eliminated by smoothing the time trace of the state label using a
majority filter with a window of 5 steps. For the challenge, we set tmin = 3.;

A schematic representation of each of the models presented below is shown in Fig. 2(a).

1. Model 1 - Single-state model (SSM)

This model simply corresponds to particles diffusing according to FBM with constant generalized diffusion coefficient
K and anomalous diffusion exponent α. For each trajectory, a value of K and a value of α are sampled from the
corresponding distribution. Data corresponding to these models are necessary to establish the false positive rate of
the methods toward the detection of changes of diffusion properties.

2. Model 2 - Multi-state model (MSM)

The multi-state model is a Markov model describing particles undergoing FBM whose diffusion properties can
change at random times. The number of states S is fixed for a given experiment as are the parameters defining the
distributions of K and α for each state. For each trajectory, S values of α and S values of K are sampled from
the distribution of the corresponding states, i.e., one per state. At every time step, a diffusing particle has a given
probability to undergo a change in one of its diffusive parameters (either α or K). The probability of switching is
given by a transition matrix M . Namely, Mi,j is the probability of switching from state i to state j at each time step.
In the same sense, Mi,i is the probability of remaining in state i. The residence time in a given state i can be directly
calculated from the previous probability as

τi =
1∑

j ̸=i Mij
=

1

1−Mii
. (A2)

Model 2 (MSM) parameters

• M : transition matrix between diffusive states.

3. Model 3 - Dimerization (DIM)

This model considers the case in which dimerization, i.e., the transient binding of two particles, may occur and
produce changes in the diffusion properties of both particles. In particular, we consider the case of N circular particles
of radius r. For each trajectory, a value of α and a value of K are sampled from the corresponding distributions
associated with the monomeric state. If two particles are at a distance d < 2r, then they have a probability Pb

of binding. The two particles forming a dimer move with equal displacements, according to a generalized diffusion
coefficient K and an anomalous diffusion exponent α drawn from the distributions associated with the dimeric state.
At each time step, the dimer has a probability Pb of breaking its bond, freeing the two particles to go back to their
original motion parameters. The particles cannot form any new dimer until taking a new step. Only dimers are
allowed and subsequent hits with other particles will not affect either the particles or the dimers.
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Model 3 (DIM) parameters

• N : number of diffusing particles in the box of size L.

• r: interaction radius, corresponding to the radius of the diffusing particles.

• Pb: probability that two particles bind to form a dimer in each time step. For this to happen, the
particles must be at a distance d < 2r.

• Pu: probability that a dimer breaks up at each time step so that the two particles go back to diffusing
independently.

4. Model 4 - Transient-confinement model (TCM)

This model considers an environment with Nc circular compartments of radius rc. The compartments are distributed
randomly throughout the environment such that they do not overlap. We consider that the compartments are osmotic,
i.e., a particle reaching their boundary from the exterior has a probability 1 of entering them, but a particle reaching
the boundary from the interior of a compartment has a probability T of exiting it (and 1− T of being reflected back
to the interior of the compartment). The diffusion inside and outside the compartment is different, hence defining
two diffusive states. For each trajectory, two values of α and two values of K are sampled from the corresponding
distributions, corresponding to the motion outside and inside the compartments.

Model 4 (TCM) parameters

• Nc: number of compartments in the box of size L.

• rc: radius of the compartments.

• T : transmittance of the boundary. Probability that a particle reaching the boundary from inside the
compartment exits the compartment.

5. Model 5 - Quenched-trap model (QTM)

This model considers the diffusion of particles in an environment with Nt immobile traps of radius rt. The values
of α and K are sampled for each trajectory from the corresponding distributions and define its unrestrained motion.
A particle that enters the domain defined by a trap has a probability Pb of binding to the trap and, hence, getting
temporarily immobilized (K = 0, α = 0). At each time step, a trapped particle has a probability Pu of unbinding and
being released from the trap, going back to its unrestrained motion. A particle cannot be trapped again until taking
a new step.

Model 5 (QTM) parameters

• Nt: number of traps in the box of size L.

• rt: radius of the traps.

• Pb: probability that a particle binds to a trap and gets immobilized. For that to happen, a particle must
be at a distance d < rt from the trap.

• Pu: probability that a trapped particle unbinds from a trap and starts diffusing independently at each
time δt.

LIST OF ACRONYMS

RMSE: root mean square error
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MAE: mean absolute error

MSLE: mean squared logarithmic error

JSC: Jaccard similarity coefficient

FP: false positive

TP: true positive

FN: false negative

CP: changepoint

FOV: Field of view

SSM: Single-state model

MSM: Multi-state model

DIM: Dimerization model

TCM: Transient-confinement model

QTM: Quenched-trap model


