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Highlights

• The path integral (PI) method is extended to solve SDE with combined noise input and the corresponding fractional Fokker-Planck-
Kolmogorov equations.

• We derive and verify the short-time transition probability density function (PDF), which is used to obtain the PI solution.
• The path integral solutions have higher accuracy than the Monte Carlo solutions at the tail region of the PDF.
• The PI solutions are modified to analyze the first-passage problem.
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We study the first-passage problem for a process governed by a stochastic differential equation
(SDE) driven simultaneously by both parametric Gaussian and Lévy white noises. We extend the
path integral (PI) method to solve the SDE with this combined noise input and the corresponding
fractional Fokker-Planck-Kolmogorov equations. Then, the PI solutions are modified to analyze the
first-passage problem. Finally, numerical examples based on Monte Carlo simulations verify the
extension of the PI method and the modification of the PI solutions. The detailed effects of the
system parameters on the first-passage problem are analyzed.

I. INTRODUCTION

The first-passage problem describes the instant in time when the dynamic variable of a system crosses a preset
value for the first time in a given time interval. This problem widely appears in engineering, physical, chemical,
and biological systems [1–5]. Typical examples include integrate-and-fire neuron dynamics, in which a neuron fires
once a fluctuating voltage level first reaches a specified level [6]; ship roll motion, in which the ship capsizes once the
ship roll angle first exceeds the safe range [7]; shallow curved structures (such as arches and shells), whose structure
may be destroyed once a snap-through buckling occurs [8]; or financial mathematics, for instance, the stock price
level at which a given stock is sold [9]. Prototypical examples also include chemical reactions [10, 11] and molecular
signaling processes in biological cells [12, 13]. First-passage dynamics is often characterized in terms of (global) mean
first passage times [2, 14, 15]. Recent studies show that even in simple geometries repeated first-passage events are
vastly dissimilar [16, 17] and that the associated spectra of first-passage times [18, 19] and reaction-times [20, 21] are
characterized by time scales spanning several orders of magnitude.

While the above examples are based on continuous random walk processes or on Brownian motion, an important
class of first-passage processes is based on jump processes with scale-free, power-law distributed jump lengths. Thus,
Lévy flights and Lévy walks [22–24] have been promoted as efficient search mechanisms due to their interplay of
local and non-local search patterns [25]. This efficiency is engrained in the so-called Lévy foraging hypothesis [26].
Lévy search patterns have, inter alia, been observed in the motion patterns of individual albatross birds [27] or
marine predators [28]. They have been proposed for the optimal search by robots [29] and observed in human motion
patterns [30]. Recently, Lévy spreading patterns have been revealed in the COVID-19 pandemic [31]. Theoretically,
Lévy motion patterns may emerge due to dimensional reduction [32, 33] or emerge from deterministic nonlinear
systems near a critical point [34]. The efficiency of Lévy search-like patterns was studied in detail in, e.g., [33, 35–38]
for symmetric processes and in the presence of an external drift, e.g., wind or an underwater water stream [39, 40].
The Lévy flight foraging hypothesis is a driving force for much research on ongoing Lévy flight search. In recent years,
Reynolds explored the mechanisms behind the Lévy movement by analyzing movement patterns of marine predators,
bacteria, honeybees, etc. [41]. Coherently Klages illustrated the need to go beyond the Lévy foraging hypothesis by
elaborating on search for food of birds, fish and insects [42].

It has been realized that Lévy is not always optimal for all search situations. Simon and Julien indicated that
a composite Brownian walks outperforms a Lévy walk when the resources encountered are systematically detected
[43]. Random search processes purely based on Lévy search mechanisms in some sense are hampered by the intrinsic
property of leapover [44]: the searcher may overshoot the target point considerably. Consequently first-passage and
first-arrival acquire significantly different behaviors for Lévy search processes [44–46]. The reduced arrival probability
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for Lévy searchers may be mitigated by adding a second motion mechanism, namely, continuous Brownian motion
[47, 48]. Such combined Lévy-Brown search in fact occurs naturally in physical scenarios of molecular-diffusive search
in reduced-dimensional settings [32, 33]. In models for gene regulation, for instance, long, Lévy-like jumps across
chemically distant but physically close DNA-segments are followed by Brownian sliding motion along the DNA chain
[33, 47]. Combined Lévy and Brownian search was applied to food search by animals [49] and movement patterns
of marine predators [28]. In such search processes, Lévy search patterns are efficient when the target is far from
the starting point, while the Brownian search mechanism is advantageous for close-by targets. Combined dynamics
of Gaussian and Lévy noises is also found in models for climate systems [50, 51], in which the climate dynamics is
affected by both atmospheric forcing and extreme climate. Atmospheric forcing, for instance, by wind stress, heating,
and freshwater transport, is modeled as Gaussian noise, but extreme climate changes are modeled in terms of Lévy
white noise. For the study of all these systems, the first-passage dynamics is of great interest: when does molecule
bind to its specific spot on the DNA to start follow up reactions, or how long does it take until an animal located a
food source or reach unoccupied territory? How long does it take for the population in a given geographical region to
be infected by a virus? Or when would we expect a given climate parameter to reach above-critical values?

Here we study in detail the first-passage behavior of stochastic processes driven by combined Lévy-Gaussian white
noise. We quantify the dynamics in terms of the first-passage probability, the first-passage time probability density
function (PDF), and the mean first-passage time. In addition to these quantities, we will also study the reliability
function to be defined below which is complementary to the first passage probability. The reliability function essentially
represents the probability that no first-passage occurs within a given time interval and is thus directly related to
what in physics literature is called the survival probability. The reliability function is the cumulative of the reliability
density function (RDF), that represents the transient solution of the corresponding Fokker-Planck-Kolmogorov (FPK)
equation with absorbing boundary conditions. The FPK equation is a deterministic method to study dynamics,
similar to research on distributed space-fractional diffusion in anomalous kinetics, the Voigt function in spectroscopy,
fractional advection diffusion in diffusion, etc. [52–57]. However, the analytical solution of the FPK equation only
exists for a few special cases. For most cases, the FPK equation is solved numerically [58–60], for instance, by finite
difference methods, finite element methods, the path integral (PI) method, etc. Among these, the PI method can
obtain the transient solutions with high accuracy.

Once formulated for a specific system, the PI approach is very well suited for numerical evaluations of given
stochastic differential equations (SDEs) or the corresponding FPK equations. It is important to emphasize that the
PI solutions are highly accurate both in the transient and stationary cases. For SDEs solely driven by Gaussian,
Poisson, or Lévy white noise, the PI method has been developed and investigated. Wehner and Wolfer solve the FPK
equation corresponding to an SDE with Gaussian noise by the PI method firstly [61–63]. This method has been widely
used to solve practical systems and improved by interpolation methods for higher accuracy [64–67]. Recently, the PI
method has been extended to SDEs with non-Gaussian, Poisson or Lévy noise. The extension of the PI method for
SDEs with Poisson white noise can be found in [68, 69]. For the Lévy white noise case, the PI method was proved to
be applicable to SDEs and the corresponding governing equations [70, 71]. Moreover, the PI method has also been
extended to solve SDEs with both Gaussian and Poisson noises [72]. Here we demonstrate how to extend the PI
method to SDEs driven by both Gaussian and Lévy white noises.

In this paper, we study the first-passage dynamics of SDEs with both parametric Gaussian and additive Lévy white
noises by extending the PI method to this case. The remainder of this paper is arranged as follows. Firstly, section II
describes the model, which contains the SDEs and the corresponding FPK equations. Secondly, the extension of the
PI method for the model is presented in section III. Thirdly, in section IV the performance indices of the first-passage
problem are listed and the PI solutions are modified to allow the calculation of the performance indices. Then, in
section V, the PI solutions are calculated and are verified by extensive Monte Carlo simulations. Moreover, the
first-passage problem for a range of different parameters is studied. Finally, section VI concludes the paper. Details
of the extension of the PI method to SDEs with combined parametric Gaussian and parametric Lévy white noises are
presented in the Appendix.

II. THE MODEL

This section depicts the SDEs and the corresponding fractional FPK equations. The SDEs with both parametric
Gaussian and additive Lévy noises are described in detail in section IIA. In section II B, we derive the corresponding
fractional FPK equations, which govern the PDFs of the solutions of the SDEs. The SDEs we used here is a stochastic
differential equation in the Itô sense. For SDEs in the Stratonovich sense, we can transform the SDEs to Itô sense by
use of the Wong-Zakai correction term. For more details, see [73] and the discussion with references in [74].
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A. Stochastic differential equation

The scalar Itô SDE with Gaussian parametric noise and Lévy external noise reads{
Ẋ(t) = f(X) + g(X)ξ(t) + ξα(t),
X(0) = X0,

(1)

where ξ(t) and ξα(t) are Gaussian and α-stable Lévy white noises, respectively, and both noise sources are considered
to be independent from another. Moreover, f(X) and g(X) are functions of X, and X0 is the initial value of X(t)
at time t = t0, which can be a deterministic or random variable with a given PDF. The "noise strength" g(X) for
non-constant g(·) is considered as multiplicative noise. Finally, the function f(X) can be interpreted as a physical
force, for instance, due to a finite territory of the searching animal.

The characteristic function of the α-stable Lévy white noise ξα(t) is Z(k) = exp(−DLt|k|α), here and below, x is the
variable in real space and k is the variable in the corresponding Fourier space. Here DL and α are the noise intensity
and stability index of the α-stable Lévy white noise, respectively. ξα(t) is the formal time derivative of a symmetric
Lévy stable processes Lα(t). In Eq. (1), ξ(t) is a Gaussian white noise with zero mean and the autocorrelation
〈ξ(t)ξ(s)〉 = 2DGδ(t− s), where DG is the intensity of the Gaussian white noise and δ(·) is the Dirac delta function.
We note that ξ(t) is the formal time derivative of Brownian motion B(t). Next, we introduce the increment of the
solution X(t) in a sufficiently small time increment δt as δX(δt). Namely, δX(δt) = X(t + δt) − X(t). We will
introduce the corresponding cumulant generating function δKX(k, δt|x, t) of the increment δX(δt), which is needed
for the derivation of the corresponding FPK equations.

For the increment δX(δt) the corresponding characteristic function δZX(k, δt|x, t) and the cumulant generating
function δKX(k, δt|x, t) can be expressed as [75]

δZX (k, δt |y, t ) = exp [δKX (k, δt |y, t )] = E {exp [ik (X (t+ δt)−X (t))] |X (t) = y }
= E {exp [ikf (y) δt+ ikδL+ ikg (y) δB] |X (t) = y }
= exp [ikf (y) δt]E [exp (ikg (y) δB)]E [exp (ikδL)] .

(2)

In the above equation, k is the conjugate variable of x − y. Moreover, the δB and δL are increments of Brownian
motion and the Lévy stable process, respectively.

For the Lévy stable process Lα(t), the increment δL and the corresponding characteristic function δZL(k, δt) and
cumulant generating function δKL(k, δt) satisfy

δZL (k, δt) = exp [δKL (k, δt)] = E [exp (ikδL)] = exp [−δtDL|k|α] . (3)

For the Brownian motion B(t), a similar relation among increment δB, characteristic function δZB and cumulant
generating function δKB reads

δZB (k, δt) = exp [δKB (k, δt)] = E [exp (ikδB)] = exp
[
−δtDGk

2
]
. (4)

Using Eqs. (3) and (4), expression (2) is recast into

δZX (k, δt |y, t ) = exp [ikf (y) δt] exp
[
−δtDGk

2g(y)
2
]

exp [−δtDL|k|α] . (5)

Thus, the cumulant generating function δKX(k, δt|x, t) can be obtained as

δKX (k, δt |y, t ) = ikf (y) δt− δtDGk
2g(y)

2 − δtDL|k|α. (6)

B. Corresponding Fokker-Planck-Kolmogorov equation

In this subsection, the fractional FPK equations corresponding to the SDEs (1) are derived starting from the
Chapman-Kolmogorov-Smoluchowski (CKS) equation and using the characteristic function. From Eq. (1) it follows
immediately that the process X(t) is Markovian (due to both Lévy process and Brownian motion with independent
increments), thus the CKS equation holds. Namely, for ∀δt > 0 we have

p (x, t+ δt |x0, t0 ) =

∫ +∞

−∞
p (x, t+ δt |y, t ) p (y, t |x0, t0 ) dy. (7)
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In the above equation, p(x, t + δt|x0, t0) and p(y, t|x0, t0) are the PDFs at times t + δt and t with x(t0) = x0 as the
initial value. Moreover, p(x, t+δt|y, t) is the transition PDF from time t to t+δt and from location y to x. By inverse
Fourier transform F−1, the transition PDF p(x, t+ δt|y, t) in Eq. (7) can be expressed as

p(x, t+ δt|y, t) = F−1[δZX(k, δt|y, t)] = F−1[exp(δKX(k, δt|y, t))]

=
1

2π

∫ +∞

−∞
exp [−ik (x− y)] exp [δKX (k, δt |y, t )] dk.

(8)

Inserting Eq.(8) into Eq.(7), we get

p (x, t+ δt |x0, t0 ) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp [−ik (x− y) + δKX (k, δt |y, t )] p (y, t |x0, t0 ) dkdy. (9)

Letting δt = 0, Eq. (9) reduces to

p (x, t |x0, t0 ) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp [−ik (x− y)] p (y, t |x0, t0 ) dkdy. (10)

Subtracting Eq. (10) from expression (9) we have

p (x, t+ δt |x0, t0 )− p (x, t |x0, t0 )

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
{exp [−ik (x− y)] [exp (δKX (k, δt |y, t ))− 1]} p (y, t |x0, t0 )dkdy

=
1

2π

∫ +∞

−∞

∫ +∞

−∞

{
exp [−ik (x− y)]

[
δKX (k, δt |y, t ) + O

(
δt2
)]}

p (y, t |x0, t0 )dkdy

=

∫ +∞

−∞
F−1 [δKX (k, δt |y, t )] p (y, t |x0, t0 ) dy + O

(
δt2
)
.

(11)

Here F−1[δKX(k, δt|y, t)] can be calculated through Eq. (6) as

F−1[δKX(k, δt|y, t)] = f (y) δt (−1) δ′ (x− y)− δtDGg(y)
2

(−∆) δ (x− y)− δtDL(−∆)
α/2

δ (x− y) . (12)

Next, substituting Eq. (12) into relation (11), we get

p (x, t+ δt |x0, t0 )− p (x, t |x0, t0 )

= −δt ∂
∂x

(f (x) p (x, t |x0, t0 )) + δtDG

(
∆g(x)

2
p (x, t |x0, t0 )

)
− δtDL

(
(−∆)

α/2
p (x, t |x0, t0 )

)
+O

(
δt2
)
.

(13)

Thus, we get the corresponding governing equation

∂

∂t
p (x, t |x0, t0 ) = lim

δt→0

p (x, t+ δt |x0, t0 )− p (x, t |x0, t0 )

δt

= − ∂

∂x
[f (x) p (x, t |x0, t0 )] +DG

[
∆g(x)

2
p (x, t |x0, t0 )

]
−DL

[
(−∆)

α/2
p (x, t |x0, t0 )

]
= − ∂

∂x
[f (x) p (x, t |x0, t0 )] +DG

∂2

∂x2

[
g(x)

2
p (x, t |x0, t0 )

]
+DL

∂α

∂|x|α
p (x, t |x0, t0 ) .

(14)

Equivalently, the PDF p (x, t) of the solution of Eq. (1) satisfies

∂

∂t
p (x, t) = − ∂

∂x
[f (x) p (x, t)] +DG

∂2

∂x2

[
g(x)

2
p (x, t)

]
+DL

∂α

∂|x|α
p (x, t) , (15)

with the initial condition p(x, t0) = δ(x−x0) or an assigned PDF. In addition, the fractional FPK equation (15) can be
directly inferred from the continuous time random walk theory under combined Gaussian and Lévy walk [47, 48, 76].
In Eq. (15) the fractional operator ∂α/∂|x|α· is understood in terms of its Fourier transform −|k|α· [76]. Eq. (15) can
be viewed as a generalized case, as:
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(i) For DL = 0 Eq. (15) becomes

∂

∂t
p (x, t) = − ∂

∂x
[f (x) p (x, t)] +DG

∂2

∂x2

[
g(x)

2
p (x, t)

]
, (16)

which is the governing equation of the SDE with parametric Gaussian noise.
(ii) For DG = 0 Eq. (15) reduces to

∂

∂t
p (x, t) = − ∂

∂x
[f (x) p (x, t)] +DL

∂α

∂|x|α
p (x, t) . (17)

This is just the fractional FPK equation corresponding to SDE with α-stable Lévy white noise [76–78].

III. PATH INTEGRAL SOLUTION

This section is about the extension of the PI method to the SDEs (1) as well as the corresponding fractional FPK
equations (15). Specifically, the short-time transition PDF is derived in detail. The PI solution obtained through
this short-time transition PDF then is shown to satisfy the fractional FPK equation (15), which corroborates the
correctness of the short-time transition PDF.

The PI method is an effective method to calculate the evolution of the resulting processes in terms of the short-time
transition PDF in a step-by-step fashion. The PDF p(x, t) of X(t) can be obtained through

p (x, t) =

∫
R

p (x, t |x0, t0 ) p (x0, t0) dx0, (18)

where p(x0, t0) is the initial PDF of X(t) at t = t0. Dividing the time interval [t0, t] into N sub-intervals, we have

p (x, t) =

∫
R

p (x, t |xN−1, tN−1 )

∫
R

p (xN−1, tN−1 |xN−2, tN−2 ) · · ·
∫
R

p (x1, t1 |x0, t0 ) p (x0, t0) dx0 · · · dxN−2dxN−1,

(19)
where t0 < t1 < t2 < . . . < tN = t. This expression indicates that the long-term evolution is composed of a series of
short-term evolutions. This means that the transient PDFs can be obtained starting from a given initial condition
(deterministic or stochastic) once the short-time transition PDF is obtained.

A. Short-time transition PDF

Although the solution of the fractional FPK equations (15) is just the short-time transition PDFs (for sufficiently
small t− t0), it is quite difficult to solve this kind of fractional FPK equations analytically. To overcome this difficulty,
we derive the short-time transition PDFs through the SDEs (1) directly using the ideas developed in [68–70, 72],
which are depicted in Fig. 1.

In Fig. 1, the trajectories X̄(ρ), starting from the deterministic point x̄, are trajectories from the whole set of
trajectories of the processes X(t) in the short-time interval [t, t+ δt]. These trajectories still satisfy the SDE (1) and
can be depicted as

{
˙̄X (ρ) = f

(
X̄
)

+ g
(
X̄
)
ξ (t+ ρ) + ξα (t+ ρ) ,

X̄ (0) = x̄.
(0 < ρ ≤ δt) (20)

Therefore, the short-time transition PDF p(x, t+δt|x̄, t) of the process X(t) in Eq. (1) coincides with the unconditional
PDF pX̄(x, δt) of the process X̄(ρ), namely, p(x, t+ δt|x̄, t) = pX̄(x, δt).

Despite the fact that the conditional PDFs can be derived through the unconditional PDFs, the derivation is
still not easy. The transition PDFs for the combined Gaussian and Poisson white noises can be derived due to a
particularity of Poisson white noise [72]. Different from Poisson white noise, Lévy white noise is defined through its
characteristic function, such that we do not have similar access to a corresponding short-time transition PDFs for
combined Gaussian and Lévy white noises. Moreover, it is apparent that the characteristic function of combined
Gaussian and Lévy white noises cannot be expressed by a new α-stable distribution due to the different stability
parameters. As stated by Nadarajah that the sum of random variables is a stable random variable only when the two
random variable components have the same stability parameter α [79]. Thus, we cannot directly find the short-time
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FIG. 1: Sample functions of X̄(ρ) and conditional PDF.

transition PDFs through the characteristic function of α-stable Lévy noises. In order to obtain these, the characteristic
functions and their properties for Gaussian and Lévy white noises are used. The derivation goes as follows.

From the perspective of the whole trajectory X(t), the trajectory X̄ (ρ) is approximately linear due to the small
value of δt. In this small interval, the increment dB (t) of Brownian motion is a random variable that satisfies a
Gaussian distribution with intensity 2DG. Moreover the increment dLα (t) of Lévy process is random variable with
intensity DL and stability parameter α. Then, X̄(δt) can be approximated as

X̄ (δt) = x̄+ f (x̄) δt+ g (x̄) dB (t) + dLα (t) . (21)

According to the characteristic function of dLα(t) and dB(t) in Eqs. (3) and (4), as well as the properties of the
characteristic function, we can get the characteristic function of X̄(δt) in the form

ZX̄ (k, δt) = exp
(
ikx̄+ ikf (x̄) δt−DGδtk

2g(x̄)
2 −DLδt|k|α

)
, (22)

which is the Fourier transform of the unconditional PDF pX̄(x, δt).
Then, we get the conditional PDF as follows

p (x, t+ δt| x̄, t) = pX̄ (x, δt) = F−1 (ZX̄ (k, δt)) =
1

2π

∫ +∞

−∞
exp (−ikx)ZX̄ (k, δt) dk

=
1

2π

∫ +∞

−∞
exp (−ikx) exp

(
ikx̄+ ikf (x̄) δt−DGδtk

2g(x̄)
2 −DLδt|k|α

)
dk.

(23)

This short-time solution can be regarded as a general case of the following two particular cases:
(i) In the Gaussian noise case (DL = 0)

p (x, t+ δt| x̄, t) =
1

2π

∫ +∞

−∞
exp (−ikx) exp

(
ikx̄+ ikf (x̄) δt−DGδtk

2g(x̄)
2
)
dk

=
1

2π

√
DGg (x̄)

2
δt

exp

[
− (−x+ x̄+ f (x̄) δt)

2

4DGg (x̄)
2
δt

]
,

(24)

this is just the short-time solution of the SDE with Gaussian white noise [1, 80].
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(ii) In the Lévy noise case (DG = 0)

p (x, t+ δt| x̄, t) =
1

2π

∫ +∞

−∞
exp (−ikx) exp (ikx̄+ ikf (x̄) δt−DLδt|k|α) dk, (25)

this is the short-time solution of the SDE solely driven by white Lévy noise [70, 71].

B. Verification of the short-time transition PDF

In this section, the correctness of the short-time transition PDF is verified. Specifically, starting from the CKS
equation where the short-time transition PDF (23) is used, we get the fractional FPK equation (15).

According to the CKS equation, the PDF p(x, t+ δt) can be expressed by the conditional PDF p(x, t+ δt|x̄, t) and
its previous moment’s PDF p(x̄, t) as

p (x, t+ δt) =

∫ +∞

−∞
p (x, t+ δt| x̄, t) p (x̄, t)dx̄ =

∫ +∞

−∞
F−1 (ZX̄ (k, δt)) p (x̄, t)dx̄. (26)

Its Fourier transform can be obtained as

ZX (k, t+ δt) = F [p (x, t+ δt)] =

∫ +∞

−∞
ZX̄ (k, δt) p (x̄, t)dx̄

= exp (−DLδt|k|α)

∫ +∞

−∞
exp

(
−DGδtk

2g(x̄)
2

+ ikx̄+ ikf (x̄) δt
)
p (x̄, t) dx̄.

(27)

For the integral we find∫ +∞

−∞
exp

(
−DGδtk

2g(x̄)
2

+ ikx̄+ ikf (x̄) δt
)
p (x̄, t) dx̄

=

∫ +∞

−∞
exp (ikx̄) exp

[
ikf (x̄) δt−DGδtk

2g(x̄)
2
]
p (x̄, t) dx̄

=

∫ +∞

−∞
exp (ikx̄)

[
1 + ikf (x̄) δt−DGδtk

2g(x̄)
2
]
p (x̄, t) dx̄+O

(
δt2
)

=

∫ +∞

−∞
exp (ikx̄)p (x̄, t) dx̄+

∫ +∞

−∞
exp (ikx̄) [ikf (x̄) δt]p (x̄, t) dx̄

−
∫ +∞

−∞
exp (ikx̄)

[
DGk

2δtg(x̄)
2
]
p (x̄, t) dx̄+O

(
δt2
)

=ZX (k, t) + E [exp (ikx) ikf (x) δt]− E
[
exp (ikx)DGk

2g(x)
2
δt
]

+O
(
δt2
)
.

(28)

The Taylor series expansion of exp(−DLδt|k|α) about δt is exp(−DLδt|k|α) = 1−DLδt|k|α +O(δt2). Thus, Eq. (27)
can be rewritten as

ZX (k, t+δt)

=
[
1−DLδt|k|α +O

(
δt2
)] {

ZX (k, t) + E [exp (ikx) ikf (x) δt]− E
[
exp (ikx)DGk

2δtg(x)
2
]

+O
(
δt2
)}

= ZX (k, t) + ikδtE [exp (ikx) f (x)]−DGk
2δtE

[
exp (ikx) g(x)

2
]
−DL|k|αδtZX (k, t) +O

(
δt2
)
.

(29)

Rewriting Eq. (29) and taking the limit δt→ 0, we get

∂ZX (k, t)

∂t
= lim
δt→0

ZX (k, t+ δt)− ZX (k, t)

δt

= (−DL|k|α)ZX (k, t) + ikE [exp (ikx) f (x)]−DGk
2E
[
exp (ikx) g(x)

2
]
.

(30)

After inverse Fourier transform, Eq. (30) becomes

∂p (x, t)

∂t
= − ∂

∂x
[f (x) p (x, t)] +DG

∂2

∂x2

[
g(x)

2
p (x, t)

]
+DL

∂α

∂|x|α
p (x, t) , (31)

which is same as the fractional FPK equation (15). Thus, the correctness of the short-time transition PDF is verified.
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IV. FIRST-PASSAGE TIME STATISTICS FROM PATH INTEGRAL SOLUTIONS

In this section, we modify the PI solutions to characterize the first-passage problem. The key to analyzing the
first-passage problem by PI solutions consists in defining the so-called reliability density function (RDF). The RDF is
the PDF that the trajectories remain away from the absorbing boundary condition until the observation time [70, 72].
In physical terms the cumulative reliability is called the survival probability.

Specifically, let [η, ζ] denote the threshold barriers. The barriers are absorbing boundary conditions, at which the
trajectories need to be eliminated once they cross these barriers. This indicates that the RDF outside the "safe
domain" must be zero. Considering that the initial condition in Eq. (1) can be a deterministic value or a random
variable, the RDF qηζ(x, 0) at the initial time step can be calculated through the PDF p(x, 0) by neglecting the part
outside the safe area. This property can be expressed as

qηζ (x, 0) = U (x− η)U (ζ − x) p (x, 0) , (32)

where U(·) denotes the Heaviside function. Moreover, the RDF in a generic time instant t+ δt is given as

qηζ (x, t+ δt) = U (x− η)U (ζ − x)

∫ ζ

η

p (x, t+ δt |x̄, t )qηζ (x̄, t) dx̄, (33)

where the RDF qηζ(x̄, t) at a former time instant t is used to avoid that trajectories return to the safe domain after
having left before. The Heaviside function U(·) is used again to neglect the trajectories, which first cross the safe
domain during time interval [t, t+δt]. This definition states that the RDF qηζ(x, t) is an monotonically non-increasing
function of time t. Eqs. (32) and (33) can be viewed as modification of the PI solutions. The RDF can be derived
through the modified formulas directly. Moreover, through the RDF, we can derive other first-passage performance
indices, such as the reliability function R(T ) at time T , the first-passage time PDF pf (T ) and the mean first-passage
time.

The reliability function R(T ) is the probability that the process stays inside the interval [η, ζ] over the time interval
[0, T ]. We can get the reliability function by integrating the RDF as follows,

R (T ) =

∫ ζ

η

qηζ (x, T ) dx. (34)

Obviously, the complement of the reliability function is the first-passage probability PF (T ), which is the probability
that the process crosses the barriers over the time interval [0, T ]. Then, the PDF of the first-passage time pf (T ) can
be obtained as

pf (T ) =
dPF (T )

dT
= −dR (T )

dT
. (35)

The first-passage time is a random variable and its first order moment is often used to define the degree of reliability.
It is called the mean first-passage time (MFPT) and is defined as

MFPT = E [T ] =

∫ ∞
0

Tpf (T ) dT. (36)

In our approach, the RDF is calculated by discretizing the aforementioned formulas (32) and (33). The two formulas
can be viewed as a modification of the PI solutions. Then, the other performance indices can be obtained via equations
(34), (35), and (36).

V. NUMERICAL RESULTS

In this section, simulation results are presented to show that the PI method is applicable to SDEs with both
parametric Gaussian and additive Lévy white noises. Namely, the PI method can get the PDFs of this kind of SDEs
or solve the corresponding fractional FPK equations. Moreover, the influences of the system parameters on the first-
passage problem is analyzed through PI solutions. In all figures, the results from direct Monte Carlo simulations of
the original SDEs (1) are also given to verify the PI solutions. All Monte Carlo results in this paper are calculated
with time step dt = 0.0001, space resolution dx = 0.01, and 8 × 106 sample paths for deterministic initial condition



9

while 32× 106 sample paths for Gaussian-distributed initial condition. Specifically, a single sample path is obtained
by the forward Euler formula as

x (t+ dt) = x (t) + f (x) dt+ g (x) ξ(t)dt1/2 + ξα (t) dt1/α, (37)

where ξ(t) is a white Gaussian random variable with zero mean and variance 2DG, and ξα(t) is a white stable random
variable with stability parameter α and intensity DL. Given the time t, the PDF and RDF is derived by dividing the
space interval with space increment dx = 0.01 and counting the sample points on each space cell.

A. Validity of the path integral method

In this part, the validity of the PI method for solving the fractional FPK equations (15) (or obtaining the PDFs
from the SDEs (1)) is presented for the concrete case f(x) = −ax − bx3 and g(x) =

√
1 + cx2. Our model here is

derived from a climate system [50, 51], in which the climate information can be characterized by the calcium (Ca)
signal in ice cores. Specifically, we will get the PDFs of the process X(t) for the following SDEs (Itô sense){

Ẋ (t) = −aX − bX3 +
√

1 + cX2ξ (t) + ξα (t)
X (0) = X0

(38)

where the initial value X0 can be deterministic or a random variable with assigned PDF. In other words, we will get
the solutions of the corresponding fractional FPK equations

∂p (x, t)

∂t
=

∂

∂x

[(
ax+ bx3

)
p (x, t)

]
+DG

∂2

∂x2

[(
1 + cx2

)
p (x, t)

]
+DL

∂α

∂|x|α
p (x, t) , (39)

with the initial condition p(x, t0) = δ(x− x0) or other assigned forms. Next, our simulation results for two different
initial conditions are presented. The two initial conditions are deterministic and Gaussian-distributed, respectively.

1. Example 1: Deterministic initial condition

The deterministic initial condition X(0) = X0, or equivalently p(x, t0) = δ(x − x0) is selected. The PDF and the
RDF are calculated through the PI iteration (7) and its modification (33), respectively. The results are presented in
Fig. 2 and the excellent agreement between the PI solutions and Monte Carlo solutions supports the validity of the
PI method.

We choose two different sets of parameters. Fig. 2 (a,b) are for one parameter set, and Fig. 2 (c,d) are for the
other. Different parameter sets lead to different solutions: the stationary solution in Fig. 2 (a) is unimodal while that
in Fig. 2 (c) is bimodal. For each parameter set, the PDFs on the left reach a stationary state at t = 30, but the
RDFs on the right keep changing with time due to the absorbing barrier. Note that in order to better display the
zero value of the RDFs outside the reliability domain [η, ζ] = [−4, 1], we show the RDFs for the interval [−4, 2]. In
our calculations, considering the independence of different sample paths, we divide the 8× 106 sample paths into 100
copies, each copy with 8 × 104 sample paths. Finally a set of calculation results is obtained through 1.16273 × 104s
(about 3.22h) for parameters a = 1.0, b = 0.0, c = 0.5 and 1.07881× 104s (about 2.99h) for another set of parameters.
Similarly, different points are independent of each other in the path integral transition probability density function,
we run 500 points in parallel at a time and it takes 2.57626 × 103s (about 0.77h) to get the result for parameters
a = 1.0, b = 0.0, c = 0.5 and 2.59285 × 103s (about 0.72h) for another set. In Fig. 3, the PDFs and RDFs are also
presented on a log-linear scale. These semi-logarithmic plots make it easy to see details for small values of PDFs and
RDFs. It can be observed that the PDFs and RDFs fit well at a very low magnitude (about 10−6 to 10−4). To further
quantify the accuracy of the PI solution, by taking the Monte Carlo solution as the standard solution, we define the
L2 error norm as

L2 =
{
∑
i,j [PPI(xi, tj)− PMC(xi, tj)]

2}1/2

{
∑
i,j [PMC(xi, tj)]2}1/2

, (40)

where PPI is the numerical PI solution and PMC is Monte Carlo solution. For the two cases a = 1.0, b = 0.0, c = 0.5
and a = −1.0, b = c = 1.0 used in Fig. 2, their L2 error norm are 0.003981 and 0.006888, respectively. A smaller value
of L2 indicates a better accuracy of the PI solution.
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FIG. 2: PDFs and RDFs for deterministic initial condition. (a,b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1.
(c,d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left panels show the PDFs and the right panels the
RDFs. For the RDFs in (b,d) the absorbing barriers are selected as η = −4 and ζ = 1 (PI: path integral solution, MC: Monte
Carlo solution).

2. Example 2: Gaussian initial condition

Now, we assume that the initial condition x0 is a random variable chosen from the Gaussian distribution

p (x0, 0) =
1√
2πσ

exp

[
− (x0 − µ)

2

2σ2

]
, (41)

with µ = 0.2 and σ = 0.2. Then, we calculate the PDFs and RDFs by the PI method, starting from this Gaussian
initial condition and using the same two sets of parameters as in Example 1. In addition, the Monte Carlo solutions
of the original SDEs are also calculated for comparison. In our calculation, the computational cost for the Monte
Carlo solutions is necessarily high to ensure the same smoothness as in the deterministic initial condition.

Fig. 4 presents the PDFs and RDFs for Gaussian initial conditions for two different sets of parameters. The good
agreement between the PI solutions and Monte Carlo results in each plot indicates that the PI method works very
well. Fig. 4 (a,b) are for one set of parameters and Fig. 4 (c,d) for the other parameter set. Analogously to the
deterministic initial condition, the PDFs approach a stationary state, while the RDFs keep changing with time for
each parameter set. Again we show the RDFs in the domain [−4, 2] to better display the zero value of the RDFs
outside the reliability domain [η, ζ] = [−4, 1]. In addition, comparing the PDFs in Example 1 and Example 2, we
find that the initial conditions have no significant effect on the stationary solutions due to the uniqueness of the
solution for the stationary FPK equation, as it should be. In our calculations, 32 × 106 sample paths are divided
into 400 copies, and each copy with 8 × 104 sample paths, the calculation time for a = 1.0, b = 0.0, c = 0.5 and
a = −1.0, b = c = 1.0 are 1.25206× 104s (about 3.4h) and 1.26368× 104s (about 3.5h), respectively. Similarly, we run
500 points in parallel at a time to get the PI solution, and it takes 2.59224× 103s (about 0.72h) and 2.49794× 103s
(about 0.69h) for parameters a = 1.0, b = 0.0, c = 0.5 and the other set. Again, the log-linear plots of the PDFs and
RDFs are presented in Fig. 5 to show that PI is accurate at very low magnitudes. Moreover, the L2 error norm are
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FIG. 3: Log-linear plots of the PDFs and RDFs for deterministic initial condition corresponding to Fig. 2. (a,b) are for a = 1.0,
b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1. (c,d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left
panels show the PDFs and the right panels the RDFs. (PI: path integral solution, MC: Monte Carlo solution).

0.004208 and 0.007774 for the cases a = 1.0, b = 0.0, c = 0.5 and a = −1.0, b = c = 1.0, respectively. The smaller L2

error norm is consistent with the good fitting results.

B. First-pasage statistics

After verifying the validity of the PI method, the influence of the system parameters on the first-passage statistics
is analyzed based on the modified PI formula (33) in this section. The modified PI solutions under different noise
intensities, barriers, and stability parameters are calculated and presented. The pertinent Monte Carlo solutions of
the original SDEs (38) are also contained for comparison. For simplicity, only the most commonly used deterministic
initial condition is considered.

1. Case 1: Dependence on noise intensities

Fig. 6 presents the reliability functions and first-passage time PDFs for different noise intensities. Fig. 6 (a,b)
are for different Gaussian noise intensities DG and Fig. 6 (c,d) are for different noise intensities DL. For each noise
intensity, the reliability functions indicate that the initial condition x(0) is completely within the reliability interval
with the reliability function R(t) = 1.0. As time increases, R(t) decreases nonlinearly to zero, where the process
x(t) is completely gone from the reliability interval. Since R(t) depends nonlinearly on t, there is a time when the
decay of the reliability function occurs most rapidly. This time is just the point where the first-passage time PDF
Pf (t) assumes its maximum. The solid points in the first-passage PDF curve reveal the time that the process is most
likely outside the reliability interval. For different noise intensities, Fig. 6 shows that both DL and DG have a strong
influence on the reliability function and the first-passage time PDF, respectively. Fig. 6 (a) and (c) indicate that the
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FIG. 4: PDFs and RDFs for Gaussian initial condition. (a,b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1.
(c,d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left panels show the PDFs and the right panels the
RDFs. For the RDF in (b,d) the absorbing barriers are chosen as η = −4 and ζ = 1 (PI: path integral solution; MC: Monte
Carlo solution).

reliability is higher for smaller noise intensities. The most likely first-passage time decreases as the noise intensity
increases, as expected, see Fig. 6 (b) and (d).

Additionally, the results of Fig. 6 are presented on log-linear scale in Fig. 7. Analogously, Fig. 7 (a,b) are for different
Gaussian noise intensities DG and Fig. 7 (c,d) are for different noise intensities DL. In each plot, the Monte Carlo
solution and PI solution agree well with each other, supporting the correctness of the results. Indeed, the PI solution
is accurate to order less than 10−6 at the tails. To obtain the same accuracy more sample paths are needed for the
Monte Carlo method. Importantly, the plots indicate that the logarithm of the reliability function, log(R(t)), and the
logarithm of the first-passage time PDFs, log(Pf (t)), are inversely related to time t. This means that the reliability
functions R(t) and the first-passage time PDF Pf (t) decrease exponentially with time, as expected for a Markovian
process in a finite domain. The value pf (0) is the PDF that x(t) jumps out of the reliability domain [η = −4, ζ = 1]
with the first jump staring from the initial point. As can be seen, the value is non-zero, a characteristic of the non-local
jumps made possible by the Lévy noise, see the related results for the first-passage time PDF of pure Lévy flights
and walks in Ref. [46]. We also find that different noise intensities DL or DG lead to different decays of the reliability
functions R(t) and the first-passage time PDF Pf (t): faster decay goes along with larger noise intensities.

In addition, the degree to which different noise intensities impact the results for the MFPT is shown in Fig. 8. The
MFPT is obtained by the PI and Monte Carlo methods, and they agree well with each other. Fixing one of the noise
intensities DG or DL, the increase of the another noise intensity causes a decrease of the MFPT. Namely, the MFPT
is a decreasing function of the noise intensities, as expected. Moreover, the MFPT is more sensitive to changes of the
noise intensity when DL is fixed.
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FIG. 5: Log-linear plots of PDFs and RDFs for Gaussian initial condition, corresponding to Fig. 4. (a,b) are for a = 1.0,
b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1. (c,d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left
panels show the PDFs and the right panels the RDFs. (PI: path integral solution; MC: Monte Carlo solution).

2. Case 2: Dependence on barriers

Figs. 9 and 11 reveal the impact of the barrier positions on the first-passage problem. Fig. 9 presents the reliability
functions and first-passage time PDFs with different barriers. Fig. 9 (a,b) are for several different left boundaries η
with fixed right boundary ζ = 1. Fig. 9 (a) shows that the closer the boundary η to the initial zero, the smaller the
reliability function at the same time instant. Namely, the process needs less time to reach the boundary. Fig. 9 (c,d)
presents a similar result for different right barrier positions ζ with a fixed left barrier η = −1. Moreover, the MFPT
for different barriers are presented in Fig. 11. For fixed right barrier ζ = 1, Fig. 11 (a) shows that closer barrier
position η leads to smaller MFPT, as expected. For fixed left barrier η = −1, Fig. 11 (b) shows the analogous result
for the right barrier.

Corresponding to Fig. 9 we present the results on log-linear scale in Fig. 10. Fig. 10 (a,b) are for several different
left boundaries η with fixed right boundary ζ = 1. Fig. 10 (c,d) present similar results for different right barriers ζ
with a fixed left barrier η = −1. These plots indicate that the logarithm of the reliability functions log(R(t)) and the
logarithm of the first-passage time PDFs log(Pf (t)) are inversely related to time t, i.e., the reliability functions R(t)
and the first-passage time PDF Pf (t) decrease exponentially with time. Concurrently, a shorter safety interval length
leads to faster decay. For the fastest cases (η = −1.5, ζ = 1 or η = −1.0, ζ = 1.5), the MC and PI results do not fit
well when time t is too large. This is due to the fact that the Monte Carlo method is statistical in nature, and it is
difficult to obtain an accurate estimate of small probability events.
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FIG. 6: Reliability functions and first-passage time PDFs for different noise intensities, for parameters a = −1.0, b = c = 1.0,
α = 1.5, η = −4, and ζ = 1. (a,b) are for different DG with DL = 0.1; (c,d) are for different DL with DG = 0.1 (PI: path
integral solution; MC: Monte Carlo solution).

3. Case 3: Dependence on stability parameter α

In Fig. 12, the first-passage behavior is obtained from the PI method for different stability parameters α. Fig. 12
(a) shows the reliability functions and Fig. 12 (b) the PDFs of the first-passage time. Fig. 12 (a) shows that smaller
stability indices lead to lower reliability function values at the same time. Indeed, one can see a crossover from higher
first-passage probabilities at short times to the inverse behavior closer to the most likely time. A similar behavior
was observed in [81, 82]. Fig. 12 (b) presents the most probable time that the process crosses the barriers. Smaller
α leads to longer most probable times. On the log-linear scale of Fig. 12, Fig. 13 shows a zoom into the plot for
long times t and reveals the relationship. Good agreement of the MC results and the PI results is observed for all
cases. Again, we see that the logarithm of the reliability functions log(R(t)) and the logarithm of the first-passage
time PDFs log(Pf (t)) are inversely related to time t, i.e., the reliability functions R(t) and the first-passage time PDF
Pf (t) decrease exponentially with time. The numerical results indicate that smaller α speeds up the decay. This is
intuitive due to the fact that the jumps are longer for smaller α.

Moreover, the MFPT for different stability parameters α is plotted in Fig. 14. We calculate three sets of different
parameters (with different noise intensities DG) to analyze the impact of the stability parameters on the MFPT. For
any set of the parameters, the MFPT increases as the stability parameters α increases, which is more obvious to see
for smaller DG. Note that the MFPT does not increase monotonically when α increases. The study of the exact
position of the apparent maxima of the MFPT for certain α is a topic of future work. In addition, for fixed α, the
MFPT can be seen to be smaller when DG is larger. This result is analogous to the result of Case 1.
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FIG. 7: Log-linear plots for the reliability functions and first-passage time PDFs for different noise intensities for parameters
a = −1.0, b = c = 1.0, α = 1.5, η = −4, and ζ = 1. (a,b) are for different DG with DL = 0.1; (c,d) are for different DL with
DG = 0.1 (PI: path integral solution; MC: Monte Carlo solution).
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FIG. 9: Reliability functions and first-passage time PDFs for different barrier positions with parameters a = −1.0, b = c = 1.0,
α = 1.5, DL = DG = 0.1. (a,b) are for fixed right barrier ζ = 1; (c,d) are for fixed left barrier η = −1 (PI: path integral
solution; MC: Monte Carlo solution).

VI. CONCLUSIONS

In this paper we pursued two goals. In the first part we extend the PI method to SDEs with both parametric
Gaussian and additive Lévy white noises and the corresponding fractional FPK equations. Specifically, short-time
transition PDFs, which are used in the PI method, are derived from the SDEs. The fractional FPK equations
corresponding to the SDEs are derived to verify the short-time transition PDFs. Based on different initial conditions
and different system parameters, the PI solutions are implemented and agree well with Monte Carlo simulations.
Thus, the PI method is applicable and indeed very efficient for this type of SDEs and the corresponding fractional
FPK equations. The second part of this work concerns the modification of the PI solutions to analyze the first-passage
problem. In section VB, we calculated the RDF, first-passage time PDF and the MFPT through the modified PI
solutions, for different noise intensities, barriers and stability parameters. On average, the larger the noise intensity,
the shorter the threshold barriers, and the smaller stability parameters will lead to a faster first-passage. Moreover,
the comparison between the PI results and those from Monte Carlo simulations of the original SDEs indicates that
the modification of the PI solutions yield highly accurate results.

We are confident that our conceptual results for the PI method and its application to first-passage problems will
be useful in many applications. We finally note that while we analyzed a one-dimensional system here, generalization
to higher dimensions is possible by combination of the component-wise PI solution.
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FIG. 10: Log-linear plots for reliability functions and first-passage time PDFs for different barrier values with parameters
a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. (a,b) are for fixed right barrier ζ = 1; (c,d) are for fixed left barrier
η = −1 (PI: path integral solution; MC: Monte Carlo solution).
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Extension of the PI method

We consider the extention of the PI method to SDEs with parametric Gaussian and Lévy white noise and its
corresponding FPK equation, {

Ẋ (t) = f (X) + g1 (X) ξ (t) + g2 (X) ξα (t)
X (0) = X0

(42)

where ξ(t) and ξα(t) are Gaussian and α-stable Lévy white noises respectively, and they are independent. Here, f(X),
g1(X) and g2(X) are functions of X, and X0 is the initial value of X(t) at time t = t0, which can be deterministic or
random variable with given PDF.

According to the derivation in section II B, we can get the fractional FPK equation corresponding to the SDE (42)
as

∂

∂t
p (x, t) = − ∂

∂x
[f (x) p (x, t)] +DG

∂2

∂x2

[
g1(x)

2
p (x, t)

]
+DL

∂α

∂|x|α
[|g2 (x)|αp (x, t)] . (43)
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Moreover, the short-time transition PDF for this case is obtained through the derivation presented in section IIIA as

pX (x, t+ δt| x̄, t) =
1

2π

∫ +∞

−∞
exp (−ikx) exp

(
ikx̄+ ikf (x̄) δt−DGδtk

2g1(x̄)
2 −DLδt|k|α|g2 (x̄)|α

)
dk. (44)

The short-time transition PDF is verified by a similar procedure in section III B. We can obtain the fractional FPK
equation (43) starting from the CKS equation, where the short-time transition PDF is used. Finally, through the CKS
equation, the PI solutions for the SDE with parametric Gaussian and Lévy noise (and corresponding FPK equation)
can be written as

p (x, t+ δt)

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp (−ikx) exp

(
ikx̄+ ikf (x̄) δt−DGδtk

2g1(x̄)
2 −DLδt|k|α|g2 (x̄)|α

)
p (x̄, t) dkdx̄.

(45)

Then, if a system can be modeled by an SDE with parametric Gaussian and Lévy noise, we can solve it through
the extended PI method.
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