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Jeffreys equation provides an increasingly popular extension of the diffusive laws of Fourier and Fick
for heat and particle transport. Similar to generalisations of the diffusion equation, we here investigate
the connection between a time-fractional generalisation of the Jeffreys equation and a continuous-time
random walk process based on a generalised waiting time density with diverging mean. We demon-
strate that the mean squared displacement exhibits a variety of anomalous behaviors, such as retarding
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1. Introduction

Fourier’s law for heat conduction and Fick’s law for particle
dispersion both lead to the (parabolic) diffusion equation for the
corresponding fields in the hydrodynamic limit. When finite prop-
agation speed effects become relevant, the description in terms
of the diffusion equation becomes problematic [1]. An alternative
approach is provided by the hyperbolic Cattaneo or telegrapher’s
equations including a second-order time derivative [1]. However,
long before these modifications of the diffusion equation approach,
Jeffreys presented a relation for the rheology of the Earth’s core [2],
a third-order partial differential equation. The linear Jeffreys equa-
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tion (JE) consists of the constitutive law [2]

e o (x.t P (x.t
J(x,t)+tjj(3xt.):—1<(1+rp§t,>e(;), 1)

and the standard continuity equation
aP'(x',t") __8]’(x’,t’) 2)
ot ox
where J'(x',t’) is the particle flux and P'(x’,t’) is the probability
density function (PDF). Moreover, here x’ denotes the spatial vari-
able, t’ is time, and K is the diffusivity. Conventionally, the PDF is
a positive quantity and its integral along the entire domain equals
unity. The temporal constants 7; and 7, in general are not equiva-
lent, 7; # tp. Eliminating the flux J'(x’,t') from Egs. (1) and (2) re-
sults in the Jeffreys (or Jeffreys-type) equation
P/ / t/ 21)/ / t/ 2[_7/ / t/
P, 1) rja . ) =K 1-i—‘5pi PP ).
ot/ at’? ot/ ax?

(3)

T The primes in these equations is used to distinguish the dimensional formula-
tion from the dimensionless equations below.


https://doi.org/10.1016/j.ijheatmasstransfer.2021.121839
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.121839&domain=pdf
mailto:emadawad78@alexu.edu.eg
mailto:trifce.sandev@manu.edu.mk
mailto:rmetzler@uni-potsdam.de
mailto:chechkin@uni-potsdam.de
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121839

E. Awad, T. Sandev, R. Metzler et al.

When the time constants in this equation are equal or can be ne-
glected, 7; = 7, =0, Eq. (1) reduces to the well-known Fick’s first
law, and from Eq. (3) we arrive back at the conventional diffusion
equation. When only 7, =0, Eq. (3) reduces to the telegrapher’s
equation. In the 1990s the Jeffreys equation found applications
in heat transfer [1], and was used in the Dual-Phase-Lag model
[3] which was shown to capture different heat transport processes
in metals, superfluid helium, porous, and amorphous media; see
[4] on the lagging behavior concept and its applications, and [5] on
the microscale heat transfer models and references therein. The
Jeffreys Eq. (3) has a similar structure to the energy equation gov-
erning lattice and the electron temperature distributions in the
two-step model, and the energy equation governing the temper-
ature distribution in the Guyer-Krumhansl model, see [1,3,4].

In the case of particle transport the lagging behavior assumes a
non-instantaneous relation between the particle flux and the con-
centration gradient,

/ / /
aP (xét/+ rp), )

X
thus, it distinguishes two main types of particles flow: the flux-
precedence (flux-driven) diffusion (7; < 7p) and the concentration
gradient-precedence (gradient-driven) diffusion (t; > 7p). The latter
is the more familiar situation, in which the flux is the causal result
of the gradient. The flux-driven situation may be found in self-
propelled systems such as the diffusion of energetic particles or
the run-and-tumble motion, in which the particle flux occurs first,
regardless of the presence of concentration differences. As a natu-
ral result of the flux-driven situation, the concentration of particles
will be changed subsequently. The flux-driven model is conven-
tionally invoked in modeling "ultrafast thermal phenomena” in heat
transfer problems. In effect, Eq. (4) introduces a rather intuitive ex-
planation for existing physical situations, in particular, when the
time of observation t’ is of the same order of the time constants t;
and tp. In the opposite case, when the observation time is much
greater than the time scales t; and 1), then t' +7;~t' + 1, = 1,
and Eq. (4) reduces to Fick's first law J/ (x',t’) = —K9P' (X', t")/0x’.
When t; and 7 are sufficiently small with respect to observational
time, Eq. (4) can be approximated using a Taylor’s series, yielding
aJ (x.t
PO 1o

= —K(l + rp% + O(rj))

which in turn can be viewed as the Jeffreys constitutive law (1) if
the second order terms in 7; and 7, are neglected. It is worth men-
tioning that some generalized cases of the Dual-Phase-Lag, Eq. (4),
including those representing flux-driven and gradient-driven flows
(tj S 7p) under certain conditions obey the criteria of stability,
well-posedness, and the spatial decay estimate [6].

In [7], the mean squared displacement (MSD) resulting from the
JE (3) was demonstrated to exhibit non-anomalous behavior, analo-
gous to Brownian motion governed by the underdamped Langevin
equation: ballistic motion at short times and normal diffusion at
long times. An element of particular interest is the immobilization
of particles described by the JE and its connection with a two-
phase mobile-immobile reaction-diffusion model of mass transfer
[7]. Models of diffusion including the immobile phase are em-
ployed in such diverse physical processes as, e.g., groundwater
transport [8], glassy dynamics [9], and protein binding interactions
in live cells [10]. The immobilization of particles also plays a key
role in the aging continuous time random walk model [11] and in
stochastic resetting contexts [12]. All these circumstances prompt
further studies and generalizations of the JE that are able to cap-
ture anomalous diffusion processes, the subject of this work.

J& . t'+1))=-K

J(x.t)+1

0P (x.1)
Tox ®)
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For the description of anomalous transport processes in a range
of different systems, the theory of diffusion and Fokker-Planck
equations with partial fractional derivatives in time and space,
called fractional kinetics, has been established as a versatile tool
encoding the non-linear growth in time of the MSD o t’* with
i # 1. One distinguishes subdiffusion for 0 < u < 1, superdiffusion
for 1 < i < 2, and (sometimes) hyperdiffusion with u > 2. The lim-
iting cases of Brownian motion (normal diffusion) and ballistic mo-
tion respectively correspond to ;=1 and w = 2. Finally, if the
MSD grows in time as a positive power of the logarithm, the
transport process is called ultraslow. Anomalous diffusion processes
have been ubiquitously unveiled in a large range of systems, see
[13,14] and the references therein for numerous examples and their
classification. Applications of fractional kinetics range from charge
transport in amorphous semiconductors to underground water pol-
lution and motion of subcellular units in biology [15-17]. The
continuous time random walk (CTRW), a process where a wan-
dering particle waits for a random time between random jumps
[18,19] represents the probabilistic basis for fractional kinetics: In-
deed, fractional diffusion equations with time or space fractional
derivatives can be derived as long time-space limits of the CTRW
with heavy-tailed distributions of waiting times or jump lengths,
respectively [20-24]. A further important generalization invokes
mixtures of fractional derivatives (the distributed order fractional
kinetics) [25-33]. Fractional generalizations of the Cattaneo (tele-
grapher’s) equation were also discussed [34-37]. A fractional gen-
eralization of the Jeffreys Eq. (1) was phenomenologically found in
[38], while connecting the process to a fractional two-step model
was established in [39], see also [40-42]. We also note that anoma-
lous diffusion on a comb with the Dual-Phase-Lag constitutive re-
lation and its fractional generalization have recently been explored
in a series of papers [43], while a similar model was employed to
describe the flow of an incompressible Oldroyd-B fluid [44].

However, in contrast to fractional kinetics, the microscopic
probabilistic CTRW foundation of the fractional models capturing
the lagging behavior has not been addressed. In the present work
we consider a CTRW model with a specific heavy-tailed waiting
time density which asymptotically leads to the fractional general-
ization of the JE suggested in [40]. We also show that the frac-
tional Jeffreys equation (FJE) is a particular case of the gener-
alized non-Markovian Fokker-Planck equation that was derived by
Robert Zwanzig in his seminal 1961 paper [45]. We thus establish
a connection with the projection operator formalism which found
its applications in diverse problems of non-equilibrium statistical
mechanics [46]. We demonstrate that the FJE exhibits a variety
of anomalous diffusion regimes and moreover suggest alternative
phenomenological approaches to the origin of the FJE. The FJE is
thus a well-founded extension of the JE that provides a versatile
framework for the description of non-standard transport processes.

The paper is organized as follows. After some preliminary re-
marks on the necessary positivity of a probability density function
(PDF) in Section 2, Section 3 is devoted to the derivation of an ex-
act solution of the CTRW process corresponding to the FJE, based
on a specific choice of the waiting time PDF. Important particular
cases are discussed. In Section 4 we provide a closed-form solu-
tion to the FJE in terms of the Fox H-function for the flux-driven
case and discuss the various different anomalous diffusion regimes
described by the FJE. In Section 5 we consider phenomenological
approaches that demonstrate how the FJE emerges from the (clas-
sical) Fourier or Fick laws. These derivations provide additional in-
sight to the reader about the physical relevance of the FJE con-
sidered in this work. We draw our conclusions and outline future
plans in Section 6.
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2. Preliminary remarks on the positivity of the solution of the
fractional Jeffreys equation

One of the essential requirements for the PDF governed by a
partial differential equation (or an integrodifferential equation) is
that the fundamental solution is non-negative everywhere and at
all times. Some successful mathematical models that work well in
the one-dimensional setting, however, lose their non-negativity in
higher dimensions. Generally speaking, mathematical models pos-
sessing wave features may result in solutions taking negative val-
ues in higher dimensions under specific choices of the model pa-
rameters as discussed, e.g., for the fractional wave equation [47,48],
the ordinary telegrapher’s equation [49], or the ordinary JE (3), see
the discussion in [50]. Accordingly, the domain of validity of the
fractional generalizations should be carefully determined to guar-
antee the non-negativity of the associated PDF. It has been shown
[40] that fractionalizing (1) to

oP (X, t')
ax
(6)

ensures the non-negative solution in the one-dimensional setting
under the sufficient condition

(1 " T;xoRLDg)]/(X/7 t/) _ _KVORLD:/—V (1 n T}/?QRLpf)

O<a,B,y <1, 7;>0, 17,>0, B<vy, (7a)

while for the two- and three-dimensional settings, in which the
first derivative d/0x’ with respect to the spatial variable is replaced
by the gradient operator V = (3/9x},---,3/3x)) where d =2,3,
the non-negativity of solutions requires the sufficient conditions

O<a,B,y<1, 1;>0, 17,>0, O<a+y=<1, B=<y.

(7b)

A particular case of Eq. (6) is the fractional telegrapher equation
(tp = 0) subject to the sufficient conditions 0 <,y <1, 7; >0,
0<oa+y <1 InEq (6) R'D¥ is the Riemann-Liouville fractional
derivative defined by [51]

1 d gt _f¢
goesio- |
dt >

and as usual we used the generalized diffusion coefficient K, with
physical units Length2 /TimeY to keep the dimension in order (y =
1 corresponds to the conventional diffusivity K; = K).

Before we proceed, for convenience let us replace Eqs. (6) and
(1) with the dimensionless analogues

O<a<l;
(8)

a=1,

oP(x,t)
o ©)

(1+8D))(x. t) = —ngt]’V(l + Xﬁglpf’)

0P(x,t)  AJ(x,t)
ot ox (10)

where the dimensionless quantities

t x P T
=L ox= X p_ T gy /b (11)
Tj /K-[j Py J ] KP02

have been used. Here Py is a characteristic constant with dimen-
sion [Py] = [P], and we have chosen K, :Krj]’y, without loss of

generality. In Eq. (9), x = 7p/7j, thus the cases x § 1 correspond
to 7, S T;.

3. CTRW process
3.1. Model

We consider a random walker (test particle) that is initially
placed at the origin xo = 0 at to = 0 and has equal probabilities to
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go right or left along the real line R. The particle is trapped at the
origin for a time t;, then it hops (with infinite speed) to the next
position x; where it is immobilised for a time t,. Next the particle
leaves x; and makes a jump of length x,, and so forth. After a time
Th =ty +ty +--- +tn, the particle arrives at X, =x1 +x3 + -+ + Xn,
n e N. It is assumed that tq, ty, t3,... are independent and identi-
cally distributed (iid) positive random waiting times subject to the
PDF v (t), and X, Xo, X3,... are iid random jump lengths with the
PDF A(x). Thus we are dealing with a renewal process [19,52], and
the PDF to find the particle at position x at time ¢t can be found
from the master equation [20,53]:

Perrw (%, 1) = W ()8 (x)

t =)
+ [ v r>[/ A= ) Perm (€ r)ds}dr, (12)
where §(-) is the Dirac delta function. Here, the continuum limit
has been implicitly applied, i.e.,

> (x = EDPerrw (5. T) — /jo A(x — &)Perrw (€, T)dE, (13)

and Perry (x.t)dx is defined as the probability to find the particle
within the interval (x,x + dx] at the time instant t. The function
W (t) is the probability that the random walker has not jumped
(i.e., here is still trapped at the origin xo = 0) till time ¢, i.e.,

\p(r):1—/0 W(t)drzftoow(r)dt. (14)

Introducing the Fourier-Laplace transform? in Eqs. (12) and (14),
we obtain the well-known Montroll-Weiss equation

1—-9(s) 1
S B AOC)
in which the first factor is the Laplace transform of W (t).

In what follows we consider the generalized waiting time PDF
whose Laplace transform reads

_sV(s“+1)
14 xbsP )

(15)

Perrw (g, 5) =

Y (s) =EXP( (16)
where 0 <o, 8,y <1 and x > 0. The jump length PDF is sup-
posed to be Gaussian, i.e., A(x) = (4w )~ 1/2exp(—x2/4), and thus

7(q) = exp(—¢2). (17)

Evidently, the waiting time PDF (16) generalizes the one-sided
(Lévy) stable PDF ¢, (t),t >0, see [74], which is usually defined
through its Laplace transform (Ny (s) = exp(—s?) with the stable
(Lévy) index 0 <y <1 and ¢, (t) =0 for t < 0. ¢, (t) is commonly
used to derive the time-fractional diffusion equation from the
CTRW model. The function v (t) is clearly normalized, ¥ (s = 0) =
1. To address the positivity of v (t) defined by Eq. (16) the follow-
ing proposition holds.

Proposition 1. The sufficient condition for the waiting time distribu-
tion, whose Laplace transform is given by Eq. (16), to be a PDF are
O<a+y<land f<y,ora=B=y=1and x > 1.

2 Here the tilde denotes a Laplace transform,
fx.s) = L{f(x,t); t}(x,5) = fom f(x,t)exp(—st)dt,
and the hat represents a Fourier transform,

Fa. = Afe0@o = [~ foeoespaaix

Here s € C is the Laplace variable, and q € R is the Fourier variable ("wave num-
ber”).
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Fig. 1. Log-log plot of the waiting time PDF (16) for different values of the coefficient x and: (a) @ =0.2, =08,y =0.8; (b)) =0.6, 8 =0.2, y =0.4.

Proof. See Appendix E. O

In Appendix C, we determine the inverse Laplace transform of
the waiting time PDF (16), see Eq. (C.3), along with its asymptotics.
In the long-time limit,
pO~ 60~ L (18)

~ ~ — 00,
’ ra-y
which can be derived using relations (16) or (C.3). Eq. (18) indi-
cates that i/ (t) is a fat-tailed PDF under the sufficient conditions
of Proposition 1 with a divergent mean (ty ) = Jetyr (t)dt — 003
The short-time behavior of ¥ (t) takes the form

Y (t) ~ PPy, g(xP/@7Pr), t—o0. (19)

In other words, the generalized waiting time PDF (16) behaves like
a one-sided Lévy stable PDF in both the long and short time lim-
its, however, with different Lévy indices. Further properties of the
waiting time PDF (16) are discussed in Appendix F.

In Fig. 1 we show the waiting time PDF (16) for different val-
ues of the model parameters. The long time limit clearly shows the
expected power-law behavior in accordance with the analytical re-
sult (18). At the short and intermediate times, the behavior varies
quantitatively with the value of x with fixed fractional parame-
ters. Indeed, while the long-time behavior (18) depends only on
the fractional parameter y, the short-time behavior (19) explicitly
depends on all parameters. We note that in Fig. 1 (a) we do not see
the expected decay to zero when time t tends to zero, in contrast
to panel (b). This is due to the fact that the time scale for this
decay to zero is affected by the coefficient y as well as the spe-
cific choise of the fractional parameters. In our two examples, the
choice @ = 0.2, 8 =0.8, and y = 0.8 leads to the coefficient x* in
the argument of the stable density, whereas o = 0.6, 8 = 0.2, and
y =0.4 leads to x!/4. Thus, for the chosen y values the decay to
zero is shifted to much shorter times in panel (a).

3.2. Exact solution and MSD

Using the fact that 0 < &(s)i(q) <1 for %{s} >0 and qe
R, see Egs. (16) and (17), the Montroll-Weiss Eq. (15) can be

3 Inthe case « =B =y =1and x > 1, the waiting time PDF 151 (s) = exp(—s(s +
1)/[1 + xs]) generalizes the Dirac delta waiting time PDF §(¢ — 1) for Brownian mo-
tion, which can be obtained from ¥/ (s) by setting x = 1. The mean of ¥ (t) does
not diverge, namely, (t,, ) =1.

rewritten as the series

P (@.9) = VO S [Foi@]" (20)

S u=0

Substituting Eqgs. (16) and (17) into (20) and inverting the Laplace-
Fourier transform, we obtain the exact solution of the CTRW pro-
cess in the subordination form

Perrw (%, £) = ) N(u, £)G(x, u), (21)
u=0

where we used the auxiliary functions

N(u,s) =8(u,s) —gu+1,s), 8us) = % exp (—u%)
(22)

and

G(q, u) = exp(—ug?). (23)

In Eq. (21), N(u,t) is the probability that exactly u jumps are per-
formed within the interval (0,t), while G(x,u) in Eq. (23) is the
probability that the random walker arrives at x after exactly u
steps. The exact solution of our CTRW model can be brought in
a more explicit form by reverting expressions (22) and (23) to the
physical domain,

N(u,t) =g(u,t) —g(u+1,t), (24)
and

1 X2
G(x,u) = WreT exp <_4u> (25)
where
gu,t) = L7HE(, 9)}, (26)

with the properties

g0,0)=1, g(1,t) = fy¥(r)dr, W) =g@O,t)—g(,0).
(27)

Thus, the solution of the CTRW process can be written as

Pergw (%, £) = W(O)8(x) + ) [g(u, t) —gu+1,0)]G(x,u).  (28)

u=1
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The MSD of the exact solution (28) defined by (XCZTRW(t)) =
12 X2Pergw (X, t)dx, can be readily calculated, yielding

(Xrpw () =2 ulgu,t) —gu+1,1)].

u=1

The long time behavior of the MSD (29), which will be relevant
for our final result, can be evaluated by inverting the MSD to the

Laplace domain,
> 2 sY(s¥+1) sY(s¥+1)
2 _ < _ _
(Xeraw (8)) = SG( 1+ xPsP )[1 exp( T4 3 PsP . (30)

where &(¢) =Y, uexp(—u¢). Using the relation &(¢) ~ 1/¢2
for ¢ — 0, we get

(29)

14 xPsh
sY+1(s* +1)
for 9i{s} — 0. After an inverse Laplace transform, we obtain the
asymptotic behavior

(XZrw (D) ~ 27V Eq i1 (=) + 2X PV PE, ) gia (%)
2t (32)
ra+y)y’

which can be shown to work well for relatively large values of
time, and it leads to the stated power-law behavior for t — oo.
Here we used the generalized Mittag-Leffler function as defined in
Appendix A.

(XgTRW (8)) ~2 (31)

3.3. Special and limiting cases

Here we consider relevant special cases for particular choices of
the parameters in expression (16) for the waiting time PDF:

(i) Normal diffusion equation. Let o« =8, x =1 and y = 1. Then,
Y (s) =exp (-s), and ¥ (t) = §(t — 1). This is the simplest case
of the CTRW with a constant tlme pace. In the long space-time
limit 1//(5) ~1-s, A(q) ~1—q2, we use the Montroll-Weiss
Eq. (15) to see that the process is described by the normal dif-
fusion equation

OP(x,t)  0%P(x,t)
ot~ ox2
(ii) Fractional diffusion equation. When ¢ =8, x =1, and 0 < y <
1, Eq. (16) reduces to the one-sided Lévy stable PDF, Zy (s) =
exp(— sV) The CTRW solution corresponding to the combina-
tion of ey(s) and A(q) is given by [54]

(33)

> t t
Perw (%, 1) = [1 = Ly ()6 (%) + g [Ly (W) -1 (W)]G(X’ u),

(34)

where G(x, u) is given by Eq. (25) and Ly, (t) = fé Ly (T)dr is the
one-sided cumulative «-stable distribution. In the long time-

space limit we have
L) ~1-5". A ~1-¢ (35)

which together with Eq. (15) leads to the time-fractional diffu-

sion equation
dP(x, t) =RL’D1 ya P(x, t)
at 0 0x2
(iii) Bifractional diffusion equation for retarding subdiffusion. When
x = 0, the waiting time PDF (16) reduces to
Uy a(s) = exp(=s"[s* +1]), (37)

which represents a PDF if 0 <« +y <1. Using the useful
asymptotic equivalence e=* ~ 1/(1 +x) for small x we find that

(36)
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Fig. 2. Variation of the waiting time PDF for & = 8 = y = 1, with the coefficient x.
The case x =1 retrieves the Dirac delta function §(t — 1).

for sufficiently small Laplace variable s (corresponding to long
times t)

1;)/,0! (s) ~

which has been obtained using a different approach in [36],
see also [29] for an analogue asymptotic form of the waiting
time PDF for retarding subdiffusion. Inverse Laplace transform
of Eq. (38) produces

1

14 sV 4soty’ (38)

Yyalt) = ZO(—D“t(“”“"*” @i ). (39)
n=
which for large t reads (see Eq. (A.14))
ta+y)(n+1)—1- a(n+1)
t
Vya() ~ Z( RE C(a+yln+1]-an+1])
t-v-1
—tVE, ()~ L 40)
yy (=t7) ra—y) (

as it should be.

In the case x =0 and o=y =1 the waiting time PDF
(16) reads ¥ (s) = exp[—s(s + 1)], which is not guaranteed to be
a completely monotonic function (see Appendix D), and thus
the function 1 (t) does not represent a PDF.

Ordinary Jeffreys equation. When o« ==y =1 and x > 1
the waiting time PDF (16) represents a PDF according to
Proposition 1 and further generalizes the classical random
walker model (i), see Fig. 2. At long time and for large distances
we have the following behavior in the Laplace and Fourier do-
main, respectively,

U o=i(s) ~1-

With the Montroll-Weiss Eq. (15) and using the asymptotic be-
havior (49) this leads to

(iv

N

s(s+1)
1+ xs

. MA@ ~1-¢% (41)

s+1
s+ 1)+ 1+ xs)g?

Inverting Eq. (42) we arrive at the ordinary Jeffreys equation, or
the parabolic flux-driven DPL model,

32P(x,t) OP(x,t) < 8)82P(x,t)
— (1445 )50
Jat 0x2

P(q.5) = (42)

gz T o (43)
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subject to the initial condition

dP(x, t)
at

P(x,07) =8 (x). = xuz2 (%), (44)

t—0+

and free boundary conditions, where u,(x) is the nth differen-
tiator function, see Appendix B for a discussion on such a type
of initial conditions. It is a simple mathematical task to check
the equivalence between Eq. (43) subject to (44) and the cou-
pled system

9 0 \ 0P(x,t)
(1+8t)J(X’t):_<1+X8t> X (45)
dP(x,t) aJ(x,t)

at  ox (46)

subject to the initial conditions
P(x,07) =8(x), J(x.0%) = —xu;(x) (47)

and free boundary conditions, where u;(x) is the unit doublet
function (B.1). When x =1, the second condition of (47) re-
duces to J(x,0%) = —uy(x) which has been suggested to occur
in normal diffusion problems [37]. Note that Eq. (46) is the lim-
ing case of the fractional version (9) when ¢« — 1, 8 — 1 and
y — 1.

(v) Fractional Jeffreys equation. In the general case 0 <, 8,y < 1
witha+y <1, B <y, and x >0, and for large values of time
t and distance x, the waiting time density (16) and the jump
length density (17) have the asymptotic behaviors

~ sY(s*+1)
~lo2» T/
Y(s) T4 3PP

Further, we assume that the asymptotic behavior of the CTRW
process is ﬁ(q, s), namely,
Perrw (4 5) ~ P(4,5). (49)

Therefore Egs. (15), (48) and (49) provide the asymptotic be-
havior of the CTRW process (28) in Laplace-Fourier domain,

) ~1-¢~ (48)

= Y 1(s® +1)
P = .
@) SY(s*+1) + (1 + xPsP)q? (>0)
Rearranging terms, this is equivalent to
(" + D[sP(x.s) —8(0)] =s'7 (1 + xﬂsﬂ)w (51)

Returning to the time domain, this result is equivalent to the
integro-differential equation

AP(x,t) 1 92P(x, t)
o = Aol (1480 ) 2552 (52)

(1+67)
subject to the initial condition
P(x,0%) = §(x), (53)

and free boundary conditions. Eq. (52) also appears when we

eliminate the flux J(x,t) in Eq. (9). Conversely, Eq. (51) can be

rearranged and inverted to the form

9%P(x,t)
ox2 ’

where D¢ stands for the Caputo fractional derivative of order

o defined by [51]

1 £ 9 f(0)
FA-a) o (t-85)*

LAO)
r

DUV P(x, t) + DY P(x. 1) = (1 + ﬂ‘g@{‘) (54)

d¢, O0<a<l1
SDEf(t) = (55)

a=1
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The form (54) of the fractional Jeffreys equation involves both
Caputo and Riemann-Liouville fractional derivatives in the same
equation. It can be viewed as a possible generalization of the
fractional telegrapher’s equation that uses the Caputo fractional
derivative, see Eq. (62) below and [36] for a short review on
the fractional (Cattaneo) telegrapher’s equation.
In the above cases, we have used the properties
c{® D f();s) —s*f(s)  and c{§, D f@t);s}=sf(s) -
so- 1f(0+) where o € (0, 1).

Remark 1. The FJE (52) can be interpreted as a special case of

the generalized diffusion equation with generalized memory ker-
nel [55],

¢ oP(x, )
/OM(t—'c) ppe dt =

by considering the specific choice of memory kernel

9%P(x,t)

0x?2 (56)

VEgtip-a—y (—t/X)P) +tPVEg1p-, (—(t/X0)F)].
(57)

1 g0
M(t) = ﬁ[tﬂ

Indeed, the memory kernel (57) can be easily derived by rewrit-
ing Eq. (51) in the form

1 sa+y—1 Sy—l
— +
XN+ 45 Pt
and inverting to the real domain by using Eq. (A.16) for y = 1. Fur-

thermore, the memory kernel (57) of the FJE comprises two exist-
ing special cases:

~ 2~
)[SP(X, s) — 8(x)] = % (58)

(i) When a = 8 and x =1, we have a power-law memory kernel
since
t-v
ra-y)y
(59)

M(t) =tV Eq 1y (—t*) +t*VEg 110y (—t%) =

where we used the property E g(2) = zE, 4, p(2) + ﬁﬂ) This
memory kernel yields a fractional diffusion equation of the
"natural” type,

0%P(x,t)
axz

which is equivalent to Eq. (36).
(ii) When x = 0, the memory kernel (57) reduces to

EDIP(x,t) = (60)

1
M(t) = mx—ﬁ[t” CVEgipoamy (/)P + P VEg 15y (—(t/0F)]

_ L[tﬁ P (t/x)*ﬁ]
B Frl-a-vy) ra-y)
gy tv
_ , 61
Fi—a-y) Ta-») (61)

where we utilized the asymptotic behavior of the Mittag-Leffler
function for large negative argument, see Eqs. (A.14) and (A.15).
This memory kernel yields the distributed order diffusion equa-
tion (since a + y < 1), or the special case of the fractional tele-
grapher’s equation

02P(x, t
SD?+VP(X, t) + SDIVP(X, t) = %, (62)
which describes retarding subdiffusion process [25], as it

should be.
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Remark 2. We note that the conditions of Proposition 1 coincide with the sufficient conditions providing the non-negativity for the Green’s
function of the FJE in two- and three-dimensional space, see Theorem 3.7 in [40]. Consequently, our results in the one-dimensional CTRW
can be generalized to higher dimensions, and we arrive at the multidimensional FJE

o0P(r,t)
ot

where A = V2 is the d-dimensional Laplacian operator. This equation can be implemented in the CTRW approach in terms of the jump-
length PDF

A(r) = (4m) "% exp(—12/4), (64)

where r = |r| and r € R?,

(1+8DF)

_RiplY (1 + Xﬁglpf)AP(r, 0, (63)

4. Fractional Jeffreys equation: Analytical solution and numerical computations

We now study the detailed properties of the FJE in terms of the solution for the PDF P(x, t) and the MSD.

4.1. Solution for a flux-driven case

We derive the solution for the CTRW process (52) with initial condition (53),or alternatively Eq. (9) with P(x,0%) = 6(x). To this end
we rewrite Eq. (50) in the form

% SYI(s¥ +1) 1
P(q,5)=mll+9(q,s,x)] ;
sY +q2
0.5 x) = _SFT s (65)

sty 4 XﬂsﬁqZ

The auxiliary function o(q,s; x) satisfies 0 < o(q,s; x) <1 for |g] > 1, s> 1, and x > 1, but also for 0 <s < 1 (i.e., at long times) if the
parameter x is large enough. Then, after expanding Eq. (65) in powers of o we get for y > 1

n <n> Zk{s<a—ﬂ+y)—[l+(ﬂ—y>n+ykl s(a—ﬂ+y)—[a+l+(ﬂ—y>n+ykl}

P(@.5) =Y (1" -
g ,; (se=B+y + xBg2)"™! (s*=P+r 4 xFg2)m+t

(66)
Taking the inverse Laplace transform, using relation (A.17), yields
P(g.t) = Z Stk Z (x )(tyqz)k{Hl‘fé [Xﬁf“‘ﬂ”‘f'(o, s (can— oo~ f+ y)]

+teH] ] [Xﬁt“ﬂqu (. 1) } } (67)

0. 1) (—a[n+1]-yka-B+y)

Finally, by help of relation (A.6) we arrive at

k
(=t)" «
P(x.t) = Mxﬁta — 2: o ’; :( )( ) [Py (x.t) + t*Py(x, 1)], (68)

where
_ 2.1 2 (1—k,1),(l—i—om-i—(lg—()l)k—m,ot—ﬂ-%-)/)

Pl (X, t) - Hz 3 |:4Xﬁ:-<a B+y : (O, '1)7 (% +n—- k, 1), (%2, 1) ’ (693)
o 2 (1—k,1);(l+an+(ﬂ—a)k+w,a—ﬂ+y)

RP(x.t) = Hy; |:4xﬁtaﬂ+y z ©0,1), (3 +n—k1); (%2 1) . (69b)

Eqgs. (68), (69a) and (69b) require x > 1 and B <« + y. It is noteworthy to remember that the sufficient condition for the one-
dimensional Green’s function P(x,t) to be a PDF is 8 < y [40], see also [56] for a different treatment.

For the case « = B =y =1 and x > 1, Eq. (9) subject to (47) reduces to the so-called parabolic dual-phase-lag with flux-precedence
flow [4]. The Green’s function for (68) and (69) reduces then to (see Eq. (A.11))

P(x,t):FZ 0" Z() P (R, t) + P (x, 1)), (70)

where

r l-l—k _ ) ) 1/24+n-k
Pi(x,t) = — ]7‘[ (f )2F2 1+k,1—n;1—n+k,l;_L Fd+n)( x
sin (7[5 +n—k]) T4n 2 2 2 2" 4xt) Tk \4xt

- 3 x2
x oF> 1+n,1fk;§+nfk,l+nfk;f— (71a)

4xt
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r l—l—k _ ) ) 1/24+n-k
R(xt) = — 171 (§ )2F2<l+k,—l—n;1—n+k,1;—x)—F(1+n) <X>
sm(n[i+n_k]) ]"(j+n) 2 2 2 27 A4yt C'(a+k)\ 4xt
_ 3 »2
><2F2(1+n,1<,2+nk,1+nk,4xt>} (71b)

where »F5(-) is the regularized hypergeometric function, see Appendix A.
To complete our analysis we provide the exact formula for the diffusive flux J(x,t) in the Laplace-Fourier domain (see Egs. (9) and
(50))

= 1+ Xﬂsﬂ

- _ 72
/@) lqsy(s“+1)+(l+xﬂsﬁ)q2’ (72)
which may be written in the physical domain as

ap(x,t)

Jx. 1) = ——5-—. (73)
where
= 1+ Bsh
P(s) = X (74)

sY(s® 4+ 1) + (14 xPsP)q?”
Under the condition x > 1 and 8 < « + y and with the help of Eqs. (A.17) and (A.6), one can invert (74) to obtain

(@—B+y)/2-1 X (_tayn B-a\ ¥
w(x,t)=t\/£% Z( ,il) Z(Z)(t ) [tPor(x, ) + xPpa(x, )], (75)

where

(3 -k 1) (an+[B —alk+ L2 o —B+y)
2 0, 1), (% +n—k, 1);2(%, 1) ’ (76a)
(3 k1) (an+[B—alk+ L2 a - B+y)

0.1), (3+n—k1); (3. 1) -

Hence the diffusive flux J(x,t) can be determined by substituting Eqs. (75), (76a), and (76b) into Eq. (73) and using the useful relation
(A.5). After some manipulations we find

2,1
¢1(x.0) = K |:X/5tot B+y

(76b)

2.1 2
P2(x,t) = Hjj [‘Wﬁ.m

tla=B+y)/2-1 = (—t2

k
- )" B B
L t ,t L0, 77
Jx.t) = e n§=0 ' I; ()( )[ Ji(x ) + XPL(x, )] (77)

where
x2 Tk 1) (an+[B—alk+ 22 o — B+
h(x.t) :H;;[ﬂ — (3 k1) 6 —alk+ =5 By)] (78a)
3| 4y Bra—B+y (1,1), (3 +n-k1);(3.1)
2 3-k.1); (om—i-[ﬂ alk+ B o ,B-i—y)
) = g21 X (2 ) 78b
Rt = 23[4Xﬁra By (1,1), (3 +n-k1);(3.1) (78)
Finally, the diffusive flux of the ordinary JE (parabolic Dual-Phase-Lag) can be analytically expressed for x > 1 as
1 o (0" <~ (n)
J(x.t) = X thx.t) + xL(x.0)]. (79)
/7 xxet g n! g k 1 2
where
r'(2+k 2\ _ 5 5 N\ 17240k
ho = —— T (f )<X>2F2(3+k,1_n;3_n+k,3;_x)_FU+"><X) )
sin ( (—3 +n k) | T(3 +n) \4xt 272702 2’ T4yt ) T TA+ k) \4xt
_ 1 x2
x Fy 1+n,—k;§+n—k,1+n—k;—4—xt , (80a)
r'(2+k 2\ _ 5 5\ 17240k
Lx.t) = — ZT (3 1) )R, T P S LY (. 2
sin(m(—3+n—k)) | T(n—3) \4xt 2 2 2" 4xt) Tk \4xt

3
2
Fl1entokonkien—k- (80b)
x e : ) : Taxe ) [
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o(q = 10, s;x)

i
0 0.005 0.01

S

Fig. 3. Auxiliary function o(q,s; x) for ¢ =10, « = B = y = 0.5 and different values of the ratio x.

4.2. Numerical schemes

We here briefly discuss the numerical schemes used throughout the paper. For the closed-form solution (28) of the CTRW process the
following approximation is used,

Umax 50 1 n B-y n n 50 1 v Bv
Parw(x. 1) = W(D)E(X) + > G(x. u) Y ( |) (tﬂ) [u" - (u+1)“):| > (E)t“"kz( ') (i>
u=1 n=1 n: X k=0 v=0 v X
'(n+v) (81)

“TMBY + (B —y)n—ak+1]

where G(x,t) is given by (25). In (81) we truncated the last two series at the 51st term, while the first (main) series is truncated at
Umax. We defined u as the number of steps (jumps) performed within the interval (0, t). Therefore, the number umax should be chosen
greater than the time t, umax > t; for example, when t = 10 we may choose umax = 10, 20, ..., until the numerical results stabilize at
constant values. This task can be easily implemented using any symbolic mathematics program. To avoid the singularities of the gamma
function in the denominator of (81), we replace, e.g., « = 0.5 by a = 0.5000001. A specific choice for the ratio x, e.g., x = 100, confines
the computational range for expression (81). In other words, for t > 100 the above series may diverge. In this case the direct numerical
inversion of the Laplace transform is used, as we will show below.

The H-function representation of the solution (68) and (69) to FJE can be computed by using the series expansion (A.4), however, the
condition 0 < 0(q,S; x) < 1 should be considered, where o(q,s; x) is given by (65). We note that the auxiliary function o(q,s; x) does
not lie within the interval (0,1) for all values of the Laplace parameter s. In Fig. 3, we draw o(q, s; x) for ¢ = 10 and different values of
the ratio y. Notably, for small values of the Laplace parameter s, i.e., for large values of the non-dimensional time variable ¢, the auxiliary
function does not satisfy the condition 0 < 0(q, s; x) < 1, which indicates that the solution (68) and (69) may diverge at large values of t.
Indeed, we find that the solution (68) and (69) with y = 100 works well within the interval t € (0, 20].

When the series (81) for the CTRW process and the series (68) for the FJE fail to converge, a direct numerical inversion of Laplace
transform is the method of choice. The numerical scheme for inverting the Laplace transform depends on computing the "Riemann sum
approximation” [4]

fx,t) = exp(at){lf(x S = a)+é7i|:l§§ (—1)"f<x s=a+ mk):” (82)
, 5/ (. , n ,

t
k=1

where Ny is the number of summation terms (taken here from 10° to 107) and the choice a = 4.7/t was found to be optimal. The series
(82) can be easily computed using, e.g., PTC Mathcad or Wolfram Mathematica. In the Laplace domain the solution of the CTRW process
is given as

P (x.5) = B (5)8(x) + 3 N(w, $)Gx,w), (83)

u=1

where N(u, s) and G(x, u) are respectively defined by (22) and (25), and the one-dimensional solution of FJE is given as

~ 1 [sv(s* 4+ 1) sY(s*+1)
P(x,s)_z—S /71-1—)(/35/3 exp (—|x| /7“_)(/355 . (84)
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Fig. 4. PDF P(x,t) of the FJE and JE (solid colored lines) at different times t and the corresponding PDF Perry (X, t) of the CTRW process (black circles). The parameters are:
(@Qa=B=y=05b)a=B=y=1;(c)a=02, =y =038; (d)a=0.6, =0.2, y =0.4 In all cases we set x = 100.

In Fig. 4 we compare the solutions of the FJE and JE, Eqs. (68),
(69a), and (69b); and Egs. (70), (71a) and (71b), respectively with
the solutions of the CTRW process (26) to (28). Typically the PDFs
P(x,t) and P-rrw (%, t) show good agreement at longer distances x.
The differences between the two solutions near the origin x =0
have been extensively discussed, see [22] and references therein.
We excluded the first term of the series (21), or the term W (t)3(x)
in Eq. (81), to avoid Dirac delta effect at the origin x = 0. In the
ordinary JE, Fig. 4 (b) shows that the solution fits well the solution
of the CTRW process even in the short time limit.

4.3. MSD

The MSD (xlz,(t)) can be expressed in terms of the PDF’s Fourier
transform as

B Bzﬁ(q, )

(X3(s)) = T (85)
q=0

From Eq. (50) we find after Laplace inversion
(x%(t)} = Z[taerEa,aerH (=) + Xﬂta+y7ﬁEa,a+y—ﬁ+l (_ta))A
(86)

The particular case with « = 8 and y = 1 corresponds to the result
obtained in [41]. From comparison with Eqs. (32) and (86) we see

10

that
(Xerpw (D) ~ (x3(D))

in the long time limit.
The asymptotic behavior of result (86) can be evaluated by help
of Eq. (A.15). At short times we get

(87)

< Z(t)) 5 to+y 5 ta+y-8
x ~
P TA+a+y) X TA+aty-p)
2y Praty—F
~—" _  __ t- 0" 88
Frd+a+y-8)’ B (88)
while at long times we have
5 N tY P tv-F 2
() 2<F(l+y>” Fi+y-p)  Ta+y)
(89)

The asymptotic behavior in Eqs. (88) and (89) contains interest-
ing special cases, see also Fig. 5:

(i) The case @ = B = y # 1 encodes the asymptotic behavior

apy
2
woy~ Y (%0)
P 27 .
_— — 00
ra+y)
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This behavior is unique and could not be captured by
other fractional kinetic tools such as the double-order frac-
tional diffusion equation of modified or natural types [25-
29,55,57], see also pp. 107-127 in [16]. We show this case
for « = B = y = 0.5 and different values of the coefficient x
in Fig. 5 (a). The case x =1 (red line) corresponds to the
fractional diffusion Eq. (36) with y = 0.5, i.e., the MSD reads
(x2(t)) ~ t1/2. As the parameter x increases a cage-like be-

1

s [(#5.0)]

log [(«5(®))]

g (53]

()
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) of the Green's function P(x,t) of the FJE and JE for different values of the coefficient x and the fractional parameters. In (a) « = 8 =y =0.5; (b)
®=028=087y=08;(d)a=06 =02 y=04 ()a=08 =02y =02; (f) x =10.

havior arises in the intermediate time regime between two
anomalous diffusion domains characterized by the power-
law t1/2, The PDF corresponding to this case is shown in
Fig. 4 (a) including the comparison with the corresponding
CTRW process for x = 100.

The case « =8 =y =1 and x > 1 corresponds to the JE,
that was shown to appear as the long time limit of a CTRW
dynamics characterized by the waiting time PDF 1 (s) =
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exp(—s[s + 1]/[1 + xs]). We then have

2xt,
2t,

t— 07,
t — oo.

(xB(D)) ~ { (91)
Fig. 5(b) shows this behavior for different values of x. This
type of diffusion is reminiscent of the dynamics in jammed
particle packs [58] where there exist two Fickian diffusion
regimes separated by an intermediate, cage-like regime, see
the second figure in [58]. We present the PDF for this case
in Fig. 4 (b). One can see that this PDF is close to the CTRW
solution even in the regime of relatively short times.

(ii) When a < B the FJE describes an accelerating subdiffusion

process. Such a dynamics is described in terms of double-

order (or multi-term) fractional diffusion equations of mod-
ified type [27-29]. Fig. 5 (c) illustrates this accelerating sub-
diffusion, while the corresponding PDF along with its CTRW
analog are presented in Fig. 4 (c) for different times and for

x = 100 (green curve).

When « > 8, a +y — 8 < 1, and x > 0, the solution of the

FJE represents a retarded subdiffusion process [25,29], see

Figs. 5 (d) and 5 (e) for illustrating examples. We further

plot the PDF corresponding to the green curve in Fig. 5 (d)

and the PDF of the CTRW model in Fig. 4 (d) for different

times.

(iv) When a > B, « +y — B > 1, and x > 0, the solution of the
FJE represents a crossover from superdiffusion to subdiffu-
sion, whilst the fractional telegrapher’s behavior is recovered
whenever x =0 [37], see Fig. 5 (f).

(v) When y =1 and o < 8, we observe a crossover from subd-
iffusion to normal diffusion.

(vi) Finally when y =1 and @ > 8, we have a crossover from su-
perdiffusion to normal diffusion.

(iii

=

We note that the cases (iv)-(vi) do not obey the conditions of
Proposition 1, hence, they do not follow the CTRW process dis-
cussed in Section 3. However, they agree with the conditions of
theorem 3.7 in [40] on the non-negativity of the one-dimensional
solution of the FJE, see Eq. (7a).

5. From Fick’s first law to the fractional Jeffreys law

We now complement the above discussion by some useful phe-
nomenological approaches demonstrating the connection between
the fractional Jeffreys constitutive law and Fick’s first law.

5.1. Fractional diffusion-wave equation

Let us replace Fick’s first law J(x,t) = —dP(x, t)/0x with the bi-
fractional version

_pgOP(x, t
gy = -l A LED.

where 0 <, <1. This generalization will be useful to in-
troduce its distributed-order version. By transforming the dis-
tribution P(x,t), in view of relation (92) and the continuity
equation —dJ(x,t)/0x = dP(x,t)/dt to the Laplace-Fourier domain,
we get

(92)

sh-«

P(q,s) = 7sl+ﬁ—a +q2.

(93)

Therefore, the solution of (92) with the continuity equation in the
real domain is given by

1 2 |3+ 1+B-a)
P(x,t) = H?9 2T 2 . (94
(x, ) /—471t1+/3_°‘ ]'2|:4t”/30‘ (0’])’ (%’]) ( )

12
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Here, we discuss three different cases of Eq. (93) and its solution
(94):

(i) the case o = B from Eq. (93) yields

P

P(q.s) = = P(q.5)—1=—*P(q.). (95)

s+ ¢q?
which is the standard diffusion Eq. (33) in Fourier-Laplace do-
main with initial condition P(x,t = 0) = §(x). Its solution is the
Gaussian PDF, which directly follows from the solution (94) for

o=p,
2 2
X X
H1.0

1 B 1 9%
i alon | T e P\ ta ) 9

(ii) We now consider & > 8 with 0 <1+ B —« < 1. By setting y =
1+B8-a,ie,0<y <1, from Eq. (93) we obtain

P(x,t) =

sv-1
s + q?

?(q, s) = = sﬁ(q, s)—1= —sl‘quﬁ(q, s). (97)
This is the fractional diffusion Eq. (36) in Fourier-Laplace do-

main. Its solution follows from (94) and is given by [15,47]

1 H20 i (l -5 7/)
Vamer 2[4t [(0,1),(3.1) |
Its tail assumes a stretched Gaussian shape [15].

Finally we take o <8 for which 1<1+8 -« <2. In our
setting =1+ 8 —«, which means 1< pu <2, and from
Eq. (93) we have

P(x,t) = (98)

(iii

=

n—1

= S = =
P@s) = G = $P@s) -1 =—¢’P(g.5).  (99)

By inverse Fourier-Laplace transform one obtains the fractional

wave equation

92P(x, t)
ox2

where we impose initial conditions of form P(x,t = 0) = §(x)

SDIP(x,t) = 1<p<2, (100)

and W = 0. Its solution directly follows from Eq. (94), see
[15,47,59],
2 ©
_ 20[ ¥ | (1-5.1)
PO = T 1v2[4w ©.1).(3.1) | (101)

We note that the non-negativity of the PDF (97) can be shown
by applying the subordination approach only for o > 8, i.e,, for 0 <
y =1+ B — o < 1. The subordination approach does not work for
o < B (ie, for 1 <1+ B —a < 2). However, one can show that the
solution is nonnegative, see, for instance [30,48].

The MSD for this process can be obtained from solution (94),

2t]+ﬂ—o¢
TTQ+B-a)
Therefore, the corresponding process for o > 8 is subdiffusive,
(x2(t)) =2tY/T(1+y) (0 <y < 1) while for & < B it is superdif-
fusive, (x2(t)) =2t*#/T'(1+ ) (1 < <2). The case with o =8
describes normal diffusion, (x%(t)) = 2t.

(x*(t)) (102)

5.2. Lagging behavior in fractional diffusion

When we choose @ =1 (then 8 =y) in (92), we obtain the
fractional diffusion equation of modified "dimensional” form [37]
aP' (x',t")

ax
where t’ is the observation time. Considering the non-
simultaneous relation between the flux and the distribution

J &, t)=-K,fD)” (103)
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gradient [4], Eq. (4), the modified form (103) can be generally
expressed as

12y 0P’ (X U/ +T)p)
v ox/ ’
where T; and Tp are constants with dimension of time. Apply-

ing the fractional Taylor’s series [60] to both sides of (104), one
obtains

(1+

=B
RL1— T -
=Ko B (1 trarp Tt O(f€)>

J&X ' +7T)) =-K,&D (104)

.
g+ O(E) J(¢.0)
oP (X, t')

—, (105)

where 0 <, 8 < 1.

5.3. Distributed-order equation

We can generalize the constitutive law (92) of the fractional
diffusion-wave equation to the generalized "distributed-order” ver-
sion [61]

1 1
/ Ky (VEDI I (x, £)dy = _/ k(0 )RLD) -0 apg;, D ds. (106)
0 0

When k1 (v) =6(v — ) and k(o) = §(0 — B)Eq. (106) reduces to
(92). We focus on three important special cases of (106), namely:

(i) With the specific choice

ki(v) =86(v—1), k(o) =B18(0 — B1) +Bxd(0 — Ba),

(107)
where By +B; =1and 0 < 81 < 8, <1 we get
Jx.6) = - <B1§LD3”3‘ - BZSLD}*’%) Lé’; 23 (108)

which constitutes the double-order fractional diffusion equa-
tion of modified type when combined with the continuity
equation. This description represents accelerating subdiffu-
sion [27,29].

(ii) The concrete form

K1 (V) =A18(v —a1) + A8 (v —az), Kka(0) =68(0 —B),

(109)
where A; +A; =1 and 0 < a7 <@y <1 leads to
(AlgLDtl—om +A2§LD3—D¢2)](X’ t) = _SLD;—ﬁ%’ (110)

which represents a double-order fractional diffusion equa-
tion of natural type if we choose 0 < 8 <o <@y <1, and a
double-order fractional wave equation if 0 <y <oy < B <
1.

(iii) Let us lastly consider the more general form

=

K1 (V) :A18(U —oq) +A28(U — ), k2(0)
= B18(0 — B1) + B8 (0 — Bo),

where A; +A; =1, Bij+By =1, 0<ay<ap <1, and 0 <
B1 < B2 < 1. We get

(111)

dP(x,t)
ox
(112)

(MDD + AEED ) (x. t) = — (B1 Rpl=hr 4 Bzglpt‘*m)

which provides a special form of the fractional Jeffreys con-
stitutive law (9).
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6. Conclusions

The classical third-order JE has been established as an efficient
tool for the description of a wide range of phenomena in heat and
mass transfer in physical and engineering sciences. Recently a frac-
tional generalization of the JE was suggested, based on partial time
derivatives replacing the integer order derivatives. This generaliza-
tion extends the reach of applicability of the ordinary JE to anoma-
lous transport phenomena. However, the microscopic probabilistic
foundation for this fractional generalization has remained obscure.
Here we investigated a continuous time random walk approach to
the FJE in the diffusion limit. The derivation relies on a specific
form of the waiting time PDF, for which we provide sufficient con-
ditions for its nonnegativity. As long as the mean waiting time re-
mains finite, the random walk model leads back to the ordinary JE.
The random walk model with infinite mean waiting time, however,
gives rise to the FJE. Different forms of such waiting time PDF with
divergent mean have a long standing use in the continuous time
random walk model and were connected with time-fractional dif-
fusion equations used in the description of subdiffusive anomalous
transport.

In addition to establishing the probabilistic foundation for the
FJE we here derived the exact solution of the corresponding
CTRW. The special cases of our approach include normal and time-
fractional diffusion equations, bifractional equations for retarding
subdiffusion, the ordinary JE, the fractional telegrapher’s and the
FJE itself. Our aim in this work is to establish a general frame-
work which may serve as a common basis for the description of
a broad range of anomalous diffusive processes in complex sys-
tems, in particular, for those cases in which clear crossovers be-
tween different diffusion regimes are observed. Prominent exam-
ples of complex transport phenomena exhibiting different anoma-
lous behaviors during different stages of evolution are found in
groundwater transport [62], glassy dynamics [63], lipid molecule
dynamics in bilayer membranes [64], drug molecular transport in
between silica slabs [65], and exciton diffusion in nanoplatelets
[66], to name a few. Varying the fractional exponents in the FJE
allows one to capture such phenomena as accelerating or retarded
subdiffusion, crossovers from super- to normal diffusion as well as
between super- and subdiffusion. Moreover, we also showed that
under certain conditions the FJE describes a caging behavior be-
tween diffusive regimes. These remarkable properties require fur-
ther studies and open broad perspectives for applications.

We also demonstrated that the FJE belongs to the class of gen-
eralized Fokker-Planck equations with a specific memory kernel
expressed via the combination of two Mittag-Leffler functions. We
provided a solution for the ordinary JE and the FJE for the flux-
driven case in terms of infinite series of the hypergeometric and
Fox H-functions, respectively. Hence, we were able to compare be-
tween the exact solutions of the CTRW process and the FJE, which,
by construction, agree with each other in the diffusion limit of suf-
ficiently long time and large spatial distances. We also disclosed a
variety of anomalous diffusion regimes governed by the FJE. Which
of them is realized depends on the particular values of the frac-
tional derivatives entering the FJE. The latter are defined in terms
of the parameters in the waiting time PDF of the underlying CTRW
model.

It will be interesting to generalize the concept of the FJE to sit-
uations in external potentials, thus extending the framework of the
fractional Fokker-Planck equation [15]. Moreover, it will be of much
practical use to establish the first-passage dynamics encoded in the
FJE.
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Appendix A. Special functions

We here summarize the special functions used throughout the paper. The Fox H-function is defined in terms of the Mellin-Barnes
integral [67]

m,n (al’Al)s (apaAp) / S
HiY |:x (b1 By). ... (by. Be) =55 O(s)xds, (A1)
where m, n, p, and q are integers satisfying 0 <n<p, 1<m<gq, a;,bjeC, A,BjeRy,i=1,...,p, j=1,...,q, and the function ©(s) is
given by
T, — Bis) [T T(1 —a;+Ajs
O(s) = H] 1 I( Mo (A —a; +Ajs) (A2)

T(1—b;+Bis)[[

where I'(-) is the Gamma function. The contour €2 on the right side of Eq. (A.1) separates the poles of I'(b; + B;s), j=1,...,m from the
poles of I'(1 — a; — A;s), i =1, ..., n. If the poles of ]'[;-"zl ['(bj — Bjs) are simple, the following series expansion holds true

Hmn|:

Eq. (A.3) leads to the concrete expansion

] m+1 j=n+1 F(af _Ajs)

b,‘+|,v

ap, 0o (=1)"x Bn
A BZ))] = Xit X S

by +v by +v
[T T (b5 24 ) T T (1-004 %4 )

. A3
My (1 —b;+B; b““)ﬂ, . (a,_A, B ) (A3)

il GoD@h ] ot [k ke | T nk PO
23 (G+n-k1)(3.1) ] v! T(3+v)T(@-bv) F(1+n—k+v)['(a—%—bln—k+v])
(A4)
The following relation has been used in deriving the diffusive flux,
d 2.1 (3 -k 1); (@ B) _ 2421 (3- ) (o, B)
dxH”[axz © 1 (3 n k1) (3.1) | =753 %4 ) e sk () | (A.3)

The inverse Fourier transform of the H-function is given by [37]

. -n,1 s|(1=221); (1- B - 2Ly,
f_oo|q|)LH1],; |:a|q|8|(0,(1), (ﬁ?y)i| exp( qu)dQ— aG+ 1)/bH2]|:2XE|u ((07 %)(i (1+n( 8 y y) ) (AG)

where a,y,§ e Ry, B,neC, A e R, U{0}.
When A;=B;=1,i=1,...,p, j=1,...,q, the H-function (A.1) reduces to the Meijer G-function [68]

mn| o (@, 1), ..., (@, 1) | _ ~mn|,@1,---.0p
Hyi [" by 1) (be. 1) | = CPa | X, by | (A7)
defined by the Mellin-Barnes integral
1 TThj =) T —aj+s
G%"["g]""’gp}: S s (A8)
1, ---»Dqg 2w J; ]mHF(l b+s)]‘[l w1 L(@j—s)
where L is a contour encircling all poles of I'(b; —s), j=1,...,m in the negative direction, but not encircling any pole of I'(1 —a; +5),

i=1,...,n. Then the integral converges for g > p > 0. If the poles of ]'[5»"=1 I'(bj —s) are simple and the integral (A.8) is convergent (q > p),
then the Meijer G-function can be expressed as a sum of residues in terms of generalized hypergeometric functions pF;_; (see p. 145 in

Ref. [69]),
— X),

(A.9)

Gm’n | ., ap Zl_[] 11#11“( bh)l_[] 1 (1—aj+bh)xbh pFi] 1—a1+bh,...,1—ap+bh
pa - bg i D(1=bj+bn) T17,.,; T(a; — by) I\ 1 =bi+bp,....1=byy +by, 1 =byg + by, ... T=bg+ by

h=1 Jj=m+1

where q > p.
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Utilizing the regularized hypergeometric function [70], related
to the generalized hypergeometric function through

Ba; X)

qu((X],.‘.,Olp;ﬂ],...,

C(Br) -+ T(By) pFqlar, ..., ap; Pr. ..., By X).

.....

=
=
N
R
> 8
BT~
=
~
Il

with relations (A.9), (A.7) and the Euler reflection formula
I'z)I'(1 —z) = /sin(rz), we deduce that

) (a1, 1); (az, 1)
Hy3 H(bl,l)], (b2 1): (b3,1)i|
_ b4 5 'l—a +b
= sin(w[by — b1]) I(az - by)
w b,
F(az—b )

The Prabhakar generalization of Mittag-Leffler function is de-
fined through the series representation [71]

])Xb] 2?2(1 —ay+bq, 1

— (Y 2
Erp@ = ZF(an+ﬂ)n"

where (y), is the ascending Pochhammer symbol defined by
Po=1 Y=y +1D--(y+n-1)=T(y +n)/I'(y). The
function Eg P (—=At%*) is a completely monotone function (CMF) pro-
vided that A > 0, t > 0, and [72]

o, B.y.zeC, R{a} >0, (A12)

O<ay <pB=1,
tP1EY (—At*) € CMF iff { r=p (A13)

O<ac<l.
The asymptotic behavior for large negative argument can be found
from the formula

o0

N e e
Ep D LT ay +my

. z>1, (A14)

and together with the definition of the Mittag-Leffler function
(A.12) give the following asymptotics [72]

1 Ayt®
_—— t— 0",
EY 4 (—At%) ~ P Te+p) (A15)
- ey
_ — 00.
(B —ay)
The Laplace transform of the sz/ﬁ(—)»t"‘) is given by [71]
-
B-1rv o s*
L{t E, ( AtY); s} IS "{B} > 0. (A.16)

Using the familiar relation between the Prabhakar generaliza-
tion of the Mittag-Leffler function and the Fox H-function and
Eq. (A.16) we obtain [67]

00 ay—p
LTI DY —stydt=T(y)— .
/ 1'2[ 0.1 (12 o | 9 (S0 =T ) s
(A17)
When y =1 we have the special case
1 - z"
Eaﬁ (2) =Eup5(2) = g Tant ) (A18)

which known as the generalized Mittag-Leffler function. For g =1
it further reduces to the standard Mittag-Leffler function. All the
above relations of E;'ﬁ(z) are valid for E, g(z) upon setting y = 1.

The following special cases will be used [71],

tE15(—t) =1 —exp(—t), t2E;3(—t) =exp(—t) —1+t. (A19)

2F2(1—al+bz,1—az+b2,1—b1+b2,1—b3+b2,—x)}

Uo(q)
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Appendix B. n th differentiator function as initial condition

The unit doublet function (differentiator) [73] is defined as the
first derivative of the Dirac delta function:
d
= —8(X), B.1
1 () = 5-3(x) (B.1)

with the properties

Fu@ia=a [ fe-ouEd= 0. (62)

—(12+b1;]—b2+b1,1—b3+b1;—X)

(A11)

This distribution can be generalized to the so-called “nth differen-
tiator function”

u,(x) = %S(x), (B.3)

where n € NU {0}. When n is an negative integer, Eq. (B.3) defines
the nth integrator function, whereas n =0 recovers the conven-
tional Dirac delta function (unit impulse function). The Dirac delta
and the unit doublet functions can be viewed at the limiting forms

X2 X2
( ) 00 = = iy ol ( )

(B.4)

) = lim ——
. ”“Hf

Let us consider the following initial conditions for the partial
differential Eq. (43)

dP(x,t)

P(x,07) =68(x), o

=1(x), (B.5)

t—0+

where v (x) is the initial rate of the distribution P(x,t). In Laplace
domain, Eq. (43) subject to (B.5) reads

- 92P(x, s

s+ D[sPx.5) =80 ] = (1+ xs)% + Vo (X) — YUz (X).
(B.6)

After additional Fourier transformation,

(s+ 1)[sﬁ(q, s) - 1] =—(1+ x)q*P(q.5) +To(q) — xUa2(q),
(B.7)

which can be rearranged to

= s+ 147 — XU

B(g.s) = 0(q) — xta(q) (B.8)

sS(s+1)+ (1+ xs)q%

Upon comparison of the CTRW long-time limit (42) with the above
expression (B.8) we readily deduce that the partial differential
Eq. (43) is the limiting case of the CTRW process provided that

=xi(q), x>1, (B.9)

or, more precisely, it should be subject to the initial condition
(44). Using similar analysis, one can validate the initial condition
(47) for the flux-distribution formulation.
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Appendix C. Waiting time PDF ¥ (t) and asymptotics

We present a closed-form solution for the waiting time PDF
Y (t). Using the expansions

. (_X)n n = (n k
exp(—X) =)~ (1+0"=3 [ ]¥ (C1)
n=0 k=0
Eq. (16) can be written as
Fsy= 3 D gy () s
V) =2 x| . (C2)
n=0 k=0 (sﬂ+iﬂ>
X
Applying formally an inverse Laplace transformation to

Eq. (C.2) and using Eq. (A.16) we get the following form for
the waiting time PDF in the time domain,

1T ()" (b7 \" aken £\
w(t)=5(t)+?§(n!) (7) Z(Df kEﬁ.[ﬁ_y]n_ak<*(;) )

k=0
(C.3)

Note that the second lower index of the three-parameter Mittag-
Leffler function (C.3) is negative, and thus such a solution does not
obey the condition (A.16). However, the series (C.3) gives the same
long and short time behavior of the waiting time PDF as deduced
from its Laplace transform (16). Moreover, the numerical result of
the inverse Laplace transformation of Eq. (16) fits well the numer-
ical result of (C.3) in the whole time domain.

Next, we derive the short and long time behaviors for the wait-
ing time PDF 1/ (t). The long-time behavior of (C.3) can be derived
from the long time behavior of the Prabhakar generalization of the
Mittag-Leffler function (A.15), such that we obtain

tfak

1 = (71)’1 —yn ¢ n
1//(r)~;Z ot g(k)r(—yn—ak)’

n=1

(C4)

where t — oo and t >» x, which can be approximated for long
times by neglecting all terms of the finite sum except the first
term, namely,

1S (=) trn
v () ?g T v (C5)
Using the expansion of the one-sided Lévy stable density,
_ x (_1)n t—om—l
£y (t) = Z Tl T(can)’ (C.6)

n=1

which can be easily derived by using the relation between ¢ (t)
and the Fox H-function [74]| and expansion (A.3), we derive the
long-time behavior (18), where £4(t) ~at=@"1/I'(1—a) as t —
Q0.

The short time behavior of (C.3) can be obtained from using
the short time behavior of the Prabhakar generalized Mittag-Leffler
function (A.15), leading to

t—(y—ﬁ)n—ak—]

e} (—l)n n n
V(L) ~ Z nl x An Z (k) C(—[y - BIn—ak)’

n=1 k=0

(C.7)

For fixed n and short times we can neglect all terms of the finite
series in (C.7) except from the last term, obtaining
% (=1)" t—(a+y—p)n-1
t) ~ .
v© Z nlyfn I'(—[a+y — Bln)

n=1

(C.8)

Comparing this result with the Lévy density (C.6) we can derive
the short time behavior (19).

It is worthwhile noting that the above asymptotic behaviors can
be also deduced by employing the Tauberian theroem [52] to the
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waiting time density in the Laplace domain (16). For example the
long time behavior corresponds to small values of the Laplace pa-
rameter, namely,

U (s) ~exp(—s?) = T, (s), M(s) — 0. (C.9)

Conversely the short time behavior can be derived by letting 9 (s)
tend to oo, i.e.,

- s a+y—B \
W (s) ~ exp <_|:Xﬁ/(°‘“’ﬁ)i| ) N(s) — oo, (C10)

which can be inverted to the time domain result (19).

The short time behavior (19) can be further expressed in a sim-
pler form using the asymptotic behavior of the «-stable PDF for
small values [54,74]:

Lo (t) ~ Bt~ exp(—kt~"), t—0, (C11)
where
B ol/(1-e) _ 2-a _ w/(1-a) o«
B=Vamazay " za-ay U9 Uyl
(C12)

Appendix D. Bernstein functions

The Bernstein functions were used for the validation of the
non-negativity of the fundamental solution of the distributed-order
fractional diffusion-wave equation [48] and extended to the multi-
term case [75]. They were invoked in different places of the cur-
rent work. For the convenience of the reader we here collect the
fundamental concepts and properties of some functions of this
class, see [52,76].

(i) The function f(x,k) RxRy — Rﬂ is a completely mono-
tone function with respect to A if it is continuously dif-
ferentiable with respect to A and satisfies the condition
(=1)k3kf(x,A)/0A% > 0 for all k € N. Then we write f(x,A) €
CMF, where CMF is the set of all completely monotone func-
tions. The importance of the property CMFs in our investiga-
tion is derived from the property that the generic function
f(x,t) is nonnegative, for all values of time t > 0 and space
X e R if its Laplace transform restricted to the positive real line,
fG&x ) = [f5° f(x,t) exp(—At)dt, A > 0 lies in CMF. The product
and the linear combination of two completely monotone func-
tions are also completely monotone functions.

(ii) The function f(x,A):R xR — Rﬂ is a Stieltjes function
with respect to A if there exists a completely monotone
function f(x,t) with respect to t >0 such that f(x,A) =
Jo° f(x,t) exp(—At)dt, A > 0, namely, if it is the Laplace trans-
form of a completely monotone function. We then write
f(x,1) € SF, where SF is the set of all Stieltjes functions. It
is clear that any Stieltjes function is a completely monotone
function (SF ¢ CMF), but the contrary is not generally true. The
product of two Stieltjes functions is not necessarily a Stieltjes
function, however, if @, ¥ € SF then [@(A)]*[¥ (1)]# € SF pro-
vided that o, 8 € (0,1) and o + 8 < 1. Choosing « = 8 =0.5

we thus have /oy, /@, \/E e SF.

(iii) The function f(x, A) iR xRy — RY is a Bernstein function with
respect to A if it is continuously differentiable with respect to A
and satisfies the condition (—1)*-19%f(x, A)/0A% > 0 for all k €
N. The set of all Bernstein functions is denoted by BF. If f,g e
BF and h € CMF, then f[g(1)] € BF, h[f(A)] € CMF and f(A)/A €
CMF.

(iv) The Bernstein function f(x, A)RxRy — RQ is said to be
a complete Bernstein function, with respect to A exactly if
f(x,A)/A € SE. Denoting by CBF the set of all complete Bern-
stein functions we see that CBF c BF. The linear combination
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of complete Bernstein functions is also a complete Bernstein
function. The set of complete Bernstein functions is not in gen-
eral closed under multiplication, however, if ¢, ¥ € CBF, then
[@(M)1®[v¥r (M)]P € CBF provided that o, 8 € (0,1) and o + 8 <
1. If (1) € CBF then exp(—ag(A)) € CMF for a, A > 0.

Appendix E. Proof of Proposition 1

In order to prove that i (t) is a PDF it is sufficient to show that
Y (t) is normalized and non-negative. The normalization of v (t) is
straightforward from (16),

/w U (t)dt = /m W (t)exp(—st)dt| =) =1. (E1)
0 0 s=0

Let us consider the function

<y ETE D

wé) = W & =n{s} >0, (E.2)

where 0 <o,8,y <1 and x > 0. It is known that @(§) is a
complete Bernstein function (CBF), i.e., @ (&) e CBF c BF, if its in-
verse is a Stieltjes function (SF), i.e., 7j(§) = [@(£)]~! € SF, see App.
Appendix D for Bernstein functions (BFs). Rewriting 7(£) as

O ﬁgﬁ—y
16) = ga37 Eoy 1

and inverting the Laplace transform 77(§) — n(t), see Eq. (A.16), we
get

N(t) = Y B iy (1) + POV PE, o p(—t%),  (E4)

where E, g(z) is the generalized Mittag-Leffler function (A.18). Us-
ing the complete monotonicity conditions on the Mittag-Leffler
functions, see (A.13), one can deduce that n(t) ¢ CMF exactly if
conditions (7b) are satisfied. Conversely from the fact that the
function 7(§) = f;° n(t) exp(—£t)dt is a Stieltjes function exactly
if n(t) is a completely monotone function, we have that 77(§) e SF
provided that the sufficient conditions (7b) are met. Therefore,

@ (&) =[7(&)]""  CBF C BF, (E.5)

if conditions (7b) hold true. Since the composition of a completely
monotone function and a Bernstein function is a completely mono-
tone function,

(E3)

+X

V(&) = exp(-&(§)) € CMF (E.6)
104 B B Bk AL Bt B B I
Generalized waiting time density
5 Modified asymptotic
10 Classical asymptotic - - - 1
100 E
= 1072 1
2
¥ 1074 1
10—6 3 1
1078 | -
~ 18
10710 PRPETTITY PEPETTT EEPEPTTTYY EEPEPETII EEPEPETTI EPEPETII EEPTTTI RPN R
1041072 1072 10~! 10° 10* 102 10° 10* 10°

log (t)

(a)

(b)
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if the conditions (7b) are satisfied, which proves the non-negativity
of Y(t) in the case 0 <, B,y <1 and x > 0, and thus completes
the proof of the first part of the Proposition.

Secondly, we focus our attention now on the special case o =
B =y =1, namely,

~ EE+1)
w1(§) = T+ & =9n{s} > 0. (E7)
By rearranging @, (£), we can write 71 (§) = [@7(§)]"! as

§

Since &/(& +1) e CBF c BF the numerator of 7;(£¢) is also CBF
whenever x > 1. Thereby 7;(§) eSF and @;(§)=[7()] '€
CBF c BF whenever x > 1. Hence,

U (€) = exp(—a1 (£)) € CMF, (E9)

provided that x > 1, which proves the non-negativity of i (t) in
the case « = 8 =y =1 and completes the proof of the proposi-
tion.

Appendix F. Temporal scale of the corresponding CTRW for the
fractional Jeffreys and Fick’s equations

In the classical CTRW picture the one-sided a-stable law ¢y, (t)
with the Laplace transform Zy (s) =exp(—s”), 0 <y <1, is often
chosen as the waiting time PDF for the derivation of the time-
fractional diffusion equation and the approximation

,(5)~1-5", 50, (E1)

is used in the long time limit, see e.g., [15]. Such approximations
of the Laplace transform corresponds to the asymptotic behavior
(18) of the one-sided «-stable PDF. In our paper, in order to get
the FJE from the CTRW, we used the asymptotic behavior (48). It
is interesting to check what is the difference between these two
asymptotic behaviors graphically. This helps to understand what
is the corresponding CTRW temporal domain which can be rep-
resented exactly by means of the two fractional equations.

In Fig. 6 we compare the exact waiting time PDF (C.3) with the
asymptotic forms (48) and (18). From these graphical representa-
tions one can see the same long time behavior (t — oo) for all
three waiting time PDFs while the short time limit yields differ-
ent behaviors. Interestingly the FJE is valid in a wider time domain

) ' Generalized waiting time density —
10° ¥ Modified asymptotic 3
Classical asymptotic - - -
100 k
107t F
S 102k
=
—3
P10t
1074 L
107° ¢
107 L
| | | | | |
102 10-' 10 10' 102 10® 10* @ 10°
log ()

Fig. 6. Generalized waiting time PDF / (t), Eq. (C.3) (blue solid line) compared with both the asymptotic behavior (48) which leads to the FJE (red solid line) and the classical
asymptotic behavior (18) which leads to the fractional diffusion equation (dashed black line). The parameters are (a) « =0.2,  =0.8, y =0.8 and x = 10 (acceleratingd
case); (b) ¢ =0.6, 8 =0.2, y =0.4 and x = 10 (retarded case). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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of the CTRW process than the domain of validity of the fractional
diffusion equation. Thus when we refer to the asymptotic behavior
(48) it is worth to emphasize that it works not only in the long
time limit t — oo but also at intermediate times.
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