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Abstract. Brownian motion and viscoelastic anomalous diffusion in
homogeneous environments are intrinsically Gaussian processes. In a
growing number of systems, however, non-Gaussian displacement dis-
tributions of these processes are being reported. The physical cause
of the non-Gaussianity is typically seen in different forms of disorder.
These include, for instance, imperfect “ensembles” of tracer particles,
the presence of local variations of the tracer mobility in heteroegenous
environments, or cases in which the speed or persistence of moving
nematodes or cells are distributed. From a theoretical point of view
stochastic descriptions based on distributed (“superstatistical”) trans-
port coefficients as well as time-dependent generalisations based on
stochastic transport parameters with built-in finite correlation time
are invoked. After a brief review of the history of Brownian motion and
the famed Gaussian displacement distribution, we here provide a brief
introduction to the phenomenon of non-Gaussianity and the stochas-
tic modelling in terms of superstatistical and diffusing-diffusivity
approaches.

1 Introduction

In the anni mirabiles from 1905 to 1908 Albert Einstein, William Sutherland, Marian
Smoluchowski, and Paul Langevin introduced their theories of Brownian motion [1–
4] and Jean Perrin published his seminal single particle tracking experiments [5,6].
Concurrently, Karl Pearson introduced the concept of the random walk [7,8]. Based
on this early work, we now understand Brownian motion as the continuum limit of a
Pearson walk, in which individual steps are independent and identically distributed.
As long as the lengths of individual steps of a tracer particle undergoing such a
process have a finite variance, following the central limit theorem the probability
density function (PDF) is Gaussian a forteriori,

P (r, t) =
1

(4πD1t)d/2
exp

(
− |r|

2

4D1t

)
, (1)
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Fig. 1. Three microscopic trajectories measured by Perrin [5]. The turning points correspond
to the particle position measured in 30 s time intervals.

and the corresponding mean squared displacement (MSD) has the linear time
dependence

〈r2(t)〉 = 2dD1t, (2)

with diffusivityD1 in a d-dimensional system. Properties (1) and (2) are the hallmarks
of Brownian motion [9,10].

Figures 1 and 2 show exemplary results of the experiments by Perrin. The “random
walk” traces shown in Figure 1 show the test particle positions as taken in 30 sec
intervals. These positions are connected by straight lines.1 The trajectories contain
relatively few points, as the particles left the focus of the microscope quite quickly. For
a quantitative analysis, Perrin therefore used the independence of individual steps and
shifted each displacement vector to a common origin, Figure 2. The resulting radial
histogram was then used to determine the parameters of the Gaussian distribution
from which Perrin ultimately obtained Avogadro’s number NA, making use of the
famed Einstein-Sutherland-Smoluchowski relation

D1 =
kBT

mη
=

(R/NA)T

mη
, (3)

with the mass m of the test particle, the viscosity η, as well as thermal energy kBT
and the gas constant R [1–4,9].

The Gaussian distribution was directly mapped out by Eugen Kappler in his
torsional Brownian motion setup using a small mirror suspended on a long, thin
quartz thread [11]. Given that the elongations induced by bombarding ambient air

1Remarkably, in his papers Perrin alludes to the fact that if he had measured the trajectories in
1 sec intervals, they would look equally zigzaggy on a finer scale [5,6].
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Fig. 2. The starting points of each 30 s interval-displacement of trajectories as those shown
in Figure 1 are shifted to a common origin and mapped onto a Gaussian profile [5].

molecules are fairly small, the restoring force by the thread can be assumed to be
Hookean. The resulting diffusion in an harmonic confining potential is actually an
Ornstein-Uhlenbeck process, whose probability density function remains Gaussian at
all times [9,12,13]. Kappler’s result displayed in Figure 3 impressively corroborates
the expected Gaussian shape.

Normal Brownian diffusion is not the only process with a native Gaussian PDF.
We mention two classes of stochastic processes, both describing anomalous diffusion
of the power-law form [14–16]

〈r2(t)〉 ∼ 2dDαt
α. (4)

Here, the anomalous diffusion coefficient Dα has dimension cm2/secα, and,
depending on the value of the anomalous diffusion exponent α, we distinguish
subdiffusion (0 < α < 1) and superdiffusion (α > 1).

The first Gaussian anomalous diffusion process is so-called scaled Brown-
ian motion (SBM) defined in terms of the Markovian Langevin equation ṙ(t) =√

2K (t) × ξ(t), where ξ(t) is component-wise white Gaussian noise and the noise
strength includes the explicitly time dependent diffusion coefficient K (t) = αDαt

α−1.
The PDF of the intrinsically non-stationary SBM is [17–25]

P (r, t) =
1

(4πDαtα)d/2
exp

(
− r2

4Dαtα

)
. (5)

SBM finds application in systems with time-varying temperature, for instance,
in cooling granular gases [26] or in the hydrology of melting snow [27,28]. Moreover,
power-law time dependent diffusion coefficients appear in the famed Batchelor model
for turbulent diffusion [29], and they were used to model water diffusion in brain
tissue measured by MRI [30]. The limit α = 0 corresponds to ultraslow diffusion with
a Sinai-like, logarithmic growth of the MSD [31–33].

The second class of Gaussian processes with MSD (4) are highly non-Markovian
and driven by stationary, long-range power-law correlated fractional Gaussian noise
ξα(t) with component-wise covariance 〈ξiα(t + τ)ξjα(t)〉 ∼ δi,jα(α − 1)τα−2 (α 6= 1).
Note that the covariance is negative (“antipersistent”) when 0 < α < 1 and positive
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Fig. 3. Stationary Gaussian displacement distribution of confined Brownian motion as
measured by Kappler in his torsional mirror setup [11].

(“persistent”) when 1 < α < 2. Fractional Brownian motion (FBM) [34,35] directly
couples the noise to the velocity in the Langevin equation ṙ(t) =

√
Dαξα(t) with MSD

(4). Thus, antipersistent noise leads to subdiffusion, persistent noise to superdiffusion
[34–36]. Unconfined FBM shares the PDF (5) with SBM.

A closely related process is described by the fractional Langevin equation (FLE)
[37–40]2

m
d2r(t)

dt2
+

∫ t

0

γ(t− t′)dr(t′)

dt′
dt′ = ξ2−α(t), (6)

with 0 < α < 1 and γ = γ0t
α−2. After an initial ballistic regime 〈x2(t)〉 ' t2 the

motion crosses over to the subdiffusive MSD (4) at long times. In contrast to FBM,
the fractional Langevin equation (6) fulfils detailed balance and thus in a confining
external potential relaxes to thermal equilibrium. This requires that the noise covari-

ance function is coupled to the power-law friction kernel, 〈ξ(i)
2−α(t + τ)ξ

(j)
2−α(t)〉 =

δi,jkBTγ(τ) [37,38,41]. Subdiffusion here emerges despite the persistent (positively

2The term “fractional” comes from the fact that with the power-law form for the kernel γ =
γ0tα−2 the memory integral can be rewritten in terms of a fractional operator [36–40].
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correlated) noise covariance, as large noise spikes are compensated by large friction
values, which is the physical explanation that equation (6) describes viscoelastic sys-
tems measured in [42–47,49,50]. We note that within the framework of FBM or FLE
motion crossovers from anomalous (for FLE motion at time scales beyond the initial
ballistic motion) to normal diffusion or between anomalous diffusion characterised by
different scaling exponents can be included by tempering of the fractional Gaussian
noise [51].

Here we address cases in which the MSD and displacement correlation function
point at either normal (Fickian) or anomalous diffusion driven by fractional Gaus-
sian noise, while the displacement PDF is clearly non-Gaussian. These “Brownian
yet non-Gaussian” and “viscoelastic yet non-Gaussian” processes have been reported
in numerous systems. We provide a physical scenario for these cases and present dif-
ferent theoretical models describing these phenomena, including the superstatistical
formulation and the diffusing-diffusivity model.

2 Brownian yet non-Gaussian diffusion and superstatistics

The combination of the linear time dependence (2) of the MSD with a non-Gaussian
PDF is in a way counterintuitive, as it contradicts our naive expectation that such
“normal” diffusion should be Gaussian. The case for this “Brownian [or Fickian]
yet non-Gaussian” diffusion phenomenon was championed by Granick [52], whose
group reported non-Gaussian diffusion for the Fickian motion of submicron trac-
ers along linear tubes and in entangled actin networks [53], as well as for tracer
dynamics in hard sphere colloidal suspensions [54]. Other experimental evidence for
non-Gaussian behaviours comes from the diffusion of nanoparticles in nanopost arrays
[55], colloidal nanoparticles adsorbed at fluid interfaces [56–58] and moving along
membranes and inside colloidal suspension [59], and the motion of nematodes [60].
We also mention the non-Gaussian dynamics in disordered solids such as glasses and
supercooled liquids [61–63] as well as interfacial dynamics [64–66] and dynamics in
actively remodelling semiflexible networks [67,68].

Figure 4 shows, along with a cartoon of the tracer bead in the F-actin network,
the original data from [54]. We see both the linear time dependence of the MSD and
the non-Gaussian shape of the displacement PDF: while at short distances the shape
is Gaussian the tails of the PDF are exponential (“Laplace distribution”) [54],

P (r, t) ∼ 1

λd(t)
exp

(
− |r|
λ(t)

)
. (7)

Supplementing this information, Figure 5 demonstrates that the exponential tails
are present at different lag times and collapse to a master curve with exponential tail.
Concurrently, the width λ is shown to scale with time as λ(t) ' t1/2, such that the
position-time scaling is diffusive in the sense that r2 ' t [54].

A way to understand this non-Gaussianity was already proposed in the paper by
Granick [52], namely, the concept of superstatistics as formulated by Beck and Cohen.
Accordingly, the measured PDF Psup(r, t) of an ensemble of particles corresponds to
the mean [69–71]

Psup(r, t) =

∫ ∞
0

P (r, t|D1)p(D1)dD1, (8)
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Fig. 4. (A) Sketch of a nanosphere (a = 50 nm in the experiment) diffusing in an entangled
F-actin network with mesh size ξ = 300 nm. (B) MSD in log–log scale demonstrating Fickian
diffusion. (C) Displacement PDF with exponential tail in log-lin scale. The dashed line in
(B) is the MSD constructed according to a central Gaussian part fitted to the centre of the
PDF in (C) for small r. The dashed line in (C) shows a Gaussian with the same diffusion
coefficient as fitted to the MSD in (B). Reproduced from [52]. (This figure is subject to
copyright protection and is not covered by a Creative Commons license).

Fig. 5. (A) Time evolution of the displacement PDF in the nanosphere-actin network
experiment from Figure 4, for particles with radius 100 nm. The lag times are 1sec (circles),
5sec (triangles), and 20sec (crosses). Inset: data collapse from rescaling of the displacement
PDF, where rλ = r/

√
t, see text. (B) Decay lengths λ(t) from (A) showing a λ(t) '

√
t

scaling, for radii and mesh sizes a = 50 nm and ξ = 300 nm (crosses), a = 100 nm and
ξ = 450 nm (triangles), and a = 100 nm and ξ = 300 nm (circles). Reproduced from [52].
(This figure is subject to copyright protection and is not covered by a Creative Commons
license).

where P (r, t|D1) is the Gaussian (1) for a specific value D1 of the diffusion coefficient,
and p(D1) is the PDF of D1 values. The MSD of this process becomes

〈r2(t)〉 = 2dt

∫ ∞
0

D1p(D1)dD1 = 2d〈D1〉t. (9)



Nonextensive Statistical Mechanics, Superstatistics and Beyond 717

Independently of the diffusivity distribution p(D1), that is, the particle ensemble
is characterised by Fickian diffusion, with an effective diffusion coefficient Deff =
〈D1〉. Within the superstatistical approach it is straightforward to show that the
Laplace distribution (7) uniquely emerges from an exponential diffusivity distribution,
p(D1) = 〈D1〉−1 exp(−D1/〈D1〉) [72]. The case of a gamma distribution for p(D1) was
considered in [60], see also [73]. Finally, it was shown that power-law forms for p(D1)
effect superstatistical distributions Psup(r, t) with power-law tails [72,74].

Physically, superstatistics naturally emerges when we consider an imperfect
“ensemble” of diffusing particles with a distribution of mobilities. This was in fact the
case in Perrin’s original measurements and even occurs in contemporary experiments
with tracer beads that can be ordered from specialist providers: when we measure
ensembles of such particles, the formulations (8) and (9) naturally emerge. In par-
ticular, in this case the value D1 – specific for each particle – is constant in time.
The picture envisaged by Beck and coworkers was in fact that of an heterogeneous
environment. Imagine that all particles are identical, but each particle is moving on
its own patch in space, characterised by a specific D1 value. Again, measuring over an
ensemble of particles in an array of patches with different D1 produces the behaviour
encoded in (8) and (9), and p(D1) is then given by the statistic of the patches. In this
scenario, of course, once a given particle reaches the border of its patch, it will move
into a patch with a different D1 value. Once all particles explore many different local
environments, the overall ensemble behaviour will cross over to an effectively Gaus-
sian statistic: beyond some correlation time the system is Brownian and Gaussian,
with an effective diffusion constant. A specific scenario for such a crossover dynamic
is discussed in more detail in Section 3.

Beck and coworkers applied superstatistical concepts to a range of dynamic phe-
nomena, including turbulence [75,76], high energy physics [77], power grid fluctuations
[78], and delay time statistics of British trains [79]. Naturally, concepts similar to
superstatistics were previously discussed, for instance, by Shraiman and Siggia [80]
in the context of stretched exponential distributions in turbulence [81]. However,
Beck introduced superstatistics as a physical concept and made the connection to
statistical mechanics [82,83]. We note that the superstatistical formulation was also
achieved starting from a stochastic Langevin equation [84]. We also note that a sim-
ilar, random-parameter formulation of diffusion processes is given by the concept of
(generalised) grey Brownian motion [73,85–88].

That the superstatistical ensemble is characterised by the effective MSD (9) is in
fact not surprising, as such a behaviour necessarily follows for any shape P (r, t) =
t−d/2g(r2/t) of the PDF in terms of some scaling function g(·). To show this, we start
from expression (8). A Fourier transform then takes us to

Psup(k, t) =

∫ ∞
0

p(D1)e−D1k
2tdD1 = p̃(s = k2t), (10)

with the Fourier transform exp(−D1k
2t) of the Gaussian (1). This expression defines

the Laplace transform p̃(s) of p(D1), to be taken at k2t. Fourier inversion of result
(10) and substituting κ = kt1/2, we arrive at

Psup(r, t) =
1

(2π)d/2

∫ ∞
−∞

p̃(k2t)e−ikrdk

=
1

(2πt)d/2

∫ ∞
∞

p̃(κ2)e−iκr/t1/2dκ. (11)
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This shows that we can write Psup = t−d/2g(ζ2), in terms of the scaling function

g(ζ2) that solely depends on the similarity variable ζ = r/t1/2. Thus, a given shape
of the function g(ζ2) is an invariant, and no transition to a different shape is possible.
Crossovers to other shapes, for instance, an effective Gaussian, at long times can be
explained in the diffusing-diffusivity framework below.

2.1 Anomalous non-Gaussian diffusion

Non-Gaussianity of the PDF P (r, t) is a common feature for anomalous diffusion
processes of the continuous time random walk type, in which jumps are interrupted
by random waiting times with a scale-free distribution of the form ψ(τ) ' τ−1−α such
that no characteristic waiting time 〈τ〉 exists [14,36,89]. Instead, stretched Gaussian
forms are obtained. Similarly, non-Gaussian shapes of the PDF are known from other
anomalous diffusion processes, most prominently for diffusion on fractal supports [90]
or diffusion in heterogeneous diffusion processes, in which the diffusion coefficient is
explictly position-dependent [91,92].

Experimentally and in simulations, non-Gaussian patterns were observed in mem-
brane dynamics [50,93–96], confined diffusion of water molecules in soft environments
[97], polymer diffusion along surfaces decorated with nano-pillars [98], intermittent
hopping on solid-liquid interfaces [99] similar to bulk-mediated diffusion [100–103],
diffusion of colloids in dense crowded suspensions [104], tracer diffusion in glassy
systems [105,106], as well as in mucin hydrogels [107,108], fibrin gels [109], and in
disordered micropillar matrices [110]. In simulations, non-Gaussianity was found in
crowded and interactive environments [111]. Additionally, non-Gaussian displacement
distributions were studied in static disordered media [113] and colloidal liquid crystals
[114].

The motion of individual lipid molecules in a bilayer membrane at sufficiently
short times was shown to be anomalous-diffusive with displacements that are Gaus-
sian distributed and whose correlations are consistent with the fractional Langevin
equation motion defined in Section 1 [49].3 However, once the membrane is crowded
with embedded proteins (Fig. 6A) the displacement PDF of the lipids can be
adequately described by a stretched Gaussian of the form [50]

P (r,∆) ∝ exp

(
−
[ r

c∆α/2

]δ)
, (12)

where r is the radial co-ordinate. This functional behaviour is demonstrated in Fig-
ure 6B, where the cumulative distribution Π(r,∆) is plotted in the form − log[1 −
Π(r2,∆)] ∼ (r/c∆α/2)δ such that the power-law in the exponent becomes a straight
line (Fig. 6, middle). Plotting this behaviour for various measurement times T
and lag times ∆ shows that the stretching exponent δ shows only minor varia-
tions around values of δ ∈ (1.35, 1.66) (Fig. 6C) [50]. However, it is expected that
for times beyond the reach of the simulations normal diffusion with an effective
diffusivity will be restored, similar to the observations in the protein-free bilayer
membranes [49,51]. If we interpret this non-Gaussian behaviour in the superstatisti-
cal language, the stretched Gaussian (12) emerges from a diffusivity distribution of
the form p(Dα) ∝ exp(−[cDα]κ) such that δ = 2κ/(1 + κ) [72].

That the time-local diffusivity Kα(t) of individual lipid molecules in the crowded
bilayer indeed show clear variations is demonstrated in Figure 7. While such a plot

3More precisely, the anomalous diffusion is transient, a crossover to normal diffusion is observed
above a crossover time, as described by generalised Langevin equation models with tempered
fractional Gaussian noise [51].
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Fig. 6. (A) Snapshot of a protein-crowded lipid bilayer membrane consisting of 1,600
DPPC phospholipids, in which 16 NaK proteins (yellow) are embedded, from coarse-grained
Molecular Dynamics simulations. (B) Plot of − log(1−Π(r,∆)), where Π is the cumulative
displacement PDF, versus r2 for varying observation time T . (C) Variation of the stretching
exponent δ as function of T . All panels from [50].

shows homogeneous-in-time fluctuations for the dilute bilayer, in the protein-crowded
case of Figure 6A, lipids may get associated with the less mobile proteins or become
trapped inside a cordon of proteins. The traces in Figure 7A, in particular, the blue
trace, show a clear intermittent behaviour. Concurrently, the relatively narrow dis-
tribution of diffusivity values Kα in the dilute case significantly broadens in the
crowded case, with a slightly bimodal shape (Fig. 7B). Remarkably, several of the
features of the full protein-crowded membrane system can already be observed in
two-dimensional excluded volume systems with narrowly-placed obstacles [50].

In single particle tracking experiments in heterogeneous membranes anomalous
diffusion with an almost-exponential displacement PDF and diffusivity distribution
were observed [95]. Similarly, in [115,116] the diffusion of submicron tracers in bacteria
and yeast cells were demonstrated to show antipersistent motion consistent with the
fractional Langevin equation model, however, the displacements showed a Laplace
distribution – including an impressive scaling behaviour. The associated diffusivity
distribution is, as expected, of exponential form.

To phrase anomalous diffusion in a superstatistical language a generalised
Langevin equation model with distributed diffusivity was studied by Beck and van
der Straeten [117], while a more general approach for a superstatistical generalised
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Fig. 7. (A) Diffusivity time traces of two different lipids in the protein-crowded lipid bilayer
membrane of Figure 6. (B) Approximately bimodal, relatively broad diffusivity distribution
of lipids in the protein-crowded bilayer of Figure 6 [50].

Langevin equation was introduced by Ślȩzak et al. [118] in which it was shown that
the distribution of the position variable is characterised by a relaxation from a Gaus-
sian to a non-Gaussian distribution. Random parameter diffusion models for normal
and anomalous diffusion are very actively studied, and we can here only give a limited
overview. Apart from the developments sketched above we mention the study by Cher-
stvy et al. [119] in which scaled Brownian motion for massive and massless particles
was analysed for a Rayleigh distribution of the diffusion coefficient. Stylianidou et al.
[120] show that in a random barrier model anomalous diffusion with exponential-like
step size distribution and anticorrelations emerge, similar to the behaviour measured
by Lampo et al. [115], with a crossover to Brownian and Gaussian behaviour at
sufficiently long times. Sokolov et al. compare the diffusing-diffusivity model with
the emerging dynamics when the quenched nature of a disordered environment is
explicitly taken into account [121]. A model for Brownian yet non-Gaussian diffusion
based on perpetual multimerisation and dissociation is discussed by Hidalgo-Soria and
Barkai [122]. Moreover, we mention a study by Barkai and Burov [123], in which the
authors use extreme value statistic arguments to derive a robust exponential shape
of the displacement PDF. Finally, in a recent work Ślȩzak et al. [124] show that ran-
dom coefficient autoregressive processes of the ARMA type can be used to describe
Brownian yet non-Gaussian processes, and thus connect the world of physics of such
dynamics with the world of time series analysis. From the data analysis side, apart
from measuring diffusivity distributions and displacements PDFs, the codifference
[125] is a well suited measure to detect non-Gaussianity [126].

3 Diffusing-diffusivity models

In its formulation, as shown above, superstatistics incorporating the time independent
diffusivity distribution p(D1) or p(Dα) cannot account for a crossover to an effective
Gaussian PDF at times longer than some correlation time as observed in some exper-
iments [52,53]. An example is shown in Figure 8. In this experiment, colloidal beads
diffuse along lipid tubes, the associated displacement PDF clearly shows a crossover
from a Laplace-like distribution at earlier times to a Gaussian at later times.

A theoretical model describing this observed crossover behaviour was proposed
by Chubinsky and Slater in their “diffusing-diffusivity” model [127]. This approach
was further developed by Jain and Sebastian [128,129], Chechkin et al [72], Tyagi
and Cherayil [130], Lanoiselée and Grebenkov [131], as well as Sposini et al. [73]. The
implementation of the diffusing-diffusivity model in a Bayesian analysis scheme of sin-
gle trajectory data was investigated in [132]. The basic idea of the diffusing-diffusivity
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Fig. 8. Colloidal beads of diameter 4σ = 100µm moving along linear lipid tubes, schemat-
ically shown in (A). MSD for two different lipid compositions, the lines have unit slope (B).
The displacement distribution (C) has exponential tails at earlier times and crosses over to
a Gaussian shape at longer times. Reproduced from [52].

picture by Chubinsky and Slater is that the diffusion coefficient in a single trajectory
is a stochastic quantity itself, changing its value perpetually along the trajectory
of the tracer particle. Physically, this is a simplified picture for a particle moving
in a heterogeneous environment, imposing continuous changes in the particle mobil-
ity along its path [72,133]. The diffusing-diffusivity dynamics is characterised by an
intrinsic correlation time, beyond which the diffusion becomes effectively Gaussian.

In a minimal formulation of the diffusing-diffusivity model, the crossover dynamics
can be captured by the set of coupled stochastic equations [72]

d

dt
r(t) =

√
2D(t)ξ(t), (13a)

D(t) = Y2(t), (13b)

d

dt
Y(t) = −1

τ
Y + ση(t). (13c)

Here expression (13a) is the Langevin equation for the position r(t) of a par-
ticle, driven by the white Gaussian noise ξ(t). Instead of the regular Langevin
equation, however, the associated noise strength amplitude contains the explicitly
time-dependent diffusion coefficient. This property is specified by equations (13b),
that maps D onto the squared auxiliary quantity Y thus guaranteeing positivity of
the diffusivity, and (13c). The latter, stochastic equation describes the time evolution
of the auxiliary variable Y driven by another white Gaussian noise η(t). However,
in contrast to equation (13a), the motion of Y is confined and thus will relax to
equilibrium above the crossover time τ – in fact, equation (13c) is the famed Ornstein-
Uhlenbeck process [9]. In the analysis of [72] it was shown that this formulation of
the diffusing-diffusivity model at short times reproduces the superstatistical approach
with exponential tails of the PDF, while at times longer than the correlation time τ
of the auxiliary Y process a crossover occurs to a Gaussian PDF characterised by a
single, effective diffusion coefficient. This crossover can be conveniently characterised
by the kurtosis K = 〈r4(t)〉/〈r2(t)〉2, which reaches the value for a Gaussian dis-
tribution at times longer than the Ornstein-Uhlenbeck correlation time τ [72]. More
technically, the formulation in terms of the minimal model (13a) to (13c) corresponds
to a subordination approach, which is helpful in obtaining exact analytical results
and in formulating a two-variable Fokker-Planck equation for the diffusing-diffusivity
process [72].

In Figure 9 we show the behaviour encoded in the minimal diffusing-diffusivity
model (13a) to (13c). The three panels respectively show the crossover from an initial
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Fig. 9. Behaviour of the minimal model for diffusing-diffusivity, equations (13a) to (13c) in
the one-dimensional case, figures reproduced from [72]. (A) PDF P (x, t) at different times,
demonstrating the crossover from the short-time exponential to the long-time Gaussian
form, shown here for simulations (Sim) and the theoretical (Theo) result. (B) The MSD
shows a linear behaviour with constant coefficient, as seen in the lower panel, in which
MSD/t is shown. (C) The kurtosis crosses over from the value K = 9 for a one-dimensional
Laplace distribution to the value K = 3 for a one-dimensional Gaussian; the crossover time
corresponds to the preset value τ = 1 in the Ornstein-Uhlenbeck process for Y (t).

Laplace-like distribution with exponential tails to a Gaussian (A) and the fact that
the MSD of the process always is linear in time with a constant coefficient (B).
Particularly, the crossover behaviour measured by the kurtosis is shown panel (C),
indicating the crossover time from exponential to Gaussian shapes, equivalent to the
characteristic time scale τ of the Ornstein-Uhlenbeck process (13c). This behaviour
is characteristic for the equilibrium nature of the auxiliary variable Y. The more
general situation for a non-equilibrium initial condition with crossovers in the asso-
ciated MSD is analysed in [73]. In particular, for the initial condition D0 = 0 of the
diffusivity D0 = Y(0)2 the MSD shows a crossover from initial ballistic scaling pro-
portional to t2, to a time-linear scaling at times longer than the correlation time of
the Ornstein-Uhlenbeck process Y(t) [73]. We remark that the diffusing-diffusivity
model developed here is closely related to the Cox-Ingersoll-Ross (CIR) and Heston
models for monetary returns widely used in financial mathematics [134–137], see the
discussion in [72,131].

4 Conclusions

A growing number of processes from a wide range of systems is being reported in
which the measured stochastic motion deviates from the expected Gaussian shape
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Fig. 10. Displacement distribution of dictyostelium dicoideum amoeba cells projected on
the x-axis [147]. For growing lag times, a stretched Gaussian fit has the stretching exponent
δ = 1.15, 1.09, and 1.06 for the respective lag times of 3, 10, and 30 steps of step time 20 s.
(This figure is subject to copyright protection and is not covered by a Creative Commons
license).

of the displacement PDF. The two most prominent cases are Brownian yet non-
Gaussian diffusion, in which the MSD is (a) linear in time (i.e., Fickian) but the PDF
is not given by the classical Gaussian form and (b) non-Gaussian stochastic motion
driven by fractional Gaussian noise. While in some experiments the non-Gaussianity
is seen over the entire time range of observation, in others a crossover to an effective
Gaussian behaviour is observed beyond some correlation time. This non-Gaussian
behaviour is accompanied by distributions of associated diffusion coefficients.

On a more general level, stochastic processes with random parameters with both
stationary-distributed values as in the superstatistical approach or as time-stochastic
processes themselves, are important tools in the description of heterogeneous parti-
cle “ensembles” or heterogeneous environments. Given such stochastic formulations,
follow-up processes such as chemical reactions can be described quantitatively in
terms of first-passage formalisms. For the diffusing-diffusivity model the distribution
of first-passage times was calculated [133,138]. These, or more general models, may be
important for the description of passive diffusion processes in biological cells, that are
highly heterogeneous. Current models describing the diffusive search of proteins for
specific binding sites on the cell’s DNA are mainly based on Brownian and Gaussian
diffusion [139–141] as well as anomalous diffusion [142] in homogeneous environments.
Concurrently, single-trajectory power spectra statistics are being derived for diffusing-
diffusivity models [143], extending the theories for single-trajectory power spectra in
Brownian motion, FBM, and SBM [144–146].

In fact, also completely different behaviours of non-Gaussianity have been
observed. As an example, Figure 10 shows the displacement PDF of the two-
dimensional amoeboid motion of dictyostelium dicoideum cells, projected onto the
x-axis [147].4 For growing lag time the PDF does not converge to a Gaussian. In

4The y-projection shows consistent results [147].
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contrast, the stretching exponent δ evolves from δ ≈ 1.2 for lag times of few sec-
onds to δ ≈ 1.06 (δ = 1.03 for the y motion) for longer lag times. In other words,
that is, the motion becomes more exponential over time. For living cells it appears
perfectly reasonable to have a distribution of absolute speeds or “persistence”, both
effecting a non-Gaussian shape of the displacement PDF. We may speculate whether
cells have constant, cell-specific speeds with non-Gaussian distribution, translating
into an exponential distribution of their “diffusivity”. Further studies are necessary
to clarify this point.

We note that there exist similar models with time-varying diffusion parameters, in
particular, dichotomous diffusivity models [148,149]. Moreover, random walk models
with correlated waiting times [150,151] have been discussed, a variant of which are
diffusing waiting times [152–154]. For the description of heterogeneous systems other
random walk models have also been developed, such as the annealed transit time
model [155]. We finally mention a recent result in active random walker systems, in
which even non-monotonic displacement distributions were studied [156].
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134. J.-P. Fouqué, G. Papanicolaou, K.R. Sircar, Derivatives in financial markets with

stochastic volatility (Cambridge University Press, Cambridge, UK, 2000)
135. J.C. Cox, J.E. Ingersoll, S.A. Ross, Econometrica 53, 385 (1985)
136. S.L. Heston, Rev. Financ. Studies 6, 327 (1993)
137. A. Dragulescu, V. Yakovenko, Quantit. Finance 2, 443 (2002)
138. V. Sposini, A.V. Chechkin, R. Metzler, J. Phys. A 52, 04LT01 (2019)
139. O. Pulkkinen, R. Metzler, Phys. Rev. Lett. 110, 198101 (2013)
140. M. Bauer, R. Metzler, PLoS ONE 8, e53956 (2013)
141. G. Kolesov, Z. Wunderlich, O.N. Laikova, M.S. Gelfand, L.A. Mirny, Proc. Natl. Acad.

Sci. USA 104, 13948 (2007)
142. L. Liu, A.G. Cherstvy, R. Metzler, J. Phys. Chem. 121, 1284 (2017)
143. V. Sposini, D.S. Grebenkov, R. Metzler, G. Oshanin, F. Seno, arXiv:1911.11661
144. D. Krapf, E. Marinari, R. Metzler, G. Oshanin, A. Squarcini, X. Xu, New J. Phys. 20,

023029 (2018)
145. D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C. Selhuber-Unkel, A.

Squarcini, L. Stadler, M. Weiss, X. Xu, Phys. Rev. X 9, 011019 (2019)
146. V. Sposini, R. Metzler, G. Oshanin, New J. Phys. 21, 073043 (2019)
147. A.G. Cherstvy, O. Nagel, C. Beta, R. Metzler, Phys. Chem. Chem. Phys. 20, 23034

(2018)
148. T. Miyaguchi, T. Akimoto, E. Yamamoto, Phys. Rev. E 94, 012109 (2016)
149. D.S. Grebenkov, Phys. Rev. E 99, 032133 (2019)
150. M. Montero, J. Masoliver, Phys. Rev. E 76, 061115 (2007)
151. J.H.P. Schulz, A.V. Chechkin, R. Metzler, J. Phys. A. 46, 475001 (2013)
152. V. Tejedor, R. Metzler, J. Phys. A 43, 082002 (2010)

https://arxiv.org/abs/1909.11364
https://arxiv.org/abs/1810.02605
https://arxiv.org/abs/1909.07189
https://arxiv.org/abs/1907.10002
https://arxiv.org/abs/1911.11661


728 The European Physical Journal Special Topics

153. A.V. Chechkin, M. Hofmann, I.M. Sokolov, Phys. Rev. E 80, 031112 (2008)
154. M. Magdziarz, R. Metzler, W. Szczotka, P. Zebrowski, Phys. Rev. E 85, 051103 (2012)
155. P. Massignan, C. Manzo, J.A. Torrena-Pina, M.F. Garćıa-Parajo, M. Lewenstein, G.J.
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