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Abstract Transition path dynamics have been widely studied in chemical, physical, and
technological systems. Mostly, the transition path dynamics is obtained for smooth barrier
potentials, for instance, generic inverse-parabolic shapes. We here present analytical results
for the mean transition path time, the distribution of transition path times, the mean transition
path velocity, and the mean transition path shape in a rough inverted parabolic potential
function under the driving of Gaussian white noise. These are validated against extensive
simulations using the forward flux sampling scheme in parallel computations. We observe
how precisely the potential roughness, the barrier height, and the noise intensity contribute
to the particle transition in the rough inverted barrier potential.

1 Introduction

Rate theory [1] aims at providing a physical understanding of the long-time behaviour of
systems, in which different “states” exist that are separated by barriers in the free energy
landscape. These may be molecular systems, for instance, different molecules reacting with
each other, or (such as proteins) individual molecules with different conformations. Other
systems may be biological or technical. The different states are locally stable. In order to
make a “transition” from one state to another, an energetic barrier needs to be crossed.
This process is typically fuelled by thermal energy, and the involved barrier is considerably
larger than kBT , where kB is the Boltzmann constant and T the absolute temperature. As a
consequence, the barrier crossing typically requires many attempts, corresponding to a rare
successful event. This latter statement is embodied in the famed Arrhenius law for chemical
reactions, stating that the rate of a reaction is proportional to the Boltzmann factor for the
“activation energy”, k ∝ exp(−Ea/[kBT ]) [2]. An important step towards the calculation
of absolute transition rates (i.e. including the prefactor A in the expression for the rate,
k = A exp(−Ea/[kBT ]) was the formulation of transition state theory, pioneered by the two
complementary approaches of Eyring [3] (a “thermodynamic approach” [4]) and Wigner [5]
(a “classical mechanics approach” [6]). A kinetic approach to rate laws was provided by
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Kramers’ seminal work relating rate theory with Einstein’s and Smoluchowski’s theory of
Brownian motion [7–9]. For details, we refer to the review article by Hänggi, Talkner, and
Borkovec [10].

The sampling of transition state dynamics is vastly hampered by the above-mentioned fact
that the system spends most of the time vibrating in a locally stable state, while the transition
itself is a rare event. Experimentally, single-molecule spectroscopy provides unprecedented
insights into the individual transition paths of molecular reactions [11–15]. Similarly, single-
molecule force spectroscopy techniques were shown to resolve transition path kinetics [16–
18]. In computer simulations of transition paths, a naive simulation of the process (e.g. in
protein folding) cannot provide sufficient statistics for the rare transition events in standard
computing times. Groundbreaking new sampling methods, originally developed by Chandler
and coworkers [19,20], have by now become standard repertoire in chemical physics [21–24].

Concretely, the “transition path” describes “direct” crossing times from an “entry point” to
an “exit point” of the transition state located at specific energy surfaces. Here, “direct” means
that only such paths are considered that will not take the system back to the entry point, but
successfully transition from entry-to-exit point or vice versa. Remarkably, there exists a time
reversal symmetry between the entry–exit and exit–entry paths [20,23,24]. This equivalence
was extended to the full distributions of crossing times, for instance, for the translocation times
in membrane channel crossing processes [25]. The transition path properties have attracted
much attention also in protein and nucleic acids folding reactions [26–28]. Understanding the
statistical information of transition paths is thus of vital importance for chemical reactions
[10] and is at the heart of modern transition state theory [29]. As the transition paths capture
the real transition time during direct crossing events, they are fundamentally different from
the first-passage paths which could be obtained from implementing reflecting and absorbing
boundaries for the transition region, respectively, as first-passage paths include all those
“indirect” events, that repeatedly take the system back to its original state [30]. In fact, the
distinction between direct and indirect paths is similar to the distinction of direct and indirect
trajectories in the theory of first-passage time statistics in which direct paths correspond to
the geometry-control in the probability density of first-passage times [31–34]. In chemical
reactions, this geometry-control superimposed to the reaction-control reflects the barrier
crossing to successful reaction [35–37].

Mathematically, a transition path can be derived from implementing two absorbing bound-
aries at the extreme points of the transition region (i.e. the entry and exit points) [38]. Thus,
trajectories that are absorbed at the opposite end of the transition region with respect to the
initial condition are transition paths, while those that are absorbed at the same boundary are
looping paths [39]. As first-passage times count both kinds of paths, transition path times
(TPTs) [40] are necessarily shorter than the corresponding first-passage times. In addition
to the TPT, the “transition path velocity” (TPV) and transition path shapes are important
quantities for the description of transition path properties. The TPV is the ratio of the interval
length dx of the transition path to the time spent in this interval. In contrast to the TPT, the
TPV directly characterises the speed of the particle transition [41]. In turn, the transition path
shape is a characteristic of the dynamic profile of the time versus the position of the particle
in the transition region [42].

Recently, a number of studies have concentrated on the TPT, the TPV, and the transition
path shape based on theoretical, experimental, and simulations approaches. For a Markov
process, these quantities were studied in the context of protein folding landscapes [43], generic
parabolic barriers [44,45], double well linear cusp potentials [46], or a harmonic ramp [47].
It was shown that the results can be derived from the forward or backward Fokker–Planck
equation [48]. In non-Markovian activated rate processes, the TPT could also be obtained
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theoretically [45,49–52]. Interestingly, the symmetry of the TPT between entry–exit and
exit–entry transitions becomes broken when coloured noise is driving the activation process
[53].

The potential functions considered in these studies are all smooth. In reality, however, the
potential function is often characterised through significant roughness, a phenomenon occur-
ring widely in biology, chemistry, physics, and engineering. Examples include transitions
in transmembrane helices [54], complex liquids, and materials close to the glass transition
[55,56], the energy landscape of proteins and RNA molecules [57], to name but a few. Hence,
the study of the properties of transition paths in rough potentials is of practical significance.
For such cases, the choice of a smooth potential mimicking the reaction barrier is overly ide-
alised for the convenience of solving the dynamic equations. Indeed, the roughness of energy
landscapes affects a series of dynamic behaviours. Thus, it was shown to give rise to dramatic
effects on particle diffusion [58] and transport [59,60], folding and binding reactions [61],
escape times [60,62] and rates [63,64], as well as the position of the maximum current [65].
Therefore, the effect of a rough potential barrier on transition paths properties is an important
case for further studies. We emphasise here that adding roughness into the potential func-
tion of the system is equivalent to adding a nonlinear force term. Since the solution of the
properties of the transition path involves the solution of the Fokker–Planck equation, even
the simple inverted parabolic potential function selected in this article is difficult to solve
for analytical results of the transition path properties, and therefore numerical approaches
become important. The major idea of this study is the analysis of numerical schemes in
comparison with (approximate) theoretical solutions of the rough barrier crossing problem.

Here, we consider four central statistical quantities characterising the transition dynamics,
namely, the mean TPT, the TPT distribution, the mean TPV, and the mean transition path
shape in a generic, one-dimensional inverted parabolic potential with superimposed rough-
ness, under the driving of Gaussian white noise. Specifically, by means of a spatial averaging
approximation, theoretical results for the four statistical observables are presented. More-
over, we consider the influence of barrier height and noise intensity on the properties of the
transition paths and their delicate interplay with the roughness parameters. We analyse in
detail the numerical schemes and compare the numerical results with analytical approxima-
tions of the barrier crossing dynamics. In particular, we also demonstrate the role of the spatial
binning. In our simulations of this problem, as the barrier height increases the simulation of
the mean TPT, the TPT density, the mean TPV, and the mean transition path shape involves
sampling of rare events [66]. Here, we apply the forward flux sampling scheme [67] allowing
for parallel computing and obtain simulations results for the four statistical quantities. In
Sect. 2, we present the approximate theoretical results for the mean TPT, the TPT density,
the mean TPV, and the mean transition path shape of particles in the rough inverted parabolic
potential. In Sect. 3, we discuss the forward flux sampling scheme in detail, before applying
it to verify the approximate theoretical results of the different quantities in detail in Sect. 4.
Our conclusions are drawn in Sect. 5.

2 Transition path time and velocity distribution

We consider the mean TPT, the TPT density, the mean TPV, and the mean transition path
shape in a rough inverted parabolic potential function under the driving of Gaussian white
noise. The system can be described by the Langevin equation
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(a) (b)

Fig. 1 Barrier potential V (x) consisting of an inverted parabolic potential with superimposed sinusoidal
“roughness” with amplitude ε and periodicity ω, k = 16, for different parameters: a ω = 93 with different ε;
b ε = 0.4 with different ω

dx

dt
= f (x) + ξ(t), (1)

where x is the particle position, f (x) = −dV (x)/dx is the force on the particle defined
through the rough potential V (x) = V0(x) + V1(x), in which V0(x) = −kx2/2 is the
inverted parabola and V1(x) = ε sin(ωx) represents the roughness in the Zwanzig sense
[58]. The barrier shape factor k controls the height of the barrier, and the parameters ε and
ω control the roughness V1(x). V (x) changes with ε and ω as shown in Fig. 1. Due to the
existence of the roughness term in the potential V (x) features local minima and maxima.
The number of maxima of V (x) in the interval is related to the period ω of V1(x). Moreover,
ε affects the height of the local barriers. Finally, in Eq. (1) ξ(t) represents Gaussian white
noise with covariance 〈ξ(t)ξ(s)〉 = 2Dδ(t − s) and the noise strength D. The noise ξ is the
formal derivative of the Wiener process W (t), that is, ξ(t) = dW (t)/dt .

2.1 Transition path time distribution

For our analytical derivations, we will use the Fokker–Planck equation corresponding to the
stochastic Eq. (1) [68],

∂P(x, t)

∂t
= − ∂

∂x
[ f (x)P(x, t)] + D

∂2

∂x2 P(x, t). (2)

Here, P(x, t) is the probability density function of x . The probability current J (x, t) is
determined by the following equation,

J (x, t) = f (x)P(x, t) − D
∂

∂x
P(x, t). (3)

We impose two absorbing boundaries at the entry and exit points xA and xB of the transition
interval, such that P(xA, t) = P(xB, t) = 0. In the following, we take xA = −1 and xB = 1.
Then, the TPT density ρxB(t) of the particles in the transition region from point xA to xB can
be obtained from the current J (x, t) near the point xB [69],

ρxB(t) ∝ lim
ε0→0

J (xB + ε0, t). (4)
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The key to obtain the theoretical solution for ρxB(t) is to derive P(x, t) from Eq. (2).
However, in the rough potential V (x) the roughness term V1(x) represents a nonlinearity.
Therefore, even when V1(x) is added to a simple parabolic potential function, it is difficult
to derive the exact theoretical solution of P(x, t). Therefore, we need to find a way to deal
with the roughness term. We choose the spatial averaging technique [58,70]. This approach
changes the potential in the stochastic Eq. (1) into an effective potential and diffusion coef-
ficient [58]

V ∗(x) = V0(x) + log[I0(ε)] = −kx2/2 + log[I0(ε)], (5a)

D∗ = D/I 2
0 (ε), (5b)

where I0(x) is the modified Bessel function and log(x) is the logarithm of base e. An approx-
imate theoretical solution of ρxB(t) may then be written in the form [69]

ρxB(t) = D∗kxB

2[1 − erf(xB
√
k/2)]

√
k

π

exp[−kx2
B/2 coth(kD∗t/2)]

sinh(kD∗t/2)
√

sinh(kD∗t)
. (6)

Here, erf(x) = (2/
√

π)
∫ x

0 exp(−s2)ds is the error function, and coth(t) and sinh(t) are the
hyperbolic cosine and sine functions, respectively.

2.2 Mean transition path time

Based on the spatial averaging of V1(x), according to [71] an approximate theoretical solution
of the mean TPT 〈tTP〉 for the rough inverted parabolic function can be derived in the form

〈tTP〉 =
∫ xB
xA

exp(−βG(s))
∫ xB
s exp(βG(x))dx

∫ s
xA

exp(βG(x))dxds

D∗ ∫ xB
xA

exp(βG(s))ds
, (7)

whereV ∗(x) = βG(x) and β = 1/D∗ are the quantities from Eqs. (5a) and (5b). In particular,
in the low barrier limit [72],

〈tTP〉 = π [λ(erf(α)2 − 1)erfi(α) + erf(αλ)]
2D∗kλerf(α)

, (8)

where α = √
k/2, λ = √

π2/8 − 1 and erfi(x) = 1 − ierf(i x) = 2
π

∫ x
0 exp(−s2)ds is the

imaginary error function.

2.3 Transition path velocity

Next, we consider the mean TPV of particles in the transition interval [xA, xB]. Without the
roughness, Eq. (2) can be transformed into the Smoluchowski equation [68]

∂

∂t
P(x, t) = ∂

∂x

(
D exp

(
−G(x)

D

)
∂

∂x
exp

(
G(x)

D

)
P(x, t)

)
, (9)

with V (x) = G(x)/D. According to Eq. (9), the probability density function PTP(x, t) of
transition paths is described by (see 1)

∂

∂t
PTP(x, t) = ∂

∂x

(
Dφ2

B(x) exp

(
−G(x)

D

)
∂

∂x

exp(G(x)/D)

φ2
B(x)

PTP(x, t)

)
, (10)
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where φB(x) is the “committor function”. Specifically, φB(x) is the solution of the system
of equations [73]

LφB(x) = 0, x ∈ (xA, xB),

φB(xA) = 0,

φB(xB) = 1. (11)

Here, L = ∂
∂x V (x) ∂

∂x − D ∂2

∂x2 is the backward Fokker–Planck operator [68,73].
From Eq. (11), we find that

φB(x) =
∫ x
xA

exp(βG(s)) ds∫ xB
xA

exp(βG(s)) ds
. (12)

Hence, the mean TPV 〈νTP(x)〉 is given by [72]

〈νTP(x)〉 = D
dφB(x)/dx

φB(x)[1 − φB(x)] . (13)

Therefore, the combination of Eqs. (12) and (13) yields

〈νTP(x)〉 = D

∫ xB
x exp(βG(s))ds∫ xB

x exp(βG(s))ds
∫ x
xA

exp(βG(s))ds
exp(βG(x)). (14)

Considering now the roughness, we apply a spatial averaging procedure to Eq. (1), to trans-
form the rough inverted parabolic potential into the smooth counterpart. Equations (12) and
(14) then become

φB(x) = 1

2

(
1 + erf(

√
k/2x)

erf
(√

k/2xB
)
)

,

φA(x) = 1 − φB(x) = 1

2

(
1 − erf

(√
k/2x

)
erf

(√
k/2xB

)
)

, (15)

and

〈νTP(x)〉 =
4D∗

√
βk
2 erf

(√
βk
2 xB

)
exp

(− 1
2βkx2

)
√

π

[
erf2

(√
βk
2 xB

)
− erf2

(√
βk
2 x

)] . (16)

2.4 Transition path shape

We proceed to the mean transition path shape of the particles in the rough inverted parabolic
potential as presented in Fig. 1. Let τTP

shape(x0|xA) denote the mean shape of the transition path
trajectories, where x0 is a given mid-point in the transition region (xA, xB). This quantity
can be calculated from the Fokker–Planck equation of the system. For the transition region
[xA, xB] with its absorbing boundary conditions at either interval limit, τTP

shape(x0|xA) is in

fact identical to the mean first-passage time τFPT(xA|x0) of particles from the point x0 to
reach xA, that is, we have the relationship [46]

τTP
shape(x0|xA) = τFPT(xA|x0), (17)

and τFPT(xA|x0) in our system governed by Eq. (1) can be obtained by Dynkin’s formula
[73].
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Similarly, after the spatial averaging process the mean first-passage time of particles from
the point x0 to xA for the rough case is [47]

τFPT(xA|x0) = C
φB(x0)

φA(x0)

∫ xB

x0

exp(−V ∗(x))φ2
A(x)dx

+C
∫ x0

xA

exp(−V ∗(x))φA(x)φB(x)dx . (18)

Analogously, the mean first-passage time of particles from point x0 to xB reads

τFPT(xB|x0) = C
φA(x0)

φB(x0)

∫ x0

xA

exp(−V ∗(x))φ2
B(x)dx

+C
∫ xB

x0

exp(−V ∗(x))φA(x)φB(x)dx, (19)

where we used the abbreviation C = ∫ xB
xA

exp(−V ∗(x))dx = √
2π/k × erf(

√
k/2xB)

I0(ε)/D∗, and φA(x), φB(x) are the same as in Eq. (15). With these expressions, the mean
transition path shape τTP

shape(x0|xA) can be calculated from Eqs. (17) to (19).

Simultaneously, the quantity τTP
shape(x0|xA) can also be derived from the statistic of particle

transition trajectories. In transition paths simulations, that is, we obtain τTP
shape(x0|xA) as the

average

τTP
shape(x0|xA) =

m∑
i=1

Ni∑
j=1

τTP
i j (x0|xA)

N
. (20)

Concretely, that is, we measure the mean transition path shape of m transition path segments
from xA to xB. During this process, the transition path segment may cross the point x0

multiple times. According to Eq. (20), τTP
shape(x0|xA) is then obtained as the double sum over

the τTP
i j (x0|xA), the period that the particle crosses x0 for the j th time in trajectory i . Ni

denotes the cumulative number of times that the particle crosses x0 in the i th transition path.
Finally, N = N1 + N2 + · · · + Nm is the total number of crossings through x0 for all m
transition paths (Fig. 2).

3 Simulations setup using the forward flux sampling scheme

For our simulations, we apply the forward flux sampling scheme [67] to obtain the mean TPT,
the TPT density, the mean TPV, and the mean transition path shape. Taking the calculation of
mean TPT as an example, we briefly introduce the simulation process, and the calculation of
other quantities is analogous. In Fig. 3, for transition paths crossing the interval [xA, xB] we
insert a series of disjoint interfaces λ0, λ1, λ2, · · · , λn in this transition interval. Simulating
Mi times for each interface separately, the time spent in each interface region was obtained.
Here, the particle will start from interface λ0, and we stop the simulations when the particle
reaches the interface λ1, or when it returns to interface λ0. After repeated simulations on
interface λ0 for Mi times, we record the time the particles spend in this interval. For the
simulation on the interval [λi , λi+1], we let the particle start from the interface λi and stop
the simulation when the particle reaches the next interface λi+1 or returns to interface λ0.
In the simulation process on this interval, we allow the particle to return to the previous
interfaces but not to the initial interface λ0. Similarly, we record the time the particles spend
in this interval.
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(a) (b)

Fig. 2 Two transition sample paths i and k in the rough invited parabolic potential from entry point xA = −1
to exit point xB = 1. Evidently, the transition path crosses the point x0 = 0 repeatedly. We record the instants
τTP
i j (x0|xA) when the transition path crosses x0 to calculate the transition path shape τTP

shape(x0|xA) from xA
to x0 according to Eq. (20). In the two panels, j = 5 for sample path i and j = 10 for sample path k

Fig. 3 Schematic of the forward
flux sampling method. We define
a series of interfaces λi in the
interval [xA, xB]. The “paths”
from interface λi to λi+1 are
successful paths which do not
return back to the entry
point-interface λ0

In order to speed up the simulations, the particles may simultaneously start from each
interface, such that we can employ parallel computing schemes. The simulation stops when
the particle reaches the next interface or returns to the initial interface. These steps are
repeated multiple times at all interfaces, and we record the time consumption of the particles
in the transition path intervals during this simulation procedure. Then, we sum the time
of the particles recorded in each interval to obtain the transition time of the particles in
the entire transition path interval. Therefore, in this scheme we shift the simulation of the
entire transition path interval to a simulation process within a series of small intervals. In the
following, we use n = 400 interfaces.

4 Transition path time statistic across rough inverted parabolic potential

We now employ the simulations scheme to analyse the mean TPT, the TPT density, the mean
TPV, and the mean transition path shape of a particle in a rough inverted parabolic function
under the driving of Gaussian white noise. Effects of the noise intensity of the driving noise,
the roughness amplitude, and periodicity are explored. We compare the simulations results
with the approximate theoretical results, observing good agreement.
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4.1 Transition path time distribution

Figures 4 and 5 show our results for the TPT density ρxB(t) for different parameters, along
with the analytical result (6). In particular, we examine the influence of the noise strength
D in panel 4a. As expected, shorter transition times become more emphasised for higher
D. Concurrently, the TPT distribution narrows somewhat, so that the most probable value
increases with D. Conversely, the TPT density shifts towards longer times and becomes
broader with increasing rough parameter ε, as shown in panel 4b. The local barriers imposed
by the superimposed roughness lead to an appreciable slow-down of the transition times. In
the presence of roughness in the potential function, as shown in Fig. 1, the local maxima
of the transition region increase, and the time required for particles to leave these local
maxima increases, as well, and therefore also the TPT of particles in the whole transition
region. In other words, the roughness in the inverted parabolic potential function impedes
the transition of particles in the transition region [−1, 1]. A similar phenomenon is shown in
Fig. 6b. This is in contrast to the effect of the noise intensity D and barrier height k on ρxB(t).
We note that as the magnitude of ε increases, the accuracy of the approximate theoretical
result worsens, especially around the most likely transition times. Figure 4c displays the
variation of the TPT density with the barrier height, given in terms of the barrier shape factor
k. This parameter obviously has a major effect. For increasing barrier height (increasing
k), the TPT density shifts to shorter TPT values and becomes more concentrated. This a
priori counterintuitive behaviour stems from the fact that the TPT is a conditional process.
While barrier crossing becomes increasingly rare for higher barriers the duration of the rare
successful events becomes faster.1 Concurrently, the first-passage time, that considers both
successful and unsuccessful crossing attempts, will increase with increasing k and compare
the discussion of Fig. 6 below. This effect is, of course, quite similar for situations with and
without roughness. Note also that for higher barriers the agreement with the theoretical result
(6) is improved. Finally, panel 4d shows the TPT density for different roughness periodicity
ω. As can be seen, the effect is quite minor. Apparently, it does not matter whether the system
features a larger or smaller number of local minima, within the examined parameter values.

Subsequently, we considered the influence of the noise intensity D and the barrier height
k on ρxB(t) for different roughness parameters ε. As shown in Fig. 4e, f, the peak value
max(ρxB(t)) of the TPT density increases with growing D or k. However, for different ε the
degree of growth is different. Specifically, as ε increases, max(ρxB(t)) increases slowly with
increasing D or k. Compared with the case of ε = 0, the influence of D and k on the ρxB(t)
is less for the rough potential case.

To gain more insight into the exact behaviour of the one-sided TPT density, we analyse
its shape in the short- and long-time limits, t → 0 and t → ∞. For short t , Eq. (6) reduces
to

ρxB(t) ∼ xB

1 − erf
(
xB

√
k/2

) exp(−x2
B/[D∗t])√

πD∗t3
. (21)

We note that the partial expression xB(πDt3)−1/2 exp(−x2
B/[D∗t]) here is exactly the Lévy–

Smirnov short-time form of the first-passage time density in a semi-infinite domain, in which
the distance to the absorbing boundary is xB. The exponential cutoff reflects the fact that the
diffusing particle needs a finite time to cover the distance xB [31,32,35,36,76]. Taking the

1 Compare this situation with the variation of the mean first-passage time in piecewise linear potentials in
[74,75].
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(c) (d)

(e) (f)

(a) (b)

0 0.2 0.4 0.6 0.8 1
t

0

1

2

3

4

5

6

7

8
x B
(t
)

D=0.6
D=0.8
D=1.0

D=0.6
D=0.8
D=1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0
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3

4
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7

8

x B
(t
)
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=0.4
=0.6

=0.0
=0.4
=0.6

Fig. 4 TPT density as function of time for various parameters. a Different noise strengths D for k = 20,
ε = 0.2, and ω = 93. b Different roughness amplitudes ε for k = 20, D = 1, and ω = 93. c Different barrier
shape factors k of the inverted parabolic potential, for D = 1, ε = 0.2, and ω = 93. d Different roughness
periodicity ω, for k = 20, D = 1, and ε = 0.2. In Fig. 4a–d, the theoretical result (6) is shown by the full
lines. Finally, we show max(ρxB (t)) for different roughness amplitudes ε for e k = 20 and ω = 93, as well
as f D = 1 and ω = 93. The graphs in panels 4e, f are theoretical results from Eq. (6).
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logarithm in expression (21),

− log(ρxB(t)) ∼ x2
B

D∗t
− log

(
xB

(πD∗t3)1/2
[
1 − erf

(
xB

√
k/2

)]
)

, (22)

such that the leading behaviour of − log(ρxB(t)) is given by the inverse power-law

− log(ρxB(t)) ∼ x2
B

D∗t
. (23)

At short times, we thus have the exponentially suppressed law ρxB(t) ∼ exp(−x2
B/[D∗t]).

Remarkably, the barrier shape factor k only appears in the error function in the short-time
expansion (21).

In the opposite limit of long t , Eq. (6) has the asymptote

ρxB(t) ∼
√

2k

π

D∗kxB

1 − erf
(
xB

√
k/2

) exp(−kx2
B/2)

exp(kD∗t)
, (24)

and thus

log(ρxB(t)) ∼ log

(√
2k

π

D∗kxB

1 − erf
(
xB

√
k/2

)
)

− k

2
x2

B − kD∗t. (25)

The leading behaviour is then

log(ρxB(t)) ∼ −kD∗t, (26)

that is, an exponential shoulder ρxB(t) ∼ exp(−kD∗t) at long times. Again, this exponential
decay is analogous to the first-passage time density in a finite domain [31,32,35,36,76].
However, the main difference in result (24) is the Boltzmann factor-like suppression ∝
exp(−kx2

B/2) reflecting the barrier crossing process.
Figure 5 analyses the short- and long-time behaviour of the TPT density for a given set of

noise strength D, for different barrier shape factors k and roughness parameter ε. As seen
in panel 5a, the exponential suppression following from Eq. (23) is nicely fulfilled for all
k. Figure 5c demonstrates how for increasing t (smaller values of 1/t) deviations from this
exponential suppression become visible, especially for k = 40. The exponential long-time
behaviour encoded in expression (26) is nicely corroborated in Fig. 5b. Figure 5d shows
the crossover behaviour around the most likely value. Finally, the exponential long- and
short-time behaviour for different ε are shown in Fig. 5e, f, respectively. The exponential
decay is more significant for larger ε. Also, at these intermediate times the description by the
approximate theory shows a very good match.

4.2 Mean transition path time

We now explore the effects of barrier height, noise intensity, and roughness parameter ε on
the mean TPT of the particles. Figure 6a demonstrates the decrease in the mean TPT with
increasing noise strength D, which is expected. However, as before the mean TPT decreases
with increasing barrier height, which is due to the construction of the TPT. The fact that this
conditional time corresponds to increasingly rare events for growing k is corroborated by
panel 6e, in which we show the corresponding mean first-passage time. The quantity tFPT

counts the overall time to cross the barrier, including unsuccessful attempts. As we see, the
mean first-passage time increases with increasing k, in accordance with intuition. As shown
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Fig. 5 TPT density for different barrier heights determined by the barrier shape factor k. The fixed parameters
are D = 1.0, ε = 0.2, and ω = 93. a Short-time exponential suppression following Eq. (23). b Long-time
exponential decay following Eq. (26). The symbols shown in a and b are results from Eq. (6), the lines in b
represent expression (25). The slope of the green line in the inset of panel a equals x2

B/D∗, following result
(23). We observe nice agreement. Panels c–f shows simulations results (symbol) along with the behaviour
encoded in Eq. (6). In panel c, e, we see that for increasing times (smaller values of 1/t) deviations are visible,
especially for k = 40 and ε = 0.0. Panel d, f demonstrates that the crossover behaviour at intermediate times
is nicely reproduced by expression (6)
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(c) (d)

(e) (f)

(a) (b)

Fig. 6 Mean TPT for different barrier shape factors k. a Mean TPT as function of the noise strength D
and for roughness amplitude ε = 0.4. b Mean TPT as function of ε, for D = 1 and ω = 279. c Ratio
〈tTP(D)〉/〈tTP(0.5)〉 of the mean TPT normalised to the value at D = 0.5, as function of D. d Ratio
〈tTP(ε)〉/〈tTP(0)〉 normalised to the value at vanishing noise (ε = 0), as function of ε. e Plot of log(〈tFPT(D)〉)
versus 1/D. f Plot of 〈tTP(D)〉 versus − log(D) according to Eq. (7). The mean FPT corresponds to Eq. (27),
and the mean TP is obtained from Eq. (7).
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in panel 6b, the roughness promotes an increase in the mean TPT, and the effect becomes
more pronounced for lower barrier heights (smaller k values). As shown in panels 6c and d,
the effect of varying D and ε is, relatively, more pronounced at lower barrier heights (smaller
k).

The influence of the roughness of the inverted parabolic potential on the mean first-passage
time can be obtained from spatial averaging over the transition region [xA, xB],

〈tFTP〉 = 1

D∗

∫ xB

xA

exp(βG(x))
∫ x

xA

exp(−βG(s))dsdx, (27)

where βG(x) = V ∗(x), x = xA is chosen as a reflecting boundary, and x = xB is an
absorbing boundary. According to [73],

〈tFTP〉 = K exp(�V/D∗), (28)

where �V = V ∗(xA) − V ∗(x0), and K is a prefactor. Taking the logarithm,

log(〈tFTP〉) ∼ �V/D∗. (29)

Consequently, the slope of the lines shown in Fig. 6e is k I 2
0 (ε)/2 (see definition 5b).

The exact expression for the mean TPT directly follows from Eq. (7) in the form

〈tTP〉 =
∫ xB
xA

exp(V ∗(x)/D∗)
[
erf2

(√
k/(2D∗)

) − erf2
(√

k/(2D∗)x
)]

dx

erf
(√

k/(2D∗)
) . (30)

For barrier heights �G > 2kBT , the argument in [26] leads to the approximation (up to a
constant prefactor)

〈tTP〉 ∼ K log(2er�V/D∗)
2π

, (31)

where r = 0.577.... is Euler’s constant. As function of D∗, that is, we have the approximate
proportionality

〈tTP〉 ∼ −K log(D∗). (32)

Therefore, through D∗ ε affects the slope of the lines in Fig. 6e, f.
We finally show results for the mean TPT and the mean first-passage time for particles in

the rough inverted parabolic potential with k = 0.2, as functions of the roughness amplitude
ε. As shown in Fig. 7a, b, the variation with ε is well captured by the theoretical predictions,
with a small deviation developing for increasing roughness. Note that in both panels the
vertical axes correspond to the values normalised to the respective values at ε = 0. With the
increase in ε, the local maxima increase in the transition region, which is equivalent to the
increase in meta-stability in this transition region. The time for particles to leave these meta-
stable states in this transition region increases. Therefore, both the mean first-passage time
and the mean TPT increase gradually in the transition region. In Fig. 7c, d, we consider the
change of the mean TPT with barrier height k and noise intensity D for different roughness
parameter ε. It is found that the mean TPT decreases with the increase in k or D. And with
the increase in ε, the decreasing trend is gradually intensified. It also shows that the existence
of the rough potential increases the influence of the barrier height and noise intensity on the
mean TPT.
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(c) (d)

(a) (b)

Fig. 7 a Mean TPT as function of roughness amplitude ε. b Mean first-passage time versus as function of
ε. Both functions are normalised to the respective values at ε = 0. The symbols represent results from the
forward flux sampling scheme, lines are the theoretical results according to Eqs. (8) and (27), respectively. The
barrier shape factor is k = 0.2. Mean TPT with different roughness amplitudes ε for c D = 1 and ω = 93. d
k = 0.2 and ω = 93. In Fig. 7c, d, we show theoretical results from Eq. (8).

4.3 Mean transition path velocity

We now turn to the mean TPV and its dependence on the system parameters. The results are
shown in Fig. 8. During the barrier crossing, the particles spend relatively more time in the
flatter vicinity of the potential maximum at (x = 0) in the transition region. Correspondingly,
at this maximum of the barrier potential the mean TPV of particle will have a minimum. As
mentioned above, the TPT of particles is symmetric around the point x = 0 for particles
traversing the transition region from entry point xA to exit point xB and in the opposite direc-
tion [25]. For this reason, the mean TPV is symmetric about the point x = 0. Furthermore,
it can be seen from result (16) that the mean TPV will diverge at the two boundaries of the
transition region [−1, 1].

The mean TPV for three barrier heights is shown in Fig. 8a as function of the position
x in the transition region. As the barrier height increases, the value of the mean TPV also
increases, for all positions x . For the highest barrier in the panel, the behaviour changes to
a significantly more pronounced V-shape around x = 0. The tendency to higher TPVs is
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(c) (d)

(e)

(a) (b)

Fig. 8 Mean TPV 〈ν(x)〉 as function of position x in the transition region [−1, 1], for different a barrier
shape factor k and D = 1, ε = 0.4, ω = 279; b noise strengths D and k = 16, ε = 0.4, ω = 279; c roughness
amplitudes ε = 0.4 and k = 16, D = 1, ω = 279. Results from simulations are shown by symbols, the
lines correspond to Eq. (16), as shown in Fig. 8a–c. min(〈ν(x)〉) with different roughness amplitudes ε for d
D = 1.0 and ω = 93; e k = 16 and ω = 93. In Fig. 8d, e, the theoretical results from Eq. (16) are shown
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in line with our observations above, according to which the transition is faster for higher
barriers, due to the conditional monitoring of successful transition events, compare Fig. 6a.
We note that while the agreement with the theoretical prediction (16) is very good, a slight
deviation emerges for increased barrier height. In Fig. 8b, we examine the mean TPV for
different noise intensities. As expected, a higher noise intensity leads to increased values of
the mean TPV, in agreement with the findings in Fig. 6c. This behaviour is in line with the
observations in Fig. 6b. Finally, the influence of the roughness amplitude ε on the mean TPV
is shown in Fig. 8c. This plot reveals that as ε increases the mean TPV of the particle in the
transition region decreases. This is expected, as in the rough potential local barriers have to
be overcome. This is exactly opposite to the effect of the noise intensity and the barrier height
on the mean TPV of the rough inverted parabolic potential. For the numerical simulation of
the mean TPV, we refer [41]. Next, we consider the change of the minimum mean TPV with
barrier height k and noise intensity D for different roughness parameter ε as shown in Fig.
8d, e. It is found that min(〈ν(x)〉) increases with the increase in k or D. And with the increase
in ε, the increasing trend is gradually slowing down. It can also be seen that the existence of
a rough potential slows down the influence of barrier height and noise intensity on the mean
TPV of the system.

We finally address the effect of varying the number nb of sampling bins (i.e. changing
the binning size) in our simulations. From a statistical analysis of the TPV in the interval
[−1, 1], we find that the behaviour of the mean TPV obtained by numerical simulation is
fairly smooth for nb = 100, as presented in Fig. 9a. For the case nb = 400 in Fig. 9b, we
need to increase the number of simulated trajectories to obtain the mean TPV. In this case, the
shape of the mean TPV as function of the position x in the transition region shows increased
roughness with visible local peaks. This effect is due to the finer sampling for larger nb: while
the smaller nb averages over successive local maxima in the rough potential and thus leads to
smoothening, the finer sampling retains the local variation. This expectation is corroborated
in Fig. 9c, in which we see a direct correspondence of the variation of the mean TPV with
the shape of the rough potential. Despite this effect in the shape of the mean TPV curve, the
agreement with the theoretical prediction remains good.

4.4 Mean transition path shape

Our final point is the study of the mean transition path shape of the barrier crossing trajec-
tories. We denote τTP

shape(x0|xA) and τTP
shape(x0|xB) as the mean transition path shapes from,

respectively, the entry point xA and the exit point xB to the x0 ∈ [xA, xB]. We focus on the
influence of the roughness amplitude ε, the barrier shape factor k, and the noise intensity
D. The symbols are the numerical results, and the solid and dashed lines are approximate
theoretical results reported in Eqs. (18) and (19). We see that as x0 gradually increases
and approaches the exit point xB, τTP

shape(x0|xA) shows an increasing trend, while simulta-

neously we see a decrease in τTP
shape(x0|xB). Figure 10a reveals that both τTP

shape(x0|xA) and

τTP
shape(x0|xB) decrease with barrier shape factor k, in analogy to the observations for the mean

TPT in Fig. 7. We also see the expected trends of the mean transition path shape for varying
noise strength D and roughness amplitude ε in panels 10b and c. The agreement with the
theoretical prediction (18) is very good. Similarly, we consider the change of the maximum
value max(τTP

shape(xA|x0)) of the mean transition path shape with barrier height k and noise

intensity D for different roughness parameter ε. It is found that max(τTP
shape(xA|x0)) decreases

with the increase in k or D. And with the increase in ε, the decreasing trend is gradually
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(c)

(a) (b)

Fig. 9 Mean TPV as function of the position x in the transition region [−1, 1], for D = 1, k = 16, ε = 0.4,
and ω = 279. The number of sampling bins is taken as a nb = 100 and b nb = 400. For the finer sampling in
b, the roughness of the potential is still visible, while it is smoothened out for the coarser sampling in a. The
correspondence of the roughness of the mean TPV curve in b is shown to coincide with the variation of the
rough barrier potential in panel c

intensifying. It also reveals that the rough potential function accelerates the effect of barrier
height and noise intensity on the mean transition path shape.

5 Conclusions

We here analysed the representative quantities describing the thermally activated crossing
of an inverted parabolic potential with superimposed roughness. Such models are actively
studied for the description of transitions in complex systems, such as the conformational
transitions occurring in the folding dynamics of proteins, or in reactions of biomolecules. The
roughness reflects the complex effective energy landscape characteristic for such molecules.
We studied in detail the mean TPT and the distribution of TPTs, along with the mean TPV and
mean transition path shape of particles traversing this rough inverted parabolic potential. The
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(c) (d)

(e)

(a) (b)

Fig. 10 Mean transition path shape as function of the reference point x0 in the transition region [−1, 1].
The functional behaviour is shown for different a barrier shape factors k and ε = 0.4, D = 1, ω = 279; b
noise strengths D and k = 16, ε = 0.4, ω = 279; c roughness amplitudes ε and D = 1, k = 16, ω = 279.
Symbols show results from simulations, the lines correspond to Eqs. (18) and (19). max(〈τTP

shape(xA|x0)〉) with
different roughness amplitudes ε for d D = 1.0 and ω = 93; e k = 16 and ω = 93. In Fig. 10d, e, we show
the theoretical results from Eq. (18)
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correctness of the approximate theoretical results for the different quantities, derived from
spatial averaging, was shown to agree very well with simulations obtained from the forward
flux scheme. Specifically, we tested the effects of the barrier height, the roughness amplitude
of the potential, and the noise intensity. It is well known that increased barrier heights lead
to decreased TPTs and increased TPVs. This is attributed to the conditional character of
these quantities, that solely take successful trajectories into account. This is in contrast to the
first-passage time statistics. Here, both successful and unsuccessful trajectories are taken into
consideration, such that, according to our intuition, higher barriers lead to longer first-passage
times. With increasing roughness and decreasing noise intensity, both TPTs and first-passage
times increase, while we observe an expected decrease in the TPVs. Analogous behaviours
are observed for the transition path shapes. Moreover, the potential roughness accelerates the
influence of barrier height and noise intensity on the mean TPT and the mean transition path
shape. Furthermore, to a certain extent, the influence of barrier height and noise intensity
on the mean TPV is reduced. Finally, we also studied the influence of the binning size on
the mean TPV and showed how a sufficiently small bin size reveals the rough nature of the
underlying potential barrier.

While the general agreement of the simulations results with the approximate theoretical
description was good in all cases, some deviations were observed to grow with increasing
roughness of the potential, or for low barriers. It will be a task for future work to find ways
to improve the approximations in the theoretical framework for rough potentials. Moreover,
it will be of interest to consider non-Gaussian types of noise, such as white Lévy stable
noise, for which an extensive mathematical framework exists for first-passage time statistics
[77–79]. Similarly, different Gaussian noise sources should be studied, such as coloured,
Poissonian, or long-range correlated noise.
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Appendix A: The transition path probability density function

According to Eq. (1), the reactive trajectories from xA to xB should satisfy the stochastic
differential equation [21]

dx =
(
f (x) + 2DdφB(x)/dx

φB(x)

)
dt + √

2DdW (t), (A1)

where W (t) is the unit Wiener process, φB(x) is the committor function as shown in Eq.
(11). Then, the probability density function for the transition paths, PTP(x, t) from xA to xB,
satisfies

∂PTP(x, t)

∂t
= − ∂

∂x

(
f (x) + 2DdφB(x)/dx

φB(x)

)
PTP(x, t) + D

∂2

∂x2 PTP(x, t). (A2)

With f (x) = −dV (x)/dx = −(1/D)dG(x)/dx ,

∂PTP(x, t)

∂t
= ∂

∂x

(
D

[
1

D2

dG(x)

dx
− 2dφB(x)/dx

φB(x)
+ ∂

∂x

]
PTP(x, t)

)
. (A3)
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Defining M(x) = exp (G(x)/D), we obtain

∂PTP(x, t)

∂t
= ∂

∂x

(
Dφ2

B(x)

M(x)

[
M(x)D−1dM(x)/dx

φ2
B(x)

−2M(x)(dφB(x)/dx)φB(x)

φ4
B(x)

+ M(x)

φ2
B(x)

∂

∂x

)
PTP(x, t)

)
. (A4)

Hence, Eq. (A2) is recast in the Smoluchowski equation [72].

∂PTP(x, t)

∂t
= ∂

∂x

(
Dφ2

B(x) exp

(
−G(x)

D

)
∂

∂x

exp (G(x)/D)

φ2
B(x)

PTP(x, t)

)
. (A5)

This is Eq. (9) in the main text.
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