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to stochastic-diffusivity data
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We employ Bayesian statistics using the nested-sampling algorithm to compare and rank multiple models

of ergodic diffusion (including anomalous diffusion) as well as to assess their optimal parameters for

in silico-generated and real time-series. We focus on the recently-introduced model of Brownian motion

with ‘‘diffusing diffusivity’’—giving rise to widely-observed non-Gaussian displacement statistics—and

its comparison to Brownian and fractional Brownian motion, also for the time-series with some

measurement noise. We conduct this model-assessment analysis using Bayesian statistics and the

nested-sampling algorithm on the level of individual particle trajectories. We evaluate relative model

probabilities and compute best-parameter sets for each diffusion model, comparing the estimated

parameters to the true ones. We test the performance of the nested-sampling algorithm and its

predictive power both for computer-generated (idealised) trajectories as well as for real single-particle-

tracking trajectories. Our approach delivers new important insight into the objective selection of the

most suitable stochastic model for a given time-series. We also present first model-ranking results in

application to experimental data of tracer diffusion in polymer-based hydrogels.

I. Introduction

Following the single-particle tracking (SPT) studies of Perrin,1

the seminal work of Nordlund2—using moving film plates to
record long-time individual mercury droplet trajectories—paved
the way for standardised SPT setups. The latter are now routinely
used to track fluorescently-labelled molecules and submicron
tracers.3–9 Over the last decades, significant insight was achieved
on the behaviour of both thermally-driven and active tracers for
a broad class of biological, soft-matter, and other complex
systems.9–14 Many of these systems exhibit standard Fickian
diffusion or Brownian motion (BM):15–19 the mean squared
displacement (MSD) of a tracer grows linearly with time,

r2ðtÞ
� �

¼
ð1
�1

r2Pðr; tÞdr ¼ 2dD1t: (1)

Here D1 is the diffusion coefficient, d is the spatial dimension,
and the angular brackets denote ensemble averaging. The
probability density function P(r,t) describes the diffusive

spreading of particles starting at r(0) = 0 with time t as the
Gaussian propagator

Pðr; tÞ ¼
exp � r2

4D1t

� �
4pD1tð Þd=2

: (2)

For anomalous diffusion processes the MSD acquires the
power-law scaling,9,13,20–27

hr2(t)i = 2dData, (3)

where the anomalous diffusion exponent distinguishes sub-
diffusion (0 o a o 1) or superdiffusion (1 o a o 2). The
special cases include Brownian motion for a = 1 and ballistic
motion for a = 2. Here, Da denotes the generalised diffusion
coefficient.23,25

Various physical reasons may cause the emergence of anom-
alous diffusion (both transient and persistent),23,25 see Fig. 1.
This fact is reflected in a multitude of mathematical models
employed to describe the experimental MSDs of the form (3).9,13,23–25

The list of relevant anomalous-diffusion models includes frac-
tional Brownian motion (FBM)28–30 and fractional Langevin
equation motion (both based on long-ranged increment
correlations),23,31–35 continuous-time random walks with
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scale-free waiting time distributions,23,27,36–38 random walks on
fractal structures,20,39 heterogeneous diffusion processes with
space-dependent diffusion coefficients,40–46 and scaled BM with
time-varying diffusivities D1(t) C ta�1 (see ref. 25 and 47–52).

A surging amount of experimental and in silico studies have
been reported in which the MSD follows the law (1) of BM,
while the associated displacement distribution P(x,t) shows
strong deviations from the Gaussian (2). Specifically, the Granick
group demonstrated that colloids diffusing along phospholipid
tubes display a displacement distribution of exponential shape53

(in one dimension),

Pðx; tÞ ¼ e�jxj=lðtÞ

2lðtÞ ; (4)

where lðtÞ ¼
ffiffiffiffiffiffiffiffi
D1t
p

is the spreading length.54 Similar Fickian yet
non-Gaussian diffusion was observed in a range of soft-matter
and biological systems.54–62

Fickian diffusion (1) in conjunction with a non-Gaussian
displacement distribution may be obtained from super-
statistics as a superposition of individual Gaussian processes
with given diffusivity,

Pðx; tÞ ¼
ð1
0

p D1ð ÞP x; tjD1ð ÞdD1; (5)

weighted by the distribution p(D1).63,64 The exponential law (4)
then emerges from the exponential form54,55,65–69

p(D1) = exp(�D1/hD1i)/hD1i. (6)

Such superstatistics may be relevant for particles diffusing in
spatial patches characterised by different D1 values (for multi-
state trajectories70 in heterogeneous media), or for particles
with spread diffusivities in a homogeneous environment.168

In some cases, the system exhibits a non-Gaussian displace-
ment distribution over the entire observation,53–55,58,59,69 while
other systems show a crossover to a Gaussian distribution
characterised by an effective diffusivity.53,54,61 To explain a
possible crossover mathematical models based on concepts of
fluctuating diffusivities72 were recently developed.65–68,73–75 One

central idea is the ‘‘diffusing diffusivity’’ (DD) model introduced
by Slater and Chubynsky.65 According to it, the particle motion is
governed by a Langevin equation driven by white Gaussian noise
whose associated diffusivity, however, is a stochastic process
itself. In other words, the diffusivity fluctuates in time. Indeed, it
was shown by Slater and Chubynsky65 as well as Jain and
Sebastian66,74 that for confined diffusivity dynamics the system
is initially characterised by an exponential displacement distri-
bution, which eventually shows a crossover to a Gaussian.
Chechkin and coworkers presented a minimal DD model67

based on the mathematical concept of subordination.76 This
formulation allows for an explicit analytical solution helping one
to study the non-Gaussian to Gaussian crossover. The latter is
associated with the built-in time scale of the confined diffusivity
dynamics following a squared Ornstein–Uhlenbeck process.67

This DD model was recently explored for generalised Gamma
distribution p(D1) as well as for non-equilibrium initial condi-
tions of the diffusivity distribution.68,169

Here we ask the question how we can faithfully analyse
experimental time-series and extract the stochastic mechanism
underlying the measured dynamics. Our method is based on
Bayesian statistics and nested-sampling algorithm. We specifi-
cally develop this method to include ergodic stochastic
processes of the BM, FBM, and DD families. Based on synthe-
sised data we demonstrate that this objective analysis indeed
provides a reliable determination of the underlying stochastic
process. Specifically, Section II outlines the basic concepts of
Bayesian inference and nested sampling. The implementation
of the different stochastic models is discussed in Section III.
Our main results are presented in Section IV, first for a number
of in silico-generated trajectories, followed by the analysis of
real experimental time-series.60 A general discussion is given in
Section V. In the Appendices we collect the mathematical and
conceptual details of the model-ranking analysis, to support the
statements in the main text.

II. General concepts of Bayesian
inference and nested-sampling

Here, we introduce the basic ideas of the objective analysis
method combining Bayesian inference with nested sampling.

A number of mathematical concepts—such as the time-
averaged MSD,27,83,84 mean maximal-excursion method,85

detrended fluctuation analysis,86 weighted least-squares
method,87 p-variation test,88,89 etc.—were employed to analyse
various features of time-series recorded in SPT experiments, see
also the recent reviews.9,23,25,26 Typically, a single quantity is
insufficient to unambiguously identify the underlying mathe-
matical model of diffusion. For instance, the time-averaged
MSD—ubiquitously used in data analysis—is a linear function
of lag time both for BM and continuous-time random walks
with power-law waiting-time distributions.23,25,27 To determine
the mathematical nature of a given physical diffusion process
complementary statistical indicators can be used to discrimi-
nate possible models.59,90–95,170

Fig. 1 Pictorial representation of the relevance of various diffusion
models. Different body-parts of the elephant reflect distinct physical
environments for tracer diffusion. Image courtesy Prerna Shaha.
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A. Bayesian model selection

How can one approach such complex stochastic motion, determine
the physical mechanisms giving rise to the observed dynamics, and
extract physical parameters? We here resolve some of these issues
using the Bayesian statistical approach101–110 that provides a
systematic strategy for a statistical model comparison and ranking.

Bayesian inference methods are being employed ubiquitously
and successfully across multiple sciences: cosmology and
astrophysics,111–114 general115–117 and high-energy physics,118

ecology,119,120 evolution,121 environmental science,122 systems
biology,123 genetics,124 financial risk analysis,125 and other
complex dynamical systems,126 including SPT-data analysis.127

Recent superstatistical and time-dependent Bayesian approaches for
heterogeneous random walks should also be mentioned here.128

The Bayesian method—invented at first by Bayes,101 extended and
refined later by Laplace102 and, i.e., by Jeffreys103—assigns relative
probabilities based on likelihood functions evaluated for each
model and involves a single time-series as its input. This fact
makes this method especially useful for the SPT-data analysis,
where often few but long traces are recorded.8,9,25,129

We focus on the model-comparison and parameter-
estimation approach for the DD model65,67,68 as an example
of increased complexity due to its built-in crossover dynamics.
We apply the nested-sampling method developed mainly by
Skilling105,130–132 (see ref. 115 for other sampling methods)
to estimate the model evidence. This method was employed
previously in cosmological analyses, see, e.g., ref. 111 and 113.
Our current computer code generalises and extends the Bayesian-
FBM code developed recently,133 see also ref. 141. This generalised
approach enables us to compare relative probabilities of
multiple diffusion models: BM, BM with a superimposed
measurement noise (noisy BM), FBM, noisy FBM, and BM with
DD (or simply DD, the main focus of this study). The computer
code in Matlab is publicly available on GitHub.142

B. Details of the Bayesian analysis

The inference principle and model-comparison strategy is
based on Bayes’ theorem103–106

PðMijDataÞ ¼ PðDatajMiÞPðMiÞ
PðDataÞ : (7)

In our language, P(Mi|Data) is the probability that model Mi is
realised given the data, P(Data|Mi) is the probability of data
given model Mi, P(Mi) is the prior probability of Mi, and P(Data)
is the probability of data. The rank of model Mi is given by the
ratio of its evidence

Zi = P(Data|Mi) (8)

to the sum of evidences for all other Nmodels possible models
taken into consideration, where i = 1. . .Nmodels. The respective
statistical model probability—assuming one of the models is
true—is

PðMkÞ ¼
PðMkjDataÞPNmodels

i¼1
PðMijDataÞ

¼ ZkPNmodels

i¼1
Zi

: (9)

The models are set to be equally-probable before analysing the
data, that is P(Mi) = P(Mj). Each model Mi has a vector of
unknown parameters,111 hi = {y1,y2,. . .,yN}i and—based on gen-
eral physical intuition or knowledge about the range of these
parameters—some prior probability functions p(hi) = P(hi|Mi)
are being assigned to them. Here, N is the total number of
model parameters. Hereafter, we use the function p(�) of
respective arguments to denote prior probabilities, as in the
classical literature105 (not to be mixed with the constant p).

The evidence Zi can be expressed via the likelihood function
of data for a given model, LiðhiÞ ¼ P Datajhi;Mið Þ, the main
concept of Bayesian statistics, as

Zi ¼
ð
Li hið ÞpðhiÞdhi: (10)

We are also interested in the posterior probability which can be
expressed using relation (7) as

P hijMi;Datað Þ ¼ P Datajhi;Mið ÞP hijMið Þ
P DatajMið Þ ¼ LiðhiÞpðhiÞ

Zi
: (11)

The computation of respective evidence values is central for
model ranking and parameter estimation, as performed below.
Note that expression (10) becomes progressively difficult to
compute analytically as the number of model parameters
increases and the dimension of hi grows.

C. Nested-sampling analysis: computation protocol and
uncertainties

The nested-sampling method enables us to reduce the multi-
dimensional integral (10) to a one-dimensional one, reducing
the computational costs. As suggested by Skilling,105,130–132 the
evidence functions (10) can be evaluated explicitly as

Zi ¼
ð1
0

LiðXiÞdXi; (12)

i.e., the area under the curve Li Xið Þ. The function Li Xið Þ is
defined as the inverse of Xi(l) called below the ‘‘prior
mass’’130,133—the ‘‘fraction’’ of the probability—in the regions
of parameter space where the likelihood exceeds a threshold
value l, namely133

XiðlÞ ¼
ð
Li yið Þ4 l

p hið Þdhi: (13)

The function Li Xið Þ is related to Xi(l) by Li XiðlÞð Þ ¼ l. By
definition, Li Xið Þ is a monotonically decreasing function, so
the integral (12) can be replaced by a sum and estimated as

Z
jmax
i �

Xjmax

k¼1
Li;k � wk: (14)

Here, wj = (DX)j are the weights stemming from splitting
the integration interval over X in eqn (12) and jmax is the
index at which the iteration procedure is terminated, see below
for details.171,172

The procedure for estimating the evidence (14) as used here
goes as follows (see also the flowchart in Fig. 2 and ref. 133):
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(1) For each model Mi we define an appropriate likelihood
function Li and prior distributions p(hi) for each parameter hi

(the first lower index here indicates the model number). We
generate K independent walkers hi,j=1,m with m = 1, 2,. . .,K—as
points in the parameter space—randomly from p(hi).

(2) At the first iteration step j = 1 we select the walker with
the lowest likelihood, h(1)

i,min. The corresponding likelihood

Li hð1Þi;min

� �
� Li;1 contributes the 1st term in eqn (14), with the

weight w1 = 1/(K + 1).130–132 We remove the walker h(1)
i,min from the

set of K walkers (the upper index here is the iteration number).
(3) At iteration step j 4 1 we generate a new walker by

choosing one walker randomly, making a copy of it, and
prescribing the copy to perform a random walk. This walker
is set independent of the remaining K � 1 walkers. The random
walk follows the Metropolis–Hastings algorithm,160,161 see also
ref. 133. This walker is constrained such that its likelihood is
greater than Li;ð j�1Þ (the second lower index indicates the

iteration number).
(4) We select the walker h( j)

i,min with the lowest likelihood Li; j .
Its contribution is then weighted with the factor
wj = wj�1K/(K + 1), as K walkers are uniformly distributed from
Xi = 0 to Xi ¼ Xi Li;ð j�1Þ

	 
130–132 and thus the ‘‘prior mass’’

shrinks on average by K/(K + 1) on each iteration. This nested-like
update procedure for the walkers gives the name for the method

itself. As the prior-mass-range shrinks after each iteration, for a
monotonically decreasing LiðXiÞ we move along the abscissa
from Xi = 1 towards Xi = 0 and, consequently, from lower to
higher values of LiðXiÞ.131,132

(5) After the jth iteration step, the evidence for all remaining
walkers is computed as

Zremain
i; j ¼ wj

XK
m¼1
Li; j;m hi; j;m

	 

: (16)

The indices in the likelihood function denote the model number
i, the iteration number j, and the walker number m, in order
of their appearance. The quantity (16) is related to the total
evidence accumulated up to the ( j � 1)th iteration, computed as
the ratio

Ratioi; j ¼
Zremain

i; jPj�1
k¼1
Li;kwk

: (17)

(6) The iteration loop is stopped once Ratioi, j o 10�4. We
define the last index as j = jmax and compute the final evidence
(including the last contribution) for the model Mi using
eqn (14) as

Zfinal
i ¼ Z

jmax�1ð Þ
i þ Zremain

i; jmax
: (18)

For the nested-sampling procedure, following the classical
studies105,130 the uncertainty in computing log(Zi) is estimated as

the ratio
ffiffiffiffiffiffiffiffiffiffiffiffi
Hi=K

p
, where the information is104,105

Hi ¼
ð1
0

LiðXiÞ
Zi

log
LiðXiÞ
Zi

� �
dXi: (19)

Replacing this integral by a discrete sum, following the procedure
(18) this quantity is estimated as

H jmax
i � H jmax�1ð Þ

i þHremain
i; jmax

¼
Xjmax�1

k¼1
wk
Li;k

Zi
log
Li;k

Zi

� �

þ wjmax

XK
m¼1

Li; jmax ;m

Zi
log

Li; jmax;m

Zi

� �
:

(20)

Uncertainties of computing log10 Zi, as provided for different
models in Table 1, are then estimated as

D log10 Zið Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
Hi=K

p
� log10 e � �

1

2:3

ffiffiffiffiffiffiffiffiffiffiffiffi
Hi=K

p
: (21)

Finally, for the estimated model parameters the moment of
order M is evaluated as the weighted sum

hMi
� �

�
Xjmax�1ð Þ

j¼1
h
ð jÞ
i;min

� �MLi; jwj

Zi

þ wjmax

XK
m¼1

h
jmaxð Þ

i;min;m

� �MLi; jmax;m

Zi
:

(22)

These expressions enable us to compute mean values and
error bars105 for the model parameters in the nested-sampling
algorithm, see below.

Fig. 2 Flowchart of the nested-sampling algorithm, see text for details on
individual items of the procedure.
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Following the classical Bayesian literature,103,135,139 a difference
in probability-realisation for two models in the Bayesian frame-
work can be quantified in terms of their evidence values.
Specifically, one model is called significantly favoured with
respect to another one if for their Bayes factor Bi, j = Zi/Zj one has

1/2 o log10[Zi/Zj] o 1. (23)

When the condition 1 o log10[Zi/Zj] o 2 is satisfied, the ith
model is strongly favoured over the jth model, while if compar-
ison of log-evidence yields log10[Zi/Zj] o 2 the ith model is
decisively preferred in this model-ranking analysis. We refer
the reader to Tables 1 and 2 to compare the differences
in values of computed log10 Zi and D(log10 Zi) for respective
diffusion models used in the Bayesian analysis. The uncertain-
ties on log10 Zi we obtain are always smaller than the ranges of
log10[Zi]-differences listed above and, thus, they do not affect
our model-comparison statements. Following the standard
procedure in the Bayesian model-selection approach, the errors
are only computed for log10[Zi], and not for the probability
itself. The latter is evaluated from respective evidences via
eqn (9). The interested reader can consult Sections 3.6.1 and
9.2.3 of ref. 105 for the general error-propagation analysis and
for some subtle features and uncertainties involved upon
transforming log10 Zi to Zi and, finally, to Pi. We do not discuss
the issue of DPi in the current study.

III. Application of model-prediction
algorithm to stochastic models

Here we discuss several models of ergodic diffusion used in the
Bayesian approach with nested-sampling algorithm below. For
each model we specify its likelihood function, relevant model

parameters, and their prior distributions. The new part in this
section is the implementation of the DD model consisting
of the coupled stochastic eqn (35). We use one-dimensional
notation (d = 1); in higher dimensions the results below would
represent a single component.

A. Brownian motion

The long-time diffusion of a Brownian particle obeys the over-
damped Langevin equation13,19,23,25,143

dxðtÞ=dt ¼
ffiffiffiffiffiffiffiffiffi
2D1

p
� xðtÞ (24)

driven by the white Gaussian noise x(t) with zero mean and
autocorrelation hx(t1)x(t2)i = d(t1 � t2). The probability density
function of displacements from the initial position x(0) = 0 after
some time is then the Gaussian (2). BM is ergodic such that
ensemble- and time-averaged physical observables coincide at
long times.23,25,144

As particle displacements Dxj = xj � x( j�1) at the jth step are
independent and identically distributed random variables, for the
nested-sampling method we use a Gaussian likelihood function,141

LBM hBMð Þ ¼
YNpointsð Þ

j¼2

exp � ðDxjÞ
2

4ðD1ÞjDt

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðD1ÞjDt

q : (25)

Particle displacements are sampled equidistantly in time in the
analysis below; here j is the index along the trajectory. The only BM
parameter is D1 determining the magnitude of the MSD (1). The
index j for (D1)j is relevant for the DD model where the diffusion
constant changes between time-steps. For the step-deviation para-
meter s we choose Jeffrey’s prior,103,111,113,145 suitable when the
scale of a parameter is large or unknown. The relation of s on each
step to the respective diffusion coefficient is

(D1)j = sj
2/[2(Dt)]. (26)

For the parameter range y A [ymin,ymax] Jeffrey’s prior is104,173

pðyÞ ¼
1= y logðymax=yminÞ½ �; ymin o yo ymax

0; otherwise

(
: (27)

Motivated by previous studies146,147 we consider noisy BM:
the noise in SPT experiments is typically due to particle-
localisation errors and motion blur.8,70,129 Given the actual
particle position xact

j and the experimentally observed positions
xobs

j at time-step j, we assume that xobs
j includes a Gaussian

measurement noise Zj with zero mean and variance

hZj
2i = sNoise

2. (28)

The observed particle positions are then given by

xobs
j = xact

j + Zj (29)

Table 1 Bayesian model-comparison nested-sampling results for (18)
and (9) obtained for a single computer-generated BM trajectory with the
parameters D1 = 0.5, Dt = 1, Npoints = 300. The estimated BM diffusivity is
D1 = 0.496 � 0.028, close to the real value. The FBM exponent for this
tracer was found to be E0.5. The error values for log10 Z are nested-
sampling-intrinsic errors, see eqn (21): we refer to eqn (23) for the standard
model-comparison ranges to which these uncertainties can be compared

Model log10 Z Model probability

BM �370.891 � 0.068 0.765
Noisy BM �371.685 � 0.076 0.123
FBM �371.780 � 0.080 0.099
Noisy FBM �372.631 � 0.089 0.014
DD �408.593 � 0.317 0.000

Table 2 Model-ranking results for a single FBM trajectory with sH = 1,
H = 0.25, Dt = 1, Npoints = 300. The estimated step deviation is sH = 0.987�
0.031 and the Hurst exponent is H = 0.273 � 0.023

Model log10 Z Model probability

BM �366.836 � 0.064 0.000
Noisy BM �356.657 � 0.074 0.002
FBM �353.973 � 0.082 0.782
Noisy FBM �354.529 � 0.087 0.217
DD �402.563 � 0.318 0.000
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and the corresponding likelihood function (using eqn (26))
is129,141

LNoisyBM hNoisyBM

	 

¼
YNpoints

j¼2

exp

 
�

xobsj � ~xj

� �2
2~sj2

!
ffiffiffiffiffiffiffiffiffiffiffi
2p~sj2

p : (30)

Here, two sets of new variables are iteratively defined for
2 oj r Npoints as (see ref. 141 and note a different index for
the initial point)

~xj ¼ xj�1 �
sNoise

2

~sj�1
xj�1 � ~xj�1
	 


; ~sj2 ¼ s2 þ sNoise
2 2� sNoise

2

~sj�12

� �
:

(31)

For the initial step j = 2 in eqn (30) we set x̃2 = x2 and
~s2

2 = s2 + 2sNoise
2. In addition to D1, in the model of noisy

BM we implement a uniform prior for sNoise,

pðyÞ ¼
1= ymax � ymin½ �; ymin o yo ymax

0; otherwise

(
: (32)

We refer the reader here to ref. 129 for another treatment of
localisation errors in SPT time-series as well as for the
maximum-likelihood estimation method aimed at assessing
the values of diffusion coefficients of the tracers.

B. Fractional brownian motion

The mathematical concept of FBM was developed by Mandelbrot
and van Ness,29,30 see also a similar earlier process considered
by Kolmogorov.28 This anomalous diffusion process obeys the
overdamped Langevin equation dx(t)/dt = xfGn(t) driven by the
fractional Gaussian noise xfGn(t) with zero mean and long-
ranged correlation,23,25,29,30,32

hxfGn(t1)xfGn(t2)i = 2H(2H � 1)DH � |t1 � t2|2(H�1), (33)

where t1 a t2. Note the change of sign in eqn (33) from negative
(anti-persistent FBM) to positive (persistent FBM) when H
crosses the value 1/2 from below. In eqn (33), DH is the
generalised diffusion coefficient and the Hurst index H relates
to a in eqn (3) as H = a/2. The displacement distribution for free
FBM is Gaussian25

Pðx; tÞ ¼
exp � x2

4DH t2H

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDH t2H

p ; (34)

and the position autocorrelation is hx(t1)x(t2)i =
DH(t2H

1 + t2H
2 � |t1 � t2|2H).29,30 At t1 = t2 = t this reduces to the

MSD (3). Similar to BM, FBM describes ergodic diffusion.25,32,34

Details on priors and likelihood functions for FBM are given in
Appendix A1, see also ref. 133 and 148. The FBM process was
simulated with the help of computer code from ref. 133.

C. Brownian motion with ‘‘diffusing diffusivity’’

The minimal DD model is governed by the system of stochastic
differential equations67

dxðtÞ
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D1ðtÞ

p
� xðtÞ; (35a)

D1(t) = Y2(t), (35b)

dYðtÞ
dt
¼ �YðtÞ

t
þ e� �ZðtÞ; (35c)

where x(t) is the particle position, D1(t) the time-dependent
diffusion coefficient defined in terms of squared auxiliary
variable Y(t). The latter is given by the Ornstein–Uhlenbeck
process, eqn (35c), with the amplitude of white Gaussian noise
e. Here t is the relaxation time.143,149

The integration of eqn (35b) and (35c) provides the solution67,143

YðtÞ ¼ Yð0Þe�t=t þ
ðt
0

e�Zðt 0Þe� t�t 0ð Þ=tdt 0: (36)

The relaxation time t—specifying for how long the Ornstein–
Uhlenbeck process maintains its temporal correlations—is
imperative for Bayesian analysis and nested-sampling algorithm,
see Appendix A3. From eqn (35) for a given initial condition
Y1 = Y(0) we obtain the mean and variance as

hY(t)i = Y1 exp(�t/t) (37)

and

hY2(t)i � hY(t)i2 = D%[1 � exp(�2t/t)]/2, (38)

respectively, where the characteristic diffusion coefficient
is D% = te2.

To illustrate the DD process Fig. 3 compares results for the
time-averaged MSD7,25

d2ðDÞ ¼ 1

T � D

ðT�D
0

xðtþ DÞ � xðtÞ½ �2dt (39)

and the corresponding averages over an ensemble of N trajectories,

d2ðDÞ
D E

¼ N�1
XN
i¼1

di2ðDÞ; (40)

for both BM and DD models. We see that, as expected, for the DD
model the time-averaged MSD in the limit of short lag times shows
considerably more spread. The latter is reflected in larger values of
the ergodicity breaking parameter (see inset in Fig. 3) defined by25,27

EBðDÞ ¼ d2ðDÞ
� �2� �

d2ðDÞ
D E

2 � 1: (41)

The BM asymptote for this parameter is25,32,144

EBBM(D) = 4D/(3T). (42)

Fig. 3 also confirms that for the DD model the EB at short and long
lag times exceeds that for pure BM, as expected. As the total length T
of trajectories is varied, in Fig. 9 (Appendix A4) we observe the
reciprocal dependence EB(D = 1, T) C 1/T, similar to the
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variation for BM.25,174 For the DD model, details of priors and
likelihood functions as well as nested-sampling update proce-
dure are given in Appendices A2 and A3.

IV. Main results
A. Computer-simulated data sets

We first focus on the results of nested-sampling runs obtained for
two-dimensional surrogate trajectories for different diffusion
models of Section III. We take particle motion along x and y
directions as independent, allowing us to extend the likelihood
functions to two spatial dimensions through the product of the
one-dimensional functions. We compare the statistical probability
(9) for the models of BM, noisy BM, FBM, noisy FBM, and DD
and estimate the relevant model parameters. Unless specified
otherwise, we use the prior ranges of Table 3. We run the
nested-sampling code on the computer-generated trajectories
with Npoints = 300 for the BM, FBM, and DD models. This number

of points corresponds to that in the experimental SPT data set
considered in Section IVB, see Fig. 8.

For a single BM trajectory x(t) we show in Table 1 that the
Bayesian analysis using nested-sampling algorithm indeed
assigns the highest evidence to BM with the probability
P(BM) E 0.765. For a single FBM trajectory of the same length
the method gives P(FBM) E 0.782 (see Table 2). Tables 1 and 2
present the validation of our model-prediction results for a single
trajectory generated in silico. The total probability of the respective
models (BM and FBM) in these tables is composed from the noise-
free and noise-containing contributions. Summing the respective
probabilities we reach a high level of model-assessment confidence,
namely \0.9. Intrinsic nested-sampling-related errors in deter-
mining log10 Z values for a single trace, see eqn (21), are listed in
Tables 1 and 2. Regarding the parameter estimation procedure,
the likelihood function for the FBM model was shown to have a
symmetric, bell-like variation as function of DH and H.141

Roughly speaking, in the Bayesian approach we consider prob-
abilities P \ 0.95 as a strong evidence for a model, while the
minimal significance level is often set at P E 0.05.

Finally, for the DD model we test the Bayesian analysis with
the nested-sampling algorithm in more detail. The distribution
of the model parameters is presented in Fig. 4 and 11. We
observe an asymmetric, longer-tailed distribution of D% and t
around the point of maximal likelihood, for all entries of the
iteration procedure up to j = jmax. This results in 103 selected entries
in Fig. 11. A three-dimensional projection showing the approach of
the likelihood function (normalised to the maximal value in the set
to its maximum) is shown in Fig. 4. For this data set, we analyse
jmax E 37 000 points and show 50% of them with the highest
likelihood values (to improve the visibility).

For DD trajectories with a varying number Npoints of points
the nested-sampling predictions are shown in Fig. 5. We observe
that the estimates of t and D% improve as Npoints increases, as
expected. The probability of a correct model prediction—that is,
the fraction of DD traces predicted by nested-sampling runs for
computer-generated DD traces from eqn (3)—also increases for
longer trajectories, see Fig. 5 and 7. This probability is quantified
by respective numbers in the brackets Fig. 5a and b for N = 102

trajectories analysed in total in this plot. We note that for the DD
model as Npoints increases, the computational expenses to run

Fig. 3 Simulations results for N = 102 time-averaged MSDs (39) for BM (red
curves) and DD (blue curves) models (Npoints � dt = T = 3000). The respective
ensemble averaged asymptotes hx2(t)iBM = 4D1t and hx2(t)iDD = 2D%t are the
dashed lines in the main plot. The ensemble averages are shown by the
symbols. The inset illustrates the evolution of the ergodicity breaking parameter
versus lag time, with the BM asymptote (42) being the dashed line. Parameters:
D1 = 1, Dt = 1 for the BM model and t = 5, D% = 0.2, Dt = 1 for the DD model.

Table 3 Summary of the likelihood functions, relevant parameters, and prior distributions for the parameters of diffusion models used for Bayesian
statistics with nested-sampling algorithm. The range of priors are also provided, unless specified in the text otherwise

Model Likelihood, LðhÞ Model parameters, h Priors, p(h) Prior range

BM Eqn (25) Step deviation, s Eqn (27) s A [10�3, 103]
Noisy BM Eqn (30) Step deviation, s Eqn (27) s A [10�3, 103]

Noise magnitude, sNoise Eqn (32) sNoise A [0, 1]
FBM Eqn (S2) Hurst index, H Eqn (32) H A [0, 1]

Step deviation, sH Eqn (27) sH A [10�3, 103]
Noisy FBM Eqn (S5) Hurst index, H Eqn (32) H A [0, 1]

Step deviation, sH Eqn (27) sH A [10�3, 103]
Noise magnitude, sNoise Eqn (32) sNoise A [0, 1]

DD Eqn (S9) Relaxation time, t Eqn (27) t A [Dt,Dt � Npoints]
Scaling parameter, D% Eqn (27) D% A [10�2, 102]
Ornstein–Uhlenbeck Process, Y1 Eqn (S13)
Ornstein–Uhlenbeck Process, [Y2,Y3,. . .,YNpoints�1] Eqn (S16)
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the nested-sampling algorithm to a prescribed precision grow
rapidly (and take considerable time on a standard workstation).
For example, for N = 100 DD traces consisting each of Npoints =
300 points our Bayesian-nested-sampling computation to the
standard accuracy takes B15 hours on a standard workstation in
order to rank BM, FBM, and DD diffusion models. The main
reason for a long time requires to assess the DD model is the
proportionality of the number of local diffusion coefficients (DD
model parameters) to be estimated to the number of points in
the trajectory, Npoints.

As further support for our algorithm, Fig. 10 shows the
distributions of diffusion coefficients: the actual values used
for generating the DD trajectories and the nested-sampling-
estimated values are shown for N = 102 traces. The agreement
with the exponential distribution (S14) expected for the Orn-
stein–Uhlenbeck process, shown as the line in Fig. 10, is fairly
good over an extended region of the distribution.

To study the effect of the sampling time-step (the respective
time resolution in SPT experiments) on the model-prediction
results, we generate DD trajectories with the same time-step Dt = 1,
but of varying total length, see Fig. 6. To do so, a long trajectory is
generated and then only 300 points are taken from it, separated by
a new sampling time-step, DT 4Dt. One may think of this as if an
experimental setup has a time resolution DT, while the essential
particle motion actually occurs at time intervals BDt. This also
enables different data-sampling strategies for the available experi-
mental time-series, see also ref. 148. Note here that the parameters
DT and t are not related to each other. The ratio DT/Dt defines the
sampling ‘‘frequency’’ of a given time-series in the case when not
its every point is taken for the analysis. The parameter t is the
relaxation time of the Ornstein–Uhlenbeck process, see eqn (35c).

In Fig. 6 we present the results of the model-ranking analysis
for two values of t. For trajectories generated with t = 5 (panel
(a)) for DT \ 5Dt we detect progressively higher probabilities
for the pure BM model, which replaces the DD model realised
for the sampling time DT = Dt. This fact can be explained

as follows. For larger intermission times between recording events
of particle positions the exponentially decaying correlations
of the diffusivities in the DD model cause the effective
BM-Gaussian behaviour encoded by the crossover of the DD model.
We observe a similar trend for DD trajectories generated with t = 10,
but the onset of the crossover from the DD to BM model naturally
takes place at longer sampling times, at DT \ 10Dt. The sampling
time-step thus has a crucial role for the data analysis, as expected,
see also ref. 148. Finally, based on N = 20 DD trajectories in Fig. 12
we show how the BM model becomes progressively more favoured
by the nested-sampling algorithm as the sampling time-step for the
traces increases from DT/Dt = 1 to 3, and finally to 7, see panels (a),
(b), and (c) of Fig. 12, respectively.

Moreover, we examined how the total length of in silico-
generated DD trajectories affects the confidence level of the
model-prediction nested-sampling results. In Fig. 7 we present
the results of the analysis of relative likelihood functions
and DD-model probabilities for N = 100 trajectories with
varying Npoints. This figure illustrates the evolution of fractions

Fig. 4 Likelihood function from nested-sampling runs, presented in three
dimensions versus the parameters of the DD model. Colours change from
green to red as likelihood values increase. We show only the half of the data
points with the highest likelihood values for better visibility (see text for details).

Fig. 5 Ensemble-averaged estimates of t and D% from nested-sampling
runs on DD trajectories with varying Npoints generated with the parameters
t = 5, D% = 0.2, Dt = 1. In the brackets we list the numbers of traces (out of
N = 100 traces in total) which give the highest DD probabilities. Only these
high-probability trajectories were used to obtain the ensemble-averaged
values hti and hD%i shown in panels (a) and (b), respectively. Error bars
were computed using eqn (22).
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of trajectories predicted by the nested-sampling method with
probabilities of the DD model in the range PDD 4 90%, 95%,
and 99%. We find that, as intuitively expected, for larger
number of points in the DD time-series we detect progressively
higher percentage of traces which satisfy a respective level of
probability confidence.

In contrast, when the number of points reaches Npoints \

300 the Bayesian method with nested-sampling algorithm pre-
dict the DD model as strongly dominant, with respective
probability values approaching unity. We refer the reader also
to Fig. 13 where statistical results for probability distributions
of the BM, FBM, and DD models for respective pure in silico-
generated trajectories are presented, in panels (a), (b), and (c),
correspondingly. From Fig. 13 we observe that the distributions
of nested-sampling-predicted model probabilities can be
skewed and non-symmetric (with respect to the maximum), in
particular at the conditions when the values are not very close
to unity. The latter are realised, i.e., for relatively short tracer
trajectories and, thus, for insufficient statistics for the nested-
sampling algorithm to predict the respective models precisely.

Finally, we also propose how to analyse traces considerably
longer than B300 points, a rather common situation in modern
SPT experiments. One can segment a time-series into multiple sets
of Npoints B 300 points. This number of points enables the nested-
sampling approach to delivers very confident model-prediction
results (see Fig. 7 and 13c). Moreover, for segmented traces the
nested-sampling algorithm produces results at much smaller com-
putational costs, as compared to non-fragmented trajectories, the
fact particular important for the DD model with its large parameter
space. This procedure uses the fact that the DD trajectories are
stationary. Conversely, for a DD process with non-equilibrium
initial conditions68 or continuous-time random walks with scale-
free waiting-time distributions,23,25,38 this type of analysis will reveal
the inherently non-stationary character of the dynamics.

In addition to inherent errors of the nested-sampling
method, as listed in Tables 1 and 2 for single-trace results, in
Fig. 13 we present the results for the statistical uncertainties
coupled with nested-sampling-determination of model prob-
abilities for multiple trajectories. Namely, in Fig. 13 we present
the distributions of nested-sampling model probabilities for
the models of BM, FBM, and DD diffusion, computed for three
ensembles of N = 100 traces of different lengths, as generated
in silico for each model (idealised trajectories). We observe,
typically, that for longer trajectories the values of model prob-
abilities become less spread and the means of the distributions
approaches unity. This means that the nested-sampling analysis
delivers more confident predictions for longer trajectories of all
three diffusion models considered here, as expected.

B. Experimental data sets

As an application of our model-ranking algorithm to real SPT
data, we show in Fig. 8a Bayesian results with nested-sampling
algorithm for data of anomalously-diffusing micron-sized tracer
beads in mucin hydrogels at pH = 760,150 and in the absence of
added salt (data courtesy C. E. Wagner, MIT). We refer the reader
here to the thorough investigation of ref. 151 for the details on

Fig. 6 (a) Bayesian model-ranking results with nested-sampling algorithm
for computer-generated DD trajectories of varying length, with the para-
meters t = 5, D% = 0.2, Dt = 1. Averaging over N = 102 DD time-series was
performed; model-prediction results for individual traces are shown
in Fig. 12. The number of analysed points from each trajectory is kept
fixed at Npoints E 300 via choosing a suitable DT so that the total
trace length is T = 300 � DT. The value of the sampling time DT/Dt is
shown in the plots in terms of the elementary time-step, Dt. The value of
DT controls the sampling ‘‘frequency’’ of the data sets. (b) The same as
in panel (a) but for t = 10.

Fig. 7 Model-prediction nested-sampling results for the DD model, as
computed after averaging over N = 102 in silico-generated trajectories of
varying length. We plot the results using the level of confidence of our
algorithm for detecting respective model probabilities above 0.9, 0.95, and
0.99, as indicated in the legend. The graph shows the fraction of trajectories
for which this level of confidence for probability prediction is reached.
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Bayesian model-ranking results for different experimental con-
ditions in mucin gels; here we present only some preliminary
results. The diffusive properties of tracers in mucin gels are
further described, i.e., in ref. 152 and 153. We refer the reader
also to ref. 150 where extensive and comparative data analyses of
tracer diffusion in mucin hydrogels at different conditions are
presented, based on standard statistical quantifiers.

Our analysis predicts that under pH = 7 conditions the BM
model dominates the data of tracer diffusion in mucin gels,
with FBM being the second most-frequently identified model.
Finally, only 4 or 5 trajectories out of N = 53 in this set are
identified to obey the DD model with high probability. Note
that in Fig. 8a and b the traces are ordered according to a
decreasing probability of the FBM model (the blue bars), from
left to right. For most traces the model probabilities appear to
be splitted mainly between BM and FBM. For a single trajectory,
namely trace #18, however, all three models (BM, FBM, and DD)
contributed significantly to the results. This makes this trajec-
tory to look like an outlier in the presented data set, Fig. 8a.

We confirmed (results not shown) that anomalous scaling
exponents and generalised diffusion coefficients predicted by the
nested-sampling approach yield values close to those obtained
from power-law fit of individual time-averaged MSDs.151 We
also found that when tracer trajectories are ordered according
to decreasing probability of the FBM model, as in Fig. 8a, the
respective Hurst exponents become progressively more normal
(from left to right in Fig. 8b). In other words, for those
experimental trajectories for which BM and FBM models coex-
ist, the Hurst exponent becomes progressively closer to H = 1/2
as BM starts dominating over FBM (regarding model probabil-
ity values). This indicates nearly normal diffusion, as one would
expect, see ref. 151 for further analysis.

V. Discussion

Imperfect or insufficient experimental data in the presence of
measurement uncertainties8,70,105,154 challenge the develop-
ment of maximum-likelihood Bayesian model-prediction and
parameter-estimation approaches. This is the main focus of the

current study. Often, based on standard statistical classifiers,
a diffusion model cannot be identified unambiguously from
SPT data. The recent, extremely fast growth of the amount of
experimental SPT data sets and results from supercomputing
studies as well as the expansion of available computer
resources enable researchers to test a broader spectrum of
possible diffusion models against a given ensemble of time-
series of the particles.

We here present results of the model-ranking Bayesian
analysis using the nested-sampling algorithm for BM, FBM,
and DD diffusion models. BM and FBM in silico-generated data
were considered, also in the presence of ‘‘measurement’’
noise.133,146,147 The nested-sampling algorithm developed for
the DD model is the main novelty of the current analysis, see
Appendix A3. We successfully tested this approach on
computer-generated and experimentally garnered data sets for
tracer diffusion. For the latter case we concluded that—similar
to results of ref. 60—individual tracer trajectories can have
roughly Gaussian displacement distributions. However,
depending on external conditions (for instance, different pH
values, salt concentration, etc.60) the distribution of tracer
displacements for the entire population can reveal pronounced
non-Gaussian features, see ref. 150 and 151 for details. In
general, for the FBM model with results shown in Fig. 8 each
tracer particle has a specific Hurst exponent and generalised
diffusion coefficient. In contrast, for an ensemble of tracers with
a medium-imposed distribution of exponents and diffusivities
(due to heterogeneities of local microenvironments71,128) non-
Gaussian features, absent for diffusion of individual particles,
may emerge. Diffusion is therefore Gaussian for individual
particles but non-Gaussian for their population.

Other models of diffusion—such as hidden Markov
models70,111,117,155–157 with multiple diffusive states and transitions
between them as well as diffusion in heterogeneous energy
landscapes158,159—can be integrated into the current code too. This
would provide a broader range of possible models to ‘‘filter’’ the
experimental data through. In the future, also non-ergodic
anomalous-diffusion processes are planned to be implemented
into this Bayesian analysis using the nested-sampling algorithm.
Some algorithms for microscopic force-reconstruction based on

Fig. 8 Bayesian-nested-sampling model-ranking results (a) and Hurst exponent results (b), as obtained for tracer diffusion in mucin gels measured in
ref. 60 (at pH = 7 and with Npoints = 300 points). The results are plotted versus the respective trace number in the set. The trajectories in both panels are
ordered according to a decreasing nested-sampling-predicted probability of the FBM model, see ref. 151 for further details.
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maximum-likelihood estimator—aimed at restoring the force-fields
acting on a Brownian particle from its displacements, see the recent
study167—can be another perspective for future research.
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Appendix A: details of diffusion models
and computation analysis
1. Priors and likelihood functions for the FBM model

The nested-sampling method was applied recently by some of
the authors to the FBM model133 (see also ref. 148 and a
complementary recent study87), also in the presence of a
measurement noise and drift. We refer the reader also to
ref. 162–164 for a Bayesian-based framework of parameter
estimation for FBM. The two FBM parameters to be determined
are the generalised diffusion coefficient DH and the Hurst
exponent H. Similar to eqn (26), we define the step deviation

sH via DH ¼
sH2

2ðDtÞ2H .133 Keeping in mind a wide range of

possible sH values, Jeffrey’s prior is used for this parameter.
In contrast, for a limited range of the Hurst exponent, with
H A [0,1], a uniform prior is used.111

To obtain a quadratic form structurally-similar to that of BM
in eqn (30), for FBM the Bayesian procedure is as follows. For
the data set of Npoints positions at evenly-spaced time intervals
(the time-step is Dt), particle displacements after n diffusion
steps, Dxn = xn � xn�1 have the auto-covariance function133

g(k) = hDxnDxn+ki = DH(Dt)2H[|k + 1|2H + |k � 1|2H � 2|k|2H].
(S1)

This function only depends on the time-step difference k due to
the stationarity of increments of FBM.25,148 From particle
displacements recorded along the trajectory we create the
column-vector Dx(Npoints�1) with its transpose DxT

Npoints�1ð Þ. The
likelihood function is then133

LFBM hFBMð Þ

¼
exp �1

2
DxT

Npoints�1ð ÞC Npoints�1ð Þ
�1Dx Npoints�1ð Þ

� �

ð2pÞN=2 C Npoints�1ð Þ
��� ���1=2 ;

(S2)

where C Npoints�1ð Þ
�1 is the inverse of the (Npoints� 1)� (Npoints� 1)

covariance matrix with the elements

(C(Npoints�1))m,n = hDxm � Dxni = g(m � n) (S3)

and determinant |C(Npoints�1)|. Here the angular brackets denote
averaging over fractional Gaussian noise, eqn (33). For two- and
three-dimensional motion the likelihood function is the pro-
duct of respective components (S2).133

As discussed in ref. 133 we also consider FBM with a
measurement noise (noisy FBM), defined by eqn (29). In this

case, the particle displacements have the auto-covariance
function133

gobsðkÞ ¼ Dxobsn � Dxobsnþk
� �

¼

gactð0Þ þ 2sNoise
2; for k ¼ 0

gactð1Þ � sNoise
2; for k ¼ 1

gactð0Þ; for 1o ko Npoints � n� 1
	 


8>>><
>>>:

;

(S4)

where gact(k) is defined by eqn (S1). Here, the index k denotes
the step number. The likelihood function for noisy FBM is then
given by the quadratic Gaussian-like form133

LNoisyFBM hNoisyFBM

	 


¼
exp �1

2
Dxobs

Npoints�1ð Þ

� �T

Cobs
Npoints�1ð Þ

� ��1
Dxobs

Npoints�1ð Þ

� � !

ð2pÞN=2 Cobs
Npoints�1ð Þ

����
����
1=2

;

(S5)

where, analogously to eqn (S3), we have

Cobs
Npoints�1ð Þ

� �
m;n

¼ Dxobsm � Dxobsn

� �
¼ gobsðm� nÞ: (S6)

The noisy FBM model has three parameters: step deviation sH,
Hurst index H, and measurement noise strength sNoise, see eqn (28).
For the parameters sH and H we use the same prior distributions
(27) and (32), whereas for sNoise a uniform prior (32) is used.

2. Priors and likelihood functions for the DD model

We now address how to estimate the likelihood function and prior
distributions of the parameters for the DD model. To generate the
‘‘random walkers’’ from prior distributions prescribed for each of the
parameters in the set hDD we compute the cumulative distribution
function,165 CDF(y). We construct the ‘‘inverse prior function’’
CDF�1(u) that converts a random number u drawn from a uniform
distribution (on an interval165) into the corresponding coordinate
hDD in the parameter space of (Npoints + 1) dimensions133 for the
specific rules of this conversion. The model parameters are then

hDD = {t,D%,(D1)1,(D1)2,. . .,(D1)(Npoints�1)}, (S7)

where {(D1)1,(D1)2,. . .,(D1)Npoints�1} are instantaneous values of
the diffusion coefficient computed at intermediate times

t1 þ t2

2
;
t2 þ t3

2
; . . . ;

t Npoints�1ð Þ þ tNpoints

2

( )
(S8)

for each trajectory. The number of parameters for the DD model is
Npar = (Npoints + 1). Particle diffusivities at time instances (S8) are
then given by the respective squares of the Ornstein–Uhlenbeck
process, eqn (35b), namely {Y1

2,Y2
2,. . .,Y(Npoints�1)

2}.
For a trajectory x(t) = {x(t1),x(t2),. . .,x(tNpoints)}—given as

solution of the set of eqn (35) or as acquired from an SPT-
experiment—we then find the best-possible set of parameters
hDD using the nested-sampling algorithm, as detailed in
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Appendix A3. Now, the likelihood function can be formulated
similar to the BM framework (25): as the position increments
Dxj of the particle are independent random variables, given
the set of diffusivities {(D1)1,(D1)2,. . .,(D1)Npoints�1} they are the
product of Gaussian likelihoods for each increment,

LDD Dxðt1Þ;Dxðt2Þ; . . .Dx tNpoints�1

� �n o�

D1ð Þ1; D1ð Þ2; . . . D1ð ÞNpoints�1

n o���

¼
YNpoints�1

j¼1

exp �
Dxj
	 
2
4ðD1ÞjDt

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p D1ð ÞjDt

q :

(S9)

For the parameters t and D% Jeffrey’s prior (27) is used. The log
function in this prior reflects the fact that when the magnitude
of a parameter is not known, we have to sample a broad range
of possible values. We construct the inverse prior function

CDFJeff
�1(uDD) = yDD (S10)

of a random number u from a uniform distribution in the range
(0,1) by inverting (S10) to get133

uðyÞ ¼
ðy
ymin

pðy0Þdy0 ¼ 1

log ymax=yminð Þ

ðy
ymin

dy0

y0
: (S11)

After integration, from eqn (S10) we find for the inverse prior
function of t and D%

CDFJeff
�1(u) = ymin � exp[u log(ymax/ymin)]. (S12)

We need to ensure that the process Y(t) is stationary starting
from t = 0. To this end, for the first step at j = 1 we generate Y1

values from the equilibrium distribution of the Ornstein–
Uhlenbeck process,67

p(Y1|D%) = (pD%)�1/2exp(�Y1
2/D%). (S13)

In the long time, stationary limit integration of (S13) shows that
the Ornstein–Uhlenbeck diffusion coefficients are distributed
roughly exponentially (see ref. 67 and also Fig. 10),

p((D1)1) = (pD%(D1)1)�1/2 exp[�(D1)1/D%]. (S14)

For all other steps j 4 1, using the Ornstein–Uhlenbeck
Gaussian displacement distribution,67,143,149 we employ a
Gaussian prior. Thus, for an arbitrary k value we define

{Y]k[} � {Y1,Y2,. . .,Yk�1,Yk+1,. . .,Y(Npoints�1)} (S15)

defined as the set of all Y values except Yk. For {Y]1[} the prior is
chosen as (using the results of ref. 143 and 149, see also ref. 166)

p Y�1½
� �

j t;D?;Y1f g
	 


¼
exp½� PNpoints�1ð Þ

l¼2
Yl � Yl�1e

�Dt=t	 
2
D? 1� e�2Dt=tð Þ �

pD? 1� e�2Dt=tf g½ �
ðNpoints�1Þ�1

2

:

(S16)

This expression utilises the mean and variance (37) of the
Ornstein–Uhlenbeck process.175

The inverse prior functions (S13) and (S16) for the first (l = 1)
and all other steps (l = 2, 3,. . .,Npoints � 1) is obtained via the
inversion of eqn (S11), respectively, as

CDFY1

�1ðu1Þ ¼ Y1 ¼
ffiffiffiffiffiffi
D?

p
erf�1 2u1 � 1ð Þ (S17)

and

CDFY l
�1ðulÞ ¼ Yl

¼ Yl�1e
�Dt=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D? 1� e�2Dt=tð Þ

q
� erf�1 2ul � 1ð Þ:

(S18)

Here, the error function is erfðxÞ ¼ 2p�1=2
Ð x
0 expð�t2Þdt and

its inverse is erf�1(x). Inverting expression (S18) we get the
cumulative representation

ulðYlÞ ¼
ðYl

�1

exp �
Yl
0 � Yl�1e

�Dt=t	 
2
D? 1� e�2Dt=tð Þ

" #
dYl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD? 1� e�2Dt=tð Þ

p : (S19)

3. Nested-sampling update procedure for the DD model

In the DD model the parameters t and D% at each iteration step
are chosen from a log-uniform Jeffrey’s prior. However, for
(Npoints � 1) nested-sampling parameters stemming from the
Ornstein–Uhlenbeck process Yl(t) we ensure that they are
sampled from the correct distribution,104 as prescribed by
their priors (S13) and (S16). As discussed in Section II, after
the jth nested-sampling iteration we have (K � 1) walkers with a
set of likelihoods LDD;j;m

� �
, with m = {1, 2,. . .,K � 1}, which

are all greater than a certain value. The update procedure of
the walkers employs the Metropolis–Hastings method,104 as
outlined in Section IIC. We ensure that the new positions of
newly-copied walkers at each step come from the correct
distribution. The detailed-balance condition implies that dis-
placement distributions of the random walk converge to
eqn (27), (S13), and (S16).

The joint distribution for the whole set {Y1,Y2,. . .,Y(Npoints�1)}
is the product of the respective distributions (S13) and (S16),

p({Yj}|{t,D%}) = p(Y1|D%) � p({Y]1[}|{t,D%,Y1}). (S20)

To update the t and D% values, we select new values tnew and
D%,new from the distribution (27) and accept them with the
Metropolis-criterion-based acceptance ratio,160

Ratioj ¼
p fYjgjftnew;D?;newg
	 

p fYjgjftold;D?;oldg
	 
 : (S21)

Similarly, to update a single Yk value we rewrite the left-hand
side in eqn (S20) using the ‘‘chain rule’’ for conditional
probabilities,

P({A,B}|C) = P(A|{B,C}) � P(B|C), (S22)

where A � Yk, B � {Y]k[}, and C = {t,D%}, that gives

p Ykj fY�k½g; t;D?

� �	 

¼

p fYjgjft;D?g
	 


p fY�k½gjft;D?g
	 
: (S23)
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Putting expressions (S13) and (S16) into this relation, margin-
alising the denominator of eqn (S23) over the Yk value,

p fY�k½gjft;D?g
	 


¼
ð
p fYjgjft;D?g
	 


dYk; (S24)

we find for eqn (S23) that

p YkjffY�k½g; t;D?g
	 


¼
exp � Yk � Gkð Þ2

2Sk
2

 !

2pSk
2ð Þ1=2

: (S25)

Here, the additional model parameters {Gk,Sk
2} are expressed

as Y2e
�Dt=t;

D?

2
1� e�2Dt=t
	 
� �

,
Ykþ1 þ Yk�1
2 cosh Dt=tð Þ;

D?

2
tanh Dt=tð Þ

� �
,

and Y Npoints�2ð Þe
�Dt=t;

D?

2
tanh Dt=tð Þ

� �
for k = {1, 1 o k o

(Npoints � 1), (Npoints � 1)}, respectively.
To follow the prior distribution (S25) we update the Yk values

according to another Ornstein–Uhlenbeck process with a small
increment Ds (note that Ds has the units of the diffusion
coefficient here). Then, from eqn (35c) we find

dYkðsÞ
ds

¼ �YkðsÞ � Gk

Sk
2

þ ZðsÞ; (S26)

with hZ(s)Z(s0)i = 2d(s � s0). Thus, the update rule for Yk is

Ykðsþ DsÞ ¼ Gk þ YkðsÞ � Gkð Þ exp �Ds
Sk

2

� �

þ Sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �2� Ds

Sk
2

� �s
Nð0; 1Þ;

(S27)

where is the normal distribution Nð0; 1Þ on with zero mean
and unit variance. Increasing the lag value Ds, the values of
Yk(s + Ds) become independent of Yk(s).

4. Additional tables and figures

Here, we present additional figures supporting findings of the
main text of the manuscript.

Fig. 9 Ergodicity breaking parameter (41) for the DD model (35) normal-
ised to the respective value for BM, EBBM, plotted for D/Dt = {1,10,100} and
varying trajectory length T = Npoints � Dt. Both lag times D and trace
lengths T have units of time, but are listed here as numbers via setting the
elementary time Dt = 1. The parameters of Fig. 3 were used, with averaging
performed over N = 103 traces.

Fig. 10 Normalised distributions of estimated and actual diffusion coeffi-
cients, used to generate N = 100 trajectories with Npoints = 300 from the
DD model. Other parameters are the same as in Fig. 11. The prior (S16)
along the time-series was used to compute the actual distribution. The
solid line is the theoretical prediction (S14) for the chosen t and D%.

Fig. 11 Likelihood function distributions p LDDð Þ for a single DD trajectory from Fig. 3 in the vicinity of the maximum likelihood point, as function of
D% and t. Parameters: Npoints = 300, the actual parameters for generating the trace are t = 5, D% = 0.2, and Dt = 1.
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Abbreviations

SPT Single-particle tracking
MSD Mean-squared displacement
DD Diffusing diffusivity
BM Brownian motion
FBM Fractional Brownian motion
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113 R. Trotta, G. Jöhannesson, I. V. Moskalenko, T. A. Porter,
R. Ruiz de Austri and A. W. Strong, Constrains in cosmic-
ray propagation models from global Bayesian analysis,
Astrophys. J., 2011, 729, 106.
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combinations of ‘‘elementary’’ stochastic mechanisms or
crossovers from one to the other mechanism are needed to
provide a faithful description.24,26,90,93,94,98–100 For instance,
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or lipid granule motion in yeast cells show a crossover
from continuous-time random walk dynamics to FBM-type
motion.90

171 As mentioned before,133 a particular statement on Bayesian
model comparison is sensitive to both the amount of
available data as well as type of priors and their ranges
(see also the discussion in ref. 115). Typically, for a proper

model the predictions turn out more confident when more
data points are available, and when the respective priors
are more restricted in range. The opposite is true for
models which do not fit a given data set, where more data
penalise statistical probabilities of a given model. Note also
that the Occam’s razor and Jeffreys-Lindley paradox favour
simpler models for sparse data.118,133

172 How does the nested-sampling approach compare with
the method of simulated annealing (thermodynamic
integration)?131 Similar to the nested-sampling procedure,
the simulated-annealing method computes Z per eqn (12),
being a thermal method however, it operates with a
reduction of temperature to find maximum likelihood.
For simulated annealing, the inverse temperature b /
1= kBTð Þ changes gradually from 0 to 1 and the walkers

are sampled from the distribution dPi;b / Lb
i dXi. Thus, the

mean log-likelihood averaged over all walkers becomes

logLih ib ¼
Ð
Lbi logLidXiÐ
Lb
i dXi

¼ d

db
log

ð1
0

Lb
i dXi

� �� �
: (15)

To get the log-evidence, we integrate over b variations to

find
Ð 1
0 logLih ibdb ¼ log

Ð
LidXi

	 

� log

Ð
dXi

	 

¼ logZi: The

annealing over b ¼ �dðlogXiÞ
dðlogLiÞ

therefore tracks the density

of states of the system,131 equivalent to �1/slope in logLi

versus log Xi plot, while the nested-sampling method tracks
likelihood variations varying log Xi. This annealing procedure
can fail when logLi is not a strictly-concave function of log Xi,
the situation realised for systems with several separated
(steady) states.131 The advantage of the nested-sampling
method versus simulated-annealing approach is that the first
one enables one to correctly assess the likelihood as long as
Li decreases monotonically with Xi. The nested-sampling
method achieves the same accuracy for Zi with a smaller
number of likelihood evaluations, as compared to the
simulated-annealing method.112

Alternatively, Zi in eqn (12) can be evaluated directly using
the Laplace method of integration for high-dimensional
integrals. Note that one can reach an acceptable accuracy
with this method only if the integrand of eqn (10) is close
to a Gaussian.137 When comparing two equiprobable
models M1 and M2, the Bayes factor in favour of M1 over
M2 is the ratio Z1/Z2.135 Some model-selection methods are
not based on computation of evidence per se, but rather on
Bayes factors. The Savage–Dickey density ratio, see ref. 138,
unlike the Laplace method, is applicable to any form of the
likelihood function,139 but it requires the models to be
nested. For other model-selection approaches—which are
not based on Bayes’ theorem but implementing a ‘‘infor-
mation criterion’’—the assumptions on a nested nature of
the models and of the Gaussian nature of likelihood
functions are not needed.140 Two popular approaches of this
kind are the Akaike- and Bayesian-information criteria. The
first one is defined as AIC ¼ �2 logLmax þ 2N, while the
second one is BIC ¼ �2 logLmax þN logNpoints. Here Lmax
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is the maximum likelihood. The better model is the one with
lower AIC or BIC values. While the Akaike criterion is biased
towards models with more parameters,134,135 the choice of
Bayesian-information-criterion is justified when the model
complexity does not increase with the length of time-series,
Npoints.

136 This assumption does not hold, e.g., for the DD
model in the nested-sampling analysis because the number of
model parameters N and the algorithm complexity grow with
Npoints.
The idea of Bayesian evidence Zi in all the evidence-
based model-comparison methods enables one not to use
approximations of these information-criteria approaches.
The nested-sampling method, as used in the main text,
also enables one to use physical information and some
experimental insights to construct and set a proper range
for the priors. The nested-sampling method has a number
of advantages. Specifically, it provides confidence intervals
for the statistical analysis, ensures statistical robustness of
the results, provides an algorithm to find best-fit model
parameters, and it does so when several models are to be
ranked.

173 We note the principle of maximum information entropy
and entropic prior as other possible prior choices.105,116

174 We note that while the amplitude spread in Fig. 3 is due to
the stochastic nature of the mathematical process at finite
observation time T, in given measured data some additional
amplitude spread will enter the time-averaged MSD due to
measurement inaccuracy as well as heterogeneities on the
level of individual trajectories. Diffusing tracer particles may
experience patches with varying permeability, locally fluctuating
environments, space-varying diffusive and binding-unbinding
dynamics with the substrate. Confinement and ‘‘caging’’ effects
may also be present. Another reason for the irreproducibility of

the time-averaged MSD stems from heterogeneities on the level
of the ensemble of tracers due to different starting conditions,
possible dispersion of sizes, and different particle–substrate
interactions.

175 We list here the physical dimensions of the main quantities
and observables used in the text. In the results below some
of them are presented as dimensionless, for the sake of
simplicity. Starting with the BM and FBM models, MSDs
are measured in m2, generalised diffusion coefficients are
in units m2 s�a, the standard D1 and characteristic D%

diffusion coefficients are in m2 s�1, anomalous exponents a
and Hurst exponents H = a/2 are unitless, times are in s
with elementary time Dt = 1, step deviations s and the
quantity Z are in m, the noise x(t) for BM is in 1=

ffiffi
s
p

, the
noise xfGn(t) in the FBM model is in m s�1, the standard
particle-displacement probability-distribution function
P(x,t) are in m�1, and, finally, the displacements hx2(t)i
and d2ðDÞ

D E
are in m2. For the Ornstein–Uhlenbeck process,

the quantity Y(t) is in m=
ffiffi
s
p

, the noise magnitude e is in m s�1,
the noise �Z(t) has the dimension of 1=

ffiffi
s
p

, variables gact,obs are
in m2, and the variable s in eqn (S26) has the dimension of
m2 s�1. For the Bayesian model, the prior distributions p(y)
have dimensions of 1/y for a given parameter y (this is true
also for multidimensional priors so that, e.g., the dimension

of p({Y]1[}) is 1/[Y(Npoints�2)] or 1
.
ðm
. ffiffi

s
p
Þ Npoints�2ð Þ

h i
), the

dimensions of the likelihood function and evidence Z depend
on the number of points in the trace, namely it is 1/m(Npoints�1),
the quantities X, weights w, and the information are unitless.
Note that as we compare the likelihood functions or evidence
for each model for trajectories with a given number of points,
for relative model probabilities given by eqn (9) the units of
functions Zi cancel one another.
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