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Fluctuations of random walks in critical
random environments

Yousof Mardoukhi,a Jae-Hyung Jeon,bc Aleksei V. Chechkinad and Ralf Metzler *a

Percolation networks have been widely used in the description of porous media but are now found to be

relevant to understand the motion of particles in cellular membranes or the nucleus of biological cells.

Random walks on the infinite cluster at criticality of a percolation network are asymptotically ergodic. On any

finite size cluster of the network stationarity is reached at finite times, depending on the cluster’s size. Despite

of this we here demonstrate by combination of analytical calculations and simulations that at criticality the

disorder and cluster size average of the ensemble of clusters leads to a non-vanishing variance of the time

averaged mean squared displacement, regardless of the measurement time. Fluctuations of this relevant

experimental quantity due to the disorder average of such ensembles are thus persistent and non-negligible.

The relevance of our results for single particle tracking analysis in complex and biological systems is discussed.

I. Introduction

Fractals gained immense popularity after Benoı̂t Mandelbrot
published his famous book The fractal geometry of nature which
contains the by now iconic phrase ‘‘Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a straight line’’.1

Indeed, natural objects in most cases cannot be characterised
by a single scale but exhibit some sort of statistical self-
similarity. For instance, the length of the coastlines of Britain
or Norway varies as function of the applied yard stick, and
similar features appear on different scales.1–3

Yet self-similarity is typically not sufficient to describe natural
objects, either. Thus, mathematical (deterministic) fractals such
as the well known Cantor set (or the multi-dimensional Cantor
dust),4 the von Koch snowflake,5 or the Sierpiński gasket6 are
composed of exact iterations of an identical operation, such as
the removal of the middle third of a line segment for the Cantor
set. The resulting symmetries appear artificial. To combine
self-similarity—on a statistical, not deterministic sense—with
the non-perfect structures of mountains or coastlines, random
fractals have been considered such as landscapes created by
(fractional) Brownian trajectories.1,2

A breakthrough in statistical physics was the conception
of percolation theory originally proposed by Broadbent and
Hammersley.7 In the language of site percolation, imagine that

on a discrete lattice each lattice site is occupied with probability
p and left vacant otherwise. Nearest occupied (or vacant)
neighbours on the lattice are considered to be connected, and
each set of connected occupied (or vacant) lattice sites forms an
occupied (or vacant) cluster. Here we will focus on open clusters
C formed by vacant sites, their size being denoted by Ck k.
Statistical analysis shows that there exists a critical percolation
probability pc at which an open cluster arises which spans the
entire lattice, the incipient infinite percolation cluster. If we
place a particle randomly on a vacant lattice site, it will either
be on the infinite cluster or on any of the finite-sized open
clusters. Notably, at criticality the percolation network is a
random fractal whose Hausdorff dimension can be calculated
for a number of lattice types and dimensions by renormalisation
arguments.2,8 On a square lattice, the centre of the current study,
the fractal dimension is df = 91/48, while the distribution of
cluster sizes is characterised by the Fisher exponent t = 187/91.9

An example for a finite open cluster is shown in Fig. 1.
A random walker moving on fractal open clusters at criticality

continuously encounters dead ends and has to pass through
bottlenecks, a situation that was pictorially characterised as the
motion of ‘‘an ant in a labyrinth’’ by de Gennes.10 In fact the
fractal nature of the geometric constraints effect a power-law
growth of the mean squared displacement (MSD)

h|r(t) � r(0)|2i C ta, (1)

on the infinite cluster, where the scaling exponent can be expressed
as a = 2/dw in terms of the fractal walk dimension dw E 2.87 on the
square lattice.9 The resulting value a E 0.70 demonstrates that the
motion of the random walker is subdiffusive,11 that is, indicating
less efficient spreading than on a fully accessible Euclidean lattice,
for which dw = 2 and thus the diffusion is normal, a = 1.
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The emerging subdiffusion on a critical percolation network on a
square lattice was demonstrated experimentally by field gradient
NMR methods of water diffusion in thin plastic sheets, into which
the cluster geometry was milled.12,13

Percolation networks have classically been used as model
systems for porous media.8,14,15 More recently single particle
tracking experiments monitoring the motion of protein channels
in membranes of living biological cells showed that these
particles were confined to move on a fractal, percolation-like
support.16 From a modelling perspective percolation networks
have been employed to characterise the diffusive motion of,
typically submicron, tracer particles in the crowded cytoplasm of
biological cells or in their membranes.17–20 We also mention
applications of studies on adaptive growth and branching of
plants in heterogeneous environments21 and to labour division
in economic contexts.22 While the majority of studies focuses on
the motion on the infinite cluster, only relatively few consider
the impact of the co-existing finite sized clusters.8,23

To analyse particle tracking experiments or simulations involving
percolation networks at criticality, it is important to have available
precise analytical tools to quantify the observed dynamics. Typically,
single particle trajectories are evaluated in terms of time averaged
mean squared displacements (TAMSDs),24–28 see eqn (3) below. The
prime question in this context is whether the information encoded
in the TAMSD is equivalent to that of the ensemble MSD (1) or not.
This question is related to ergodicity in the weaker sense that
sufficiently long time averages of a physical quantity are equivalent
to the corresponding ensemble average.24,25,29

Non-stationary anomalous diffusion processes such as the
famed continuous time random walk, in which successive
motion events are interspersed with immobile periods with
scale-free distribution of waiting times15,25,30 or heterogeneous
diffusion processes with space-dependent mobility31–33 are
inherently non-ergodic and exhibit fundamental differences

between the MSD and TAMSD,24,25,34–36 which was indeed
shown experimentally.16,37–39 They also exhibit pronounced
ageing effects.16,25,38–43 Conversely, processes dominated by
viscoelastic effects driven by long-range correlated fractional
Gaussian noise—stationary in their increments—are ergodic
and do not age.16,37,44–48

Random walks on the infinite percolation cluster were
demonstrated to be ergodic.49,50 Moreover, it was shown that
the increment correlation function for diffusion on a critical
square percolation network is indistinguishable from the one
for (overdamped) viscoelastic diffusion.49,50 In our previous
analysis51 we went one step further and took all, incipient
infinite and the full ensemble of finite clusters into account.
We demonstrated that below, above, as well as at the percolation
threshold the average over TAMSDs over a large set of particles
indeed converged to the MSD. However, we also showed that due
to the random seeding, the TAMSDs of those particles diffusing
on finite clusters were eventually dominated by the finite size,
and thus intrinsically different from each other. As a particle
seeded on a finite cluster cannot jump to another cluster this is
some form of strong ergodicity breaking in the sense that the
phase space is topologically disconnected. Only the disorder
average including the full ensemble of geometries restores
ergodicity on this level. In particular, we obtained that even after
both ensemble and disorder averages were taken, the amplitude
fluctuations of the TAMSD quantified by the ergodicity breaking
parameter were characterised by a finite variance.

Here we further analyse the fluctuations of the TAMSD on a
critical percolation network. We carefully separate the behaviour of
the trajectory on a single cluster, from that of the disorder averaged
dynamics. In what follows, after defining the fundamental quan-
tities of MSD and TAMSD on a given topology we conjecture the
analogy of the current problem with the Ornstein–Uhlenbeck
process. This formal correspondence is then used to calculate the
ensemble averages of the MSD and TAMSD. In a further step we
then take the disorder average, based on which we quantify the
amplitude fluctuations of the TAMSD. Our results are put into
perspective in the Discussion section, particular, with respect to
single particle tracking analysis in complex and biological systems,
before collecting some details in the Methods section.

II. Results
A. Random walks and percolation

For an ensemble of random walkers on a given open cluster C of
the percolation network the MSD is defined as

rC
2ðtÞ

� �
¼ rðtÞ � rð0Þj j2
D E

; (2)

where the angular brackets indicate an ensemble average over
random walks sampled over that specific cluster. The TAMSD
for the same ensemble of random walks on this cluster is
defined as24,25,34

dC2ðDÞ
D E

¼ 1

T � D

ðT�D
0

rðtþ DÞ � rðtÞj j2
D E

dt; (3)

Fig. 1 Finite open cluster of size Ck k ¼ 793 represented by Oxford blue on
a square lattice at criticality. The arrow starts at the centre of mass of the
cluster, and its tip defines a circle whose radius is the radius of gyration Rg

of the open cluster. The co-ordinates show the lattice points of the entire
network. Sky blue sites represent other vacant lattice sites, the powder
blue (off-white) sites are occupied. Note that we consider the motion of
particles on connected vacant lattice sites.
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where T is the overall length of the measured time series and D
is called the lag time.

An essential complication for evaluating these quantities is the
lack of full knowledge of the probability density function for
diffusion on random fractals. Despite scaling arguments based on
the radial distribution of the mass of the fractal support52 or
attempts to reproduce the scaling behaviour of the probability
density function in terms of fractional diffusion equations,53,54 this
question has remained elusive. A more promising approach is based
on dynamical scaling theories, which address questions on the
scaling behaviour of statistical quantities of random walks averaged
over all clusters, relating them to the geometrical exponents of
percolation clusters.9,55 This is basically the approach chosen here
to study random walk processes for the full ensemble of clusters at
criticality.

Assume an ensemble of open clusters onto which random
walkers parachute. Randomly, they may either land on the
incipient infinite cluster or on a finite-sized open cluster. Denote
the linear size explored by a random walker after infinitely many
steps by RN, then the MSD assumes the value,55,56

R1
2 � rC

2ðtÞ
� �

R12
� exp � t

w

� �w� �
: (4)

Here w is a positive definite exponent which depends on the
underlying topology only, and w is a characteristic time needed
by the random walkers such that they will eventually feel the
effective linear size of the underlying cluster C.55 Note that when
the underlying cluster tends to be the incipient infinite cluster,
then w - N and one observes that rC

2ðtÞ
� �

’ tw.
In their work Mitescu et al. originally assumed w to be unity,57

but later simulation studies of Fassnacht and Pandey revealed a
value smaller than unity in three dimension.58,59 While the general
form of eqn (4) was qualitatively confirmed by simulations,
numerical analyses performed by Jacobs et al., based on transi-
tion probability matrix formalism, estimated w to be 2/dw.56

For a finite size cluster C it is evident that the MSD or
TAMSD will eventually reach a saturation plateau, the time
needed to reach the plateau depending on the size of the
cluster. For such a cluster, at saturation the MSD, averaged
over equilibrium initial positions with equal weight 1= Ck k is
twice the squared of the radius of gyration Rg of that cluster.60,61

Hence we rewrite eqn (4) in the form

rC
2ðtÞ

� �
¼ 2Rg

2 1� exp � t

w

� �2=dw
" # !

: (5)

Here the subscript eq. refers to the equilibrium initial condition.

Due to the time invariance at equilibrium the TAMSD dC2ðDÞ
D E

is identical to rC
2ðtÞ

� �
, with time t replaced by lag time D,

dC2ðDÞ
D E

¼ 2Rg
2 1� exp � D

w

� �2=dw
" # !

: (6)

Analogy between Ornstein–Uhlenbeck process and random
walks on finite size open clusters. However, what happens
when the initial seeding of random walkers is different from

the above-assumed equilibrium initial condition? This situation
will be of relevance for many real systems whose experimental
preparation coincides with the start of the measurement at t = 0.
For instance, in a porous matrix a single colloidal particle is
released at a specific point on the cluster, a drop of a tracer
chemical trickles down into a soil aquifer from above, or a
neuronal synapse sends a signal pulse in a neural network. In
our simulations delineated below we adopt this non-equilibrium
stance and always seed the random walker at the centre of the
lattice. We therefore need to seek a new set of equations for the
MSD and TAMSD to address non-equilibrium initial conditions,
the purpose of this section. We achieve this by using the analogy
between the generic Ornstein–Uhlenbeck processes and random
walks on finite size open clusters based on the universal form of
eqn (4).

As discussed earlier the precise form of the probability
density function for diffusion on a random fractal is unknown.
That makes it arduous to approach random walk processes on
finite size open clusters by standard methods such as solving the
stochastic differential equation associated to the processes and its
corresponding Fokker–Planck equation with appropriate boundary
conditions, or to employ path integral methods. Looking at eqn (4)
one may note that such a form for the MSD for w = 1 corresponds to
the relaxation dynamics of a random walker in the Ornstein–
Uhlenbeck process (diffusion in an harmonic potential).62,63

As addressed in ref. 63 the Langevin equation for the
Ornstein–Uhlenbeck process in two dimensions with positive
parameters w and s and a randomly distributed initial condi-
tion r0 in the presence of the white and zero-mean Gaussian
noise n(t) is given by

dr

dt
¼ � r

w
þ snðtÞ; xi t1ð Þxj t2ð Þ

� �
¼ dijd t1 � t2ð Þ; i; j 2 fx; yg:

(7)

For such processes the MSD and TAMSD are found to be63

rOU
2ðtÞ

� �
¼ r0

2
� �

1� exp � t

w

� �� �� �2

þ ws2 1� exp �2 t

w

� �� �� �
;

(8a)

dOU
2ðDÞ

D E
¼ 2ws2 1� exp � D

w

� �� �� �
þ r0

2
� �

� ws2
� 	

� 1� exp � D
w

� �� �� �2 1� exp �2 T � D
w

� �� �
2

T � D
w

� �
0BB@

1CCA:
(8b)

To identify the similarity between Ornstein–Uhlenbeck processes
and random walks on finite size open clusters, it is sufficient to
consider the equilibrium initial condition for r0, which implies
hr0

2i = ws2.63 Such a condition then yields

rOU
2ðtÞ

� �
eq:
¼ 2ws2 1� exp � t

w

� �� �� �
; (9a)
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dOU
2ðDÞ

D E
eq:
¼ 2ws2 1� exp � D

w

� �� �� �
: (9b)

One then can immediately relate this set of equations to expressions
(5) and (6). Additionally, eqn (8a) and (8b) provide a clear
clue to conjecture a new set of relations for the MSD and
TAMSD for random walks in finite random environments when
the equilibrium initial condition is not satisfied. Thus assume
that a random walk on a cluster C with gyration radius Rg and
characteristic time w is analogous to an Ornstein–Uhlenbeck
process with parameters w and s, in which Rg

2 = ws2 and time t

is rescaled as t2/dw. Thus we arrive at the following expressions,

rC
2ðtÞ

� �
¼ r0

2
� �

1� exp � t

w

� �2=dw
" # !2

þ Rg
2 1� exp �2 t

w

� �2=dw
" # !

;

(10a)

dC2ðDÞ
D E

¼ 2Rg
2 1� exp � D

w

� �2=dw
" # !

þ r0
2

� �
� Rg

2
� 	

1� exp � D
w

� �2=dw
" # !2

�
1� exp �2 T � D

w

� �2=dw
" #

2
T � D

w

� �2=dw

0BBBB@
1CCCCA:

(10b)

We now show that expressions (10), deduced from analogy
with the Ornstein–Uhlenbeck process, are consistent with the
known limiting behaviours of both the MSD and the TAMSD.
Below we will also demonstrate good agreement with simulations
results. In the limit of short times t { w we recover the expected

free anomalous diffusion behaviour rC
2ðtÞ

� �
’ t2=dw of the MSD,

while for D { w the TAMSD becomes dC2ðDÞ
D E

’ D2=dw .

Conversely, in the long time limit t, T - N, eqn (10) have
the following asymptotes,

lim
t!1

rC
2ðtÞ

� �
¼ r0

2
� �

þ Rg
2 (11a)

lim
T!1

dC2ðDÞ
D E

¼
2Rg

2; if woD� T

r0
2

� �
þ Rg

2; if D! T

8<: : (11b)

This limit indeed produces the expected values.
These asymptotes can alternatively be derived by invoking

the generic definition of the MSD and TAMSD given by relations (2)
and (3). To demonstrate this for the TAMSD consider a finite size
open cluster C. According to eqn (3) for lag times D- T the TAMSD
saturates at a certain level, assuming that w{ T, which guarantees

that the random walker would have enough time to visit each site
of the cluster equally. Then

lim
D!T

dC2ðDÞ
D E

¼ lim
D!T

1

T � D

ðT�D
0

rðtþ DÞ � rðtÞj j2
D E

dt

¼ rðTÞ � rð0Þj j2
D E

:

In the centre of mass co-ordinate system, used here for con-
venience,

rðTÞ � rð0Þj j2
D E

¼ rðTÞ � rC;cm þ rC;cm � rð0Þ


 

2D E

; (12)

where rC;cm ¼
1

Ck k
PCk k
s¼1

rC;s is the centre of mass of the finite

size open cluster. Here rC;s represents the spatial position of
site s in the cluster C. In the limit N - N, where N is the
number of random walk processes on a given cluster, due to
the finite cluster size visiting any site sj 2 C becomes equally
probable. Thus r(T) would be any rC;s, where the probability of
visitation is 1= Ck k. Therefore the ensemble average would
be equivalent to taking an average over different cluster
sites. Hence,

lim
D!T

dC2ðDÞ
D E

¼ 1

Ck k
XCk k
s¼1
jrC;s � rC;cmj2 þ jrC;cm � rð0Þj2
�

þ 2 rC;s � rC;cm
� 	

� rC;cm � rð0Þ
� 	�

:

(13)

In the equation above, the square root of the first term is
simply the definition of the radius of gyration Rg for a given
cluster C and the third term vanishes. This yields

dC2ðDÞ
D E

¼ Rg
2 þ rC;cm � rð0Þ



 

2D E
; D! T ; (14)

where rð0Þ � rC;cm


 

2 (equivalent to r0

2 in eqn (11a)) is a random

variable which depends on the initial position of the random
walkers.

In the current form of eqn (10a) and (10b) the dependence of
w and Rg on C is not evident. To find the relation between these
quantities, dynamical scaling theory is exploited. The time
which is required by a random walker to reach the linear length
scale of a cluster C can be approximated as follows: on length
scales smaller than Rg the boundaries of the underlying finite
cluster can not yet be reached by the walker, and thus

rC
2ðtÞ

� �
¼ Dt2=dw , where D is the anomalous diffusion

coefficient.8,55 Therefore the typical time scale w required for

a random walker to reach a length scale comparable to
ffiffiffiffiffiffiffiffiffiffi
2Rg

2
p

,

scales as w ¼ 2

D

� �dw=2

Rdw
g . From this scaling relation and the

scaling relation for the mass distribution of fractal objects,

Rdf
g ¼ hdf Ck k (where h is a dimensional constant),9 on the time
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scale w one attains w2=dw ¼ 2h2

D
Ck k2=df . Including this relation

into eqn (10a) and (10b), we obtain the modified relations

rC
2ðtÞ

� �
¼ r0

2
� �

1� exp � Dt2=dw

Ck k2=df

� �� �2

þ h2 Ck k2=df 1� exp � 2Dt2=dw

Ck k2=df

� �� �
;

dC2ðDÞ
D E

¼ 2h2 Ck k2=df 1� exp �DD2=dw

Ck k2=df

� �� �
(15a)

þ r0
2

� �
� h2 Ck k2=df

� �
1� exp �DD2=dw

Ck k2=df

� �� �2

�
1� exp �2DðT � DÞ2=dw

Ck k2=df

� �
2D
ðT � DÞ2=dw
Ck k2=df

0BBB@
1CCCA:

(15b)

Here we introduced D = D/(2h2). For validation of this approach
based on the analogy with the Ornstein–Uhlenbeck process, by
extensive Monte Carlo simulations we refer to Fig. 5.

B. Disorder average: anisotropy and cluster size average

In an ensemble of open clusters, it is not only the size of the
clusters that matters but also their topological structure and
the distribution of their mass around their centre of mass.
These two factors together define the disorder average. Indeed,
averaging over the anisotropy of same-sized open clusters yields
a result, which is equivalent to averaging over the randomly
distributed initial position of the random walks, producing an
equilibrium situation. This observation simplifies the rest of
the calculations regarding the cluster size average over the
ensemble of finite size open clusters.

Anisotropy average of the TAMSD over all possible same-
sized clusters. We take a disorder average of the TAMSD in two
steps. First we average over all possible clusters of the same
size, then we average over the distribution of cluster sizes. In
the first step we note that averaging over hr0

2i yields exactly Rg
2,

which is intuitively clear (see also the Methods section). The
TAMSD (15b) after anisotropy averaging returns expression (6)
corresponding to equilibrium initial conditions.

It is interesting to observe that due to this averaging the T

dependence of dC2ðDÞ
D E

disappears. Indeed, this is not surprising

as the average over all clusters of the same size is equivalent to the
averaging over the equilibrium initial condition corresponding to
the specific system. To clarify the equivalence between these two,
recall that the equilibrium initial condition for a cluster C is
realised once the random walk process is initiated randomly with
equal weight 1= Ck k at any possible site in C. Now, instead of
choosing the initial position randomly, shift the underlying
lattice and choose randomly the centre of the lattice within the
cluster C while keeping the initial position of the random walk at
the centre of the lattice. Since the lattice remains the same under
translational transformations the new configuration is equal to

realisations of different clusters with the same size and shape.
Therefore one observes that randomly choosing the initial posi-
tions of random walkers is equivalent to randomly choosing the
centre of the lattice within the cluster by shifting the underlying
lattice. In the Methods section a more formal proof is provided
for the anisotropy average over clusters of size three. There it will
be demonstrated further that in the simulations this claim also
holds true.

Cluster size average of dC2ðDÞ
D E

. For the ensemble of finite

size open clusters Cf g the cluster size average of dC2ðDÞ
D E

(eqn (6)) is given by

e
dC2ðDÞ
D E

¼
X
fCg
P Ck kð Þ dC2ðDÞ

D E
; (16)

where P Ck kð Þ is the probability for a random walker to land on
cluster C. This probability is simply given by the probability of
the appearance of such a cluster in a specific realisation of the
underlying percolation network, multiplied by the probability
that the centre of the lattice would belong to this cluster. The
probability distribution for the cluster C to appear in a specific
lattice realisation at the critical percolation density is ’ Ck k�t,
where t is a scaling exponent called the Fisher exponent.9

Therefore, the probability that the centre of the lattice would
belong to this cluster scales as Ck k1�t,8 such that

e
dC2ðDÞ
D E

¼ X
X1
Ck k¼1

dC2ðDÞ
D E

Ck k1�t: (17)

Here X is a normalisation constant. Taking the continuum
limit of the summation (see ref. 9, eqn (21)) and substituting
relation (6), the evaluation of the integral yields the cluster size

average of dC2ðDÞ
D E

,

e
dC2ðDÞ
D E

¼ X
ð1

ck k
2h2 1� exp �DD2=dw

Ck k2=df

� �� �
Ck k2=dfþ1�td Ck k;

(18)

where ck k is the smallest cluster in Cf g. Substituting the
argument of the exponential function we evaluate the integral,
producing

e
dC2ðDÞ
D E

¼ðt�2Þ ck kt�2 � 2dfh
2

2þdfð2�tÞ
ck k2dfþ2�t

�

�dfh2D1þdf
2
ð2�tÞg �1�df

2
ð2�tÞ;DD2=dw

ck k2=df

� �
D
2þdf ð2�tÞ

dw

�
;

(19)

where g(a,x) represents the lower incomplete gamma function.

Normalised variance of dC2ðDÞ
D E

. To evaluate the variance of

the TAMSD we need to evaluate the cluster size average of

dC2ðDÞ
D E

2. After following the same procedure carried out for
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e
dC2ðDÞ
D E

, we find

e
dC2ðDÞ
D E

2 ¼ ðt� 2Þ ck kt�2 �4dfh
4 ck k4dfþ2�t

4þ dfð2� tÞ � 4dfh
4D

2þ
df

2
ð2�tÞ

8<:
� �21þ

df
2 ð2�tÞg �2� df

2
ð2� tÞ; 2DD2=dw

ck k2=df

� ��

þ g �2� df

2
ð2� tÞ;DD2=dw

ck k2=df

� ��
D
4þdf ð2�tÞ

dw

�
:

(20)

In eqn (18) we might set the lower limit of the integral to
zero, ck k ¼ 0, as the integral converges. We however find that
taking into account the existence of the smallest cluster size ck k
is necessary to grasp the numerical results below. When fitting
eqn (19) and (20) to the simulation data with ck k ¼ 0, the
remaining two free parameters h and D were found to be
insufficient to provide sufficiently good descriptions fore
dC2ðDÞ
D E

and
e
dC2ðDÞ
D E

2. Once a smallest cluster size is con-

sidered (we here choose the physical value ck k ¼ 1) h and D can
be optimised simultaneously to achieve a good fit to the
simulations data.

Eqn (19) and (20) deserve two pertinent remarks. First, it is

seen that when DD2=dw � ck k2=df in the argument of the incom-

plete gamma function g, then the quantities
e
dC2ðDÞ
D E

ande
dC2ðDÞ
D E

2 grow as a power of D. Within the same limit, division

of
e
dC2ðDÞ
D E

2 by
e
dC2ðDÞ
D E

yields an exponent for D which is

twice the gap exponent 1/dw, predicted by dynamical scaling

theory.8,64 In particular, both
e
dC2ðDÞ
D E

and
e
dC2ðDÞ
D E

2 are

independent of the measurement time T. This is due to the
averaging over all same-sized open clusters, as already alluded
to above. To justify the validity of these scaling relations, D and
h were optimised simultaneously for the two equations to
achieve the best fit to the simulations results, represented by
the dotted line in Fig. 2. The qualitative match between results
(19) and (20) with the simulation results in Fig. 2 is quite good,
given the conjectural arguments above.

The normalised variance of dC2ðDÞ
D E

for an ensemble of

finite size open clusters is given by

EBðDÞ ¼

e
dC2ðDÞ
D E

2

� �
� edC2ðDÞD E� �2

e
dC2ðDÞ
D E� �2

� 0; (21)

which is a measure to quantify the amplitude fluctuations of
individual results for the TAMSD at a given lag time D. We
emphasise that in this expression for EB no T-dependence
remains due to the anisotropy average over finite-sized open
clusters, as discussed above. Apart from the disorder average e�
the quantity (21) has a similar structure as the ergodicity

breaking parameter introduced and studied in ref. 24, 25, 34,
44 and 65.

Substituting expressions (19) and (20) into eqn (21) we arrive
at an analytical expression for EB. This expression contains a
large number of cross-correlation terms such that we restrict

ourselves to the limiting behaviour in the case DD2=dw � ck k2=df
in which the incomplete gamma functions reduce to complete
gamma functions. We then find that

EB E ADdf(t�2)/dw � 1, (22)

where A is a constant. The same result yields from eqn (18) by
setting the lower integral limit to zero. Employing the hyper-
scaling relation between df and t = d/df + 1 where d is the
embedding Euclidean dimension,9 the above expression can be
written exclusively in terms of df and d. Interestingly, the
resulting form

EB E AD(d�df)/dw � 1, (23)

has the same exponent of D as the form for the parameter S
proposed by Meroz et al.49,50 to distinguish non-ergodic pro-
cesses from ergodic ones. The difference is that here the
ensemble is constituted by a cluster ensemble of different sizes,
in contrast to the case addressed in ref. 49 and 50 where only
incipient infinite clusters were considered.

The analytical solution (21) for EB with the fit parameters
from Fig. 2 is plotted as function of lag time D in Fig. 3 along
with the results of our Monte Carlo simulations. The match is
indeed rather good. What is clear from the double logarithmic
plot in Fig. 3 is that for the displayed lag time values we see a
crossover to the long-D scaling. The intermediate scaling at
shorter D has a steeper slope.

Another interesting observation is that the exponent of the lag
time D in eqn (19) can be rewritten in terms of the spectral
dimension ds = 2df/dw.8,66 Recalling the hyperscaling relation stated
earlier between df and the Fisher exponent t, the expression of the
disorder averaged TAMSD of eqn (19) can be rewritten as

e
dC2ðDÞ
D E

¼ ðt� 2Þ ck kt�2 �2h2 ck k2dfþ2�t � dfh
2Ddf=2

h
� g �df

2
;
DD2=dw

ck k2=df

� �
Dds=2

�
:

(24)

We emphasise that regardless of the type of the underlying lattice,
in two dimensions and for long lag times, D - N, the disorder
averaged TAMSD grows as Dds/2. This sole dependence on the
spectral dimension ds is a consequence of the two-dimensional
embedding.

III. Discussion

We studied the amplitude fluctuations of the TAMSD typically
measured in single particle tracking experiments or simula-
tions for diffusion processes on a square percolation network at
criticality. In particular we took all clusters of the network into
account, not solely the incipient infinite cluster. Based on the
conjectural analogy of this process with an Ornstein–Uhlenbeck
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process whose known results were rescaled in time we obtained the
MSD and TAMSD for the diffusion on the ensemble of percolation
clusters, under non-equilibrium initial conditions. The latter are
appropriate for many single particle experiments and simulations,
in which a tracer is put at a specific place on the percolation
network initially. The results based on the analogy with the
Ornstein–Uhlenbeck process were shown to be fully consistent
with our simulations. Moreover, the expected analytical short and
long time behaviours were recovered from the resulting expres-
sions. In addition, it was shown that averaging over the anisotropy
of clusters with a specific size yields an expression for the TAMSD
which in this anisotropy-averaged sense is independent of the
measurement time T. This consequently yielded a result for the
normalised variance for the TAMSD, the ergodicity breaking para-
meter, which is independent of T, as well.

Let us briefly dwell on the connection with our earlier result.
Thus, in ref. 51 we empirically suggested from simulations
results that EB decays algebraically in T towards a residual
value EBN in the form

EBðDÞ ¼ k
D
T

� �g

þEB1ðDÞ; (25)

where k is a constant and g a scaling exponent, whose value for
the square lattice was estimated to be 0.8. The constant EBN

was found to be an increasing function of the lag time D and
the percolation density p, as well as to acquire a non-zero value
when p approaches the critical value pc.51 This form was
proposed based on earlier analytical results for other stochastic
processes such as Brownian motion, fractional Brownian
motion, scaled Brownian motion, and continuous time random
walks:25,34,67–70 there EB decays as a power of T, with different
scaling exponents, and, in some cases, attains a residual value.
Here we demonstrate that the T dependence vanishes after
taking the anisotropy average corresponding to an equilibrium
initial condition, for which the dynamics is stationary. Due to
computational limitations, however, it is impossible to sample
all cluster configurations of the same size by means of Monte
Carlo simulations. For instance, even for a small cluster of size
24 there are 103 configurations.71 This is the reason why in our
simulations we could observe a T dependence of EB, albeit this
dependence is rather weak. This fact is illustrated in Fig. 4
which demonstrates that EB remains practically constant when
T varies from 104 to 106.

It will be interesting to extend the current study to other
types of lattices and dimensions. For lattices embedded in two
dimensions we would expect that the results obtained here can
be transferred to other cases such as the triangular lattice. In
higher dimensions it will have to be seen whether the residual,
asymptotic value of EB is still relevant, and how the lag time
scaling of the different averages of the TAMSD is modified.

As we discussed in the introduction, percolative systems are
used as models for the study of protein diffusion in the
chromatin of living cells or in the cellular cytoplasm.18,20 Here
the percolation network models areas of the cell that are
inaccessible due to molecular crowding. Following recent
simulations studies, in particular, in two spatial dimensions
demonstrate that in crowded environments the size of the
tracer particle itself may renormalise the accessible space.72

Such effects may be included in more realistic percolation
simulations. Moreover, it was shown that essential features of
two-dimensional membrane systems consisting of small lipid
molecules and large proteins, both mobile, can be mimicked
by a static excluded volume system,73 thus rendering static

Fig. 2
e
dC2ðDÞ
D E

(left) and
e
dC2ðDÞ
D E

2 (right) versus D. Dashed lines indicate the theoretical expressions (19) and (20). The simulation time was T = 106.

The ensemble consists of 5 � 102 lattices of size 4096 � 4096, on each lattice 50 random walks were simulated with D = 0.827 and h = 0.375.

Fig. 3 Ergodicity breaking parameter EB versus lag time D. The red dashed
line represents eqn (21) based on results (19) and (20). The values of the
adjustable parameters are D = 0.827 and h = 0.375, the fit values being taken
from Fig. 2. The blue full line is the scaling form of EB given by result (22)
with the fitted value A = 0.98. The ensemble in the simulations consists of
5 � 102 lattices, where on each 50 random walks were simulated.
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approaches such as the percolation network applicable also to
intrinsically dynamic systems.

Concluding, we are convinced that our results will be of
interest not only to the further understanding of dynamics on
percolation networks but of special relevance for the interpreta-
tion of single particle tracking experiments. In realistic situa-
tions one does not always have the flexibility to measure
systems under equilibrium initial conditions, and averages
of dynamic quantities are affected by inherent disorder in
the system. Here our results of physical observables such as
the MSD and the amplitude variations expressed in terms of the
ergodicity breaking parameter will be easy to implement in data
analysis. A particularly relevant area of current research is the
single particle tracking of channel proteins in the membranes
of living biological cells for which random fractal patterns have
been unveiled from the trajectories.74,75 This behaviour was
associated with the self-similar compartmentalisation of the
cortical actin meshwork.76 Similarly relevant will be single
particle tracking studies in the nucleus of living cells.18

IV. Methods
A. Simulation Scheme

The simulations were carried out on a square lattice, and the
nearest neighbours of each site were identified by the von
Neumann neighbourhood. The size of the lattice was set to
4096 � 4096, unless otherwise specified, when the size is set to
1024 � 1024. Each cell of the lattice is then attributed to be
occupied with the percolation probability p or is left vacant
otherwise. For the square lattice the critical percolation density
pc is not known analytically but it is, by the means of simula-
tions, confirmed that pc = 0.407254 (note that vacant sites are of
interest here).8,9 In the simulations carried out here we used
pc = 0.4.

The initial position of the random walker is located at the
centre of the lattice, which may belong to an open cluster or it is
an occupied site. In the latter case, the nearest vacant site is
chosen as the initial position. Therefore whether a random walker
parachutes onto a finite size open cluster or onto an incipient

infinite cluster, is random and the associated probability related to
the given cluster size Ck k. For an illustration of such clusters see
Fig. 1. The simulation time T is set to 106. It is variable only when
the dependence of the variance of the disorder averaged TAMSD on
T is analysed, when it varies from 104 to 106. The minimum lag
time is D = 102 to guarantee that the topology of the underlying
open clusters are sufficiently sampled.

The fractal dimension df was estimated as follows. An
ensemble of 7 � 102 incipient infinite clusters are analysed. It
is clear that it is not readily observable whether the centre of
the lattice belongs to a finite size cluster or to the incipient
infinite cluster. Therefore to identify the open clusters and
sieve the incipient infinite ones in a lattice realisation, the
Hoshen–Kopelman algorithm is used.77 Afterwards, the box
counting method was used to estimate their fractal dimension
df.

78 On average its corresponding value was found to be
df = 1.9 	 0.1, which compares favourably with the predicted
value df = 91/48 E 1.90. Yet it should be understood that every
cluster has its own fractal dimension due to the unique
anisotropy and inhomogeneity of the topology. The same
applies to the random walk dimension dw. To estimate dw

eqn (1) was used to extract the anomalous diffusion exponent
a for the incipient infinite clusters, and it was estimated as
2.7 	 0.1, compared to the known value 2.87. The Fisher
exponent t of the cluster size distribution at pc is set to
2.03 	 0.01 based on earlier analyses on the distribution of
finite size open clusters.51 Again, this compares well with the
literature value of t = 187/91 E 2.05.

Simulation validation of phenomenological approach. To
verify the validity of eqn (5), (6), (10a) and (10b), analyses were
performed on some finite size open clusters. Here for instance,
a sample open cluster of size 793 on a lattice of size 1024 �
1024 is demonstrated, see Fig. 1. Two initial conditions were
considered: (i) the random walker was fixed to the centre of the
underlying lattice at (512, 512), or (ii) the initial position was
randomly chosen to be any site within the finite cluster. In total
8 � 103 random walks were simulated and the result is shown
in Fig. 5. In the left panel, corresponding to the fixed initial
position, we note the gap of width Rg

2 between the MSD and the
TAMSD. This is the immediate consequence of how these

Fig. 4 EB versus T at D = 102. The number of lattices in the ensemble is 103 on each of which 2 � 102 random walks were simulated. Note the slight
changes in EB while T varies between 104 to 106.
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quantities are defined in eqn (2) and (3); this is a well known
disadvantage of these definitions for the stationary state of a
diffusion process, see, for instance, ref. 25 and 79. In contrast,
in the right panel, where the initial position was chosen
arbitrarily, both reach the same asymptote, namely 2Rg

2. In
the procedure df E 1.60 was estimated by the box counting
method; the values dw E 2.44, D E 0.27, and h E 0.29 were
determined by best fit with the analytical expressions.

Anisotropy average over same-sized open clusters. To
demonstrate that hr0

2i, once averaged over the anisotropy of
clusters of the same size, is simply Rg

2, an analytical proof for
the case of clusters of size three is provided here. There are two
classes of clusters with the size three which are presented in
Fig. 6. Note that clusters formed by applying the symmetry
groups of the square lattice again belong to these two classes.
Define these two classes with [–] and [

0

] (the upper row and the
lower row in Fig. 6, respectively).

Consider the class [–], then the following are the calculated
values hr0

2i and Rg
2 for the three possible configurations that

appear at the centre of the lattice presented on the leftmost,
middle, and rightmost panels of the first row of Fig. 6:

r0
2

� �
¼ ð0� 1Þ2 ¼ 1

Rg
2 ¼ 1

3
ð0� 1Þ2 þ ð1� 1Þ2 þ ð2� 1Þ2
� �

¼ 2

3

9>=>;ðLeftmostÞ

(26)

r0
2

� �
¼ ð0� 0Þ2 ¼ 0

Rg
2 ¼ 1

3
ð�1� 0Þ2 þ ð0� 0Þ2 þ ð1� 0Þ2
� �

¼ 2

3

9>=>;ðMiddleÞ

(27)

r0
2

� �
¼ ð�1� 0Þ2 ¼ 1

Rg
2 ¼ 1

3
ð�2þ 1Þ2 þ ð�1þ 1Þ2 þ ð0þ 1Þ2
� �

¼ 2

3

9>=>;ðRightmostÞ

(28)

Then the anisotropy average over hr0
2i yields

1þ 1þ 0

3
¼ 2

3
,

which is equal to Rg
2. The same applies to the [

0

] class.
Therefore it is supported that in eqn (15b) the quantity hr0

2i
is indeed equal to Rg

2, once averaged over the anisotropy. This
should not be surprising since this average is equivalent to an
average over different initial positions of the random walks.
However, to proof this numerically is practically impossible.
For instance among the 9780 lattice realisations only 4 clusters
of size 100 were identified. Thus the ensemble of finite clusters
with size ranging from 100 to 149 comprised altogether 75.

Although the size of these clusters varies somewhat, dC2ðDÞ
D E

maintains practically stationary property for this very ensemble.

In Fig. 7 we depict dC2ðDÞ
D E

of these clusters (grey lines).

Alongside dC2ðDÞ
D E

is shown (thick black line). Note that there

Fig. 5 MSD and TAMSD for fixed initial position (left) and arbitrary initial position (right) on a finite cluster of size 793. 8 � 103 random walks were
simulated. The x and y axes components of the co-ordinate of the centre of mass were found to be 513.74 and 518.20, respectively. Rg

2 was measured to
be 346.33.

Fig. 6 Two classes of clusters of size three with their different sites
positioned at the centre of the lattice. Other clusters which are formed
by applying the symmetry groups of the square lattice are equivalent to
these two. The x and y axes show the positive direction of the Cartesian
co-ordinate, and the red square cell is the centre of the lattice located at
(0, 0).
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are two types of dC2ðDÞ
D E

distinguished by their tail, which

either ascends or descends (the red and yellow curves). The
former corresponds to situations when the topological shape of
the cluster is highly anisotropic (Fig. 7 right panel top) and
consequently hr0

2i 4 Rg
2. The latter case corresponds to situa-

tions when the finite cluster is distributed evenly around the
centre of the lattice (Fig. 7 right panel bottom). Such cases imply
that hr0

2i o Rg
2. The tails of the resulted anisotropy averaged

TAMSDs stays constant implying that the quantity (6) is indeed
independent of T.
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