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Acceleration of bursty multiprotein target search
kinetics on DNA by colocalisation

Prathitha Kar,ab Andrey G. Cherstvy b and Ralf Metzler *b

Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with

intermittent 1D and 3D search steps. Gene colocalisation and coregulation—i.e. the spatial proximity of

two communicating genes—is one factor capable of accelerating the target search process along the

DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation

for minimising the search time in a model DNA–protein system. We use a simple diffusion model to mimic

the search for targets by proteins, produced initially in bursts of multiple proteins and performing the

first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is

studied as a function of distance between the initial position of proteins and the DNA target position,

as well as versus the concentration of proteins. We also examine the properties of bursty target search

kinetics for varying physical–chemical protein–DNA binding affinity. Our findings underline the relevance

of colocalisation of production and binding sites for protein search inside biological cells.

I. Introduction
A. Facilitated diffusion

Protein–DNA interactions and protein search for target
(cognate) sequences on genomic DNA1–13 control and tune a
number of vital biological processes in bacterial and eukaryotic
cells. One example of fast intracellular stochastic transport14 is
the search for promoters on DNA by transcription factor (TF)
proteins, often required for transcription initiation or repression
during gene expression. For instance, the lac repressor (LacI)
binding to its operon site on the DNA realises a simple switch
controlling the metabolism of lactose in Escherichia coli bacteria.15

DNA is a long polymeric molecule and TF proteins often
have to scan it searching through B106�9 nonspecific sites in
order to locate and recognise the required cognate site, see
Fig. 1. This search process often involves comparatively fast
association rates.9,13 For instance, for the lac repressor protein
(at optimal in vitro conditions), the association rates with its
target site can be up to B1010 M�1 s�1.1 This rate is Z B 102�3

times faster than expected for a pure 3D diffusive motion of
such a tracer particle in solution, denoted below as 1/hT3D onlyi
and obtained by the famed Smoluchowski theory16,17 (see also
the special issue18 and ref. 10). The speedup with respect to the
Smoluchowski limit comes about through switching between
intermittent 3D diffusion in the bulk and 1D sliding diffusion

along the DNA chain, providing the classical Berg–von Hippel
facilitated diffusion mechanism.2,3 The facilitated diffusion
model and its variants quantitatively explain the association
rates of several TF proteins with their DNA target sites, see
ref. 3, 5, 6, 8, 11, 13 and 19–40.

Faster search times are achieved by reducing the dimension-
ality of the process and by increasing local TF concentrations
on the DNA. The double helix provides a nonspecific protein–
DNA binding landscape,6,7,34,41,42 with protein–DNA binding
often being triggered by some close-range interactions,10,11,43–48

see Fig. 2. The TF search and binding process was mapped onto
the Michaelis–Menten reaction scheme in ref. 49.

When performing 1D diffusion along a nonspecific DNA
fragment with a weaker binding energy Eb, the protein can
detach from the double helix and return to 3D bulk diffusion.
The protein requires NR rounds of 3D and 1D diffusion in order

Fig. 1 Schematic view of the protein target search problem: the proteins
are the blue symbols and the DNA target is the red rectangle. Two possible
types of protein motions—bulk 3D diffusion and 1D sliding along the chain—
are indicated by the arrows.
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to reach the target. The associated mean search time hT3D+1Di is
given by9,11,29,50

hT3D+1Di = NR(ht1Di + ht3Di). (1)

Here, ht1Di and ht3Di are the mean 1D and 3D diffusion times per
round of the target search process, respectively.149 To accelerate
the target search process, as follows from eqn (1), either the
number of cycles NR or the durations of 1D or 3D diffusion events
need to be reduced. Recent single-molecule tracking experiments
in living cells have quantified the time scales of target search of
proteins on DNA to be in the range12,13

hti B 1–6 min (2)

(for one TF protein to find a single DNA binding site in one cell,
see also Section III). Once the target site is recognised, some
adaptation of the protein structure48 and DNA deformations
often take place, so that protein binding gets stronger to this
DNA site.7,28,29

B. Transcription bursts and colocalisation

In recent years, the subject of stochasticity and noise in gene
expression—both intrinsic and extrinsic51–56—and the respective
regulation processes has attracted considerable attention from
the biophysical community,51–66 both from the experimental and
theoretical perspective. Rapid developments of single-molecule
techniques now enable the tracking of individual green fluorescent
proteins67 and monitoring gene expression ‘‘one protein molecule
at a time’’64 (see ref. 53 for an overview of experimental
techniques). A number of (regulatory) proteins have been shown
to be produced in the form of transcriptional bursts,55,56,64,68–72 in

which the number of molecules produced in each burst follows an
exponential distribution, while the number of bursts per cell cycle
is often Poisson-like distributed and burst events in genetically
identical cells appear to be uncorrelated, see ref. 53, 56, 62, 63, 64,
70 and 73, but also ref. 61 and 74.

Transcriptional bursting is conserved in all forms of life,
from simple prokaryotes61,64 to complex eukaryotic cells,72,75,76

but its origin remains somewhat elusive (particularly for
eukaryotic cells, with their more complicated transcription reg-
ulation mechanisms61,65,77). In bacteria, in the course of DNA
transcription, positive DNA supercoiling is generated in front
and respectively negative DNA supercoiling is built up behind
the processive RNA Polymerase complex. This was proposed as
one possible mechanism/contribution of the stochastic on-and-
off switch for a given gene that can result in transcriptional
bursts in bacteria.61 For human cells, possible effects of chromatin
decondensation and post-mitotic transcriptional spikes onto
bursting were also suggested, see ref. 72.

In a pioneering study64 Tsr-Venus fluorescent proteins were
expressed in E. coli SX4-strain cells via replacing the native
lacZ gene. The protein bursts were shown to occur randomly
and were uncorrelated with time, with about four proteins on
average per bursting event being translated by the ribosomes
from each stochastically-transcribed molecule of mRNA.64

On average, one burst per cell cycle of E. coli occurs, but rather
long tails in the distributions of the number of proteins per
burst and in the number of bursts per cell cycle exist.64 This
indicates inherent stochasticity and variability in the protein
expression,51–55,61,71,73,78–80 both on the molecular and cellular
level; see also ref. 81 for effects of ageing in stochastic gene
expression. The average lifetime of degradable bacterial mRNAs
(of B1.5 min, with exponential distribution,70 see also ref. 56,
77, 78 and 82) defines the typical duration of a protein bursting
event. The latter often results in a low copy-number statistic for
important proteins in bacterial cells and thus large local concen-
tration fluctuations for transcripts and proteins. Note that the
abundances of mRNAs and proteins produced from them are not
necessarily strictly correlated.53,62

After their production, protein molecules can undergo facili-
tated diffusion to find their specific DNA target sites.2,3,6,10,11

Here, a number of factors can contribute to reducing the target
search time and thus to more efficient cell functioning. The list
includes the actual DNA base pair sequence,6,7,34,83 electrostatic
protein–DNA interactions,10,28,84 effects of long jumps between
distant DNA segments,10,13,43,85,86 and finally some implications of
gene colocalisation (GC).9,29,87–89 The latter is the main subject of
the current study. From the bioinformatic perspective, novel data
analysis tools also enable one to uncover multiple aspects of the
physical organisation of genomes via identifying colocalisation
patterns for functionally related genes, see e.g. ref. 90. The analysis
of significant gene clustering can be performed for multiple
species, providing statistical information on the distances between
the genes and histograms of cluster sizes.

Since the early studies,91 the lac repressor binding to
its DNA targets has become the canonical system to study
the TF-mediated control of gene transcription. In bacteria,

Fig. 2 Trajectories of three proteins (shown in magenta, orange and
black) undergoing facilitated diffusion, as obtained from our simulations,
before reaching the target on the DNA chain. The initial position of the
proteins (0, 0, 10s) is marked by the blue dot in the simulation box with the
volume Vs = (150s)3. The target is the red dot at position (0, 0, 0) on
the green fragment denoting the DNA, which extends along the x axis from
(xmin = �74s, 0, 0) to (xmax = 74s, 0, 0). The magenta trace, e.g., meets
the DNA chain twice, indicating the events of TF–DNA attachment and
detachment before binding to the target site.
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genes producing proteins that later bind to specific DNA targets
and the target positions themselves are often colocalised.9,88

Shorter distances D from burst position to the target not
only reduce the search time, but also increase the efficiency
of gene regulation and the precision of response to external
stimuli.89,92 Diffusive encounters and local protein concen-
tration enhancements nonspecifically regulate gene expres-
sion in bacteria; for other regulation strategies in pro- and
eukaryotes, we refer the reader to ref. 77. For instance, CAP
proteins strongly enhance the rate of transcription by RNA
polymerase via activation, enhancing local protein concentra-
tions in bacteria on the length scale of up to B103 DNA base
pairs.77 Note here that in a highly compartmentalised eukaryotic
cell, the DNA transcription takes place inside the nucleus,
where much higher concentrations of TF proteins can locally
be established and maintained.77

Below, we focus on the effects of GC in the multiple-copy TF
target search on DNA, examining first the implications of the
initial position of burst proteins from their target on the DNA.
Moreover, GC can markedly increase the concentration of TFs
produced in bursts near the promoter sites77 for short distances
to their regulated transcription unit,9,63 thus accelerating the
regulation processes. The implications of GC and stochasticity
in gene regulation were considered within advanced mathe-
matical models,63,74 which served as a starting point for the
current study. The detailed mathematical analysis of fluctua-
tions in TF–DNA binding49 and the few-encounter limit for the
target search kinetics93,94 related to strong irreproducibility of
first-passage times95,96 were also proposed recently. Lastly, the
models of Berg–Purcell type describing molecular signalling
and precision control in the low-concentration limit are to be
mentioned here too.82,97–101

The paper is organised as follows. We introduce a simple
picture of facilitated diffusion of TF proteins in our model cell
in Section II. We provide the values of all the parameters
involved in the model and establish a connection to the known
biological facts and findings. The results of our computer
simulations of the facilitated diffusion dynamics are presented
in Section III. Most importantly, we examine the effects of
protein burst position in relation to the DNA target and higher
concentrations of TFs near the target.77 We discuss the main
conclusions and possible future directions of model develop-
ment in Section IV.

II. Model and approximations

Our model biological cell—or e.g., a compartment occupied by
the E. coli chromosome77—is considered as a discrete cubic
lattice with lattice constant s, with edge length 150s and
reflecting boundaries. The latter mimic the lipid membranes
in real biological cells and keep the proteins inside the simula-
tion box. The DNA is modelled as a straight collection of beads,
extending along the x-axis and encompassing the entire range of
the lattice points, from (�74s, 0, 0) to (74s, 0, 0). The target can
be positioned randomly on this chain, see the red dot in Fig. 2.

The protein is modelled as a tracer particle occupying a single
lattice site. As the concentration of proteins in the box,

cp = Np/Vs, (3)

is varied—Np here is the number of proteins and Vs is the cube
volume—the average time for the first of them to locate the
target on the DNA is calculated as the number of simulation
steps n needed for steps in the 3D solution and during sliding
events along the 1D DNA chain.

The simulation process starts with the ‘‘production’’ of the
first protein at time t = 0 (or time step n = 0) at a random lattice
site (the initial position). Such randomly chosen (burst position)-
to-target distances D are responsible for (biologically expected)
random distributions of protein transcripts with respect to the
specific DNA site they target. The distance D is defined via the
radial separation R of proteins to the DNA and target shift
distance along the DNA xp-t with respect to the protein pro-
duction site, which is D2 ¼ R2 þ xp-t

2. Further proteins are
produced in the simulations at later times in the form of expres-
sion bursts. The times of protein production are exponentially
distributed,

P(n) = 1 � exp[�n/dn], (4)

with dn = 4 steps. This means that in simulations, on average,
one protein every four steps is created in the bursts, see Fig. 3.
The burst times are thus much shorter than the average protein-
target first-passage times in the model, as we confirm below.
We expect that altering the burst frequency has a rather small
effect on the number of steps required for a protein to reach the
DNA target. To the best of our knowledge, there is no clear
experimental data on the temporal distribution of proteins in a
single burst event, due partly to a fairly slow resolution in the
experiments.

The basic quantities presented in the main part are averaged
over M B 103 realisations of protein bursts. All bursts are
identical in terms of distributions of times at which individual
proteins are created. The averaging thus accounts only for
stochasticity of the subsequent protein diffusion processes, and
does not take into account possible randomness of the burst

Fig. 3 Time evolution of the number of proteins created in a burst, for the
protein number Np = 10, 20, 30 and dn = 4 in eqn (4).
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structure itself. This simulation procedure therefore neglects
(for simplicity) possible intrinsic noise effects in gene expres-
sion inside real biological cells and cell-to-cell variability.51,52,54

For protein production in bursts—see the results starting
from Fig. 4—after the first protein is produced at the start of a
burst, the molecules start diluting away from the production
site. To initially reach a fixed concentration cp, a finite number
of simulation steps is needed, nburst E Np � dn, due to the
Poissonian production scenario, see the burst shapes in Fig. 3.
For a larger overall number Np of proteins in the burst, the
saturation plateau is reached at longer times. No production or
degradation of proteins after this moment occurs (see e.g.
ref. 68, 74, 78, 79 and 102 for models with degradation of
mRNA and protein molecules).

After the first protein in the burst binds to the target upon
first encounter, i.e. we assume immediate binding, the corres-
ponding first-passage time is enumerated.150 After this, all
proteins are removed from the system and introduced again
at the same start position. The clock is set to zero and the
proteins are recreated via the identical burst. This procedure is
repeated M times to compute the mean first-passage time to the
target. The protein starting conditions are thus out of equili-
brium so that the applications of our findings go beyond
standard equilibrium models of facilitated protein diffusion on
DNA.10,11,29

The starting burst in our simulations initiates the DNA
target search process, supported by the fact that the average
number of bursts per life cycle in bacteria is often about
unity.64 A given lattice point can only be occupied by a single
protein molecule (excluded volume principle) that has equal
probabilities of jumping to the six nearest-neighbour sites
when performing the 3D diffusion process. If a protein reaches
a box boundary, it gets reflected back. When a protein binds to
the DNA chain for the first time, it starts a 1D diffusion process
along it, modelled as standard Brownian motion as well. Note here
that the effects of anomalous bulk diffusion103–107 of proteins,

with the mean squared displacement hr2(n)iC na where a a 1,
on the target search kinetics was recently studied.50 However,
as at this point it is not clear how transient the anomalous
diffusion is,67,108,109 we here use the Brownian scenario with
a = 1. The protein jumps to one of the two adjacent DNA lattice
sites with probability p or unbinds from the chain with detach-
ment probability r. The latter scales as the Boltzmann factor

r C exp[�Eb/(kBT)] (5)

with the energy Eb 4 0 of nonspecific protein–DNA binding.
According to the probability conservation rule, we require
2p + r = 1. In Fig. 2, the trajectories of three different proteins
from our simulations are shown.

While walking along the DNA, the diffusivity of the protein
can differ strongly from the value in the bulk solution.11,50 Due
to attractive protein–DNA interactions, a sequence-specific
protein–DNA binding landscape,6,7,28,34,39,41,110 conformational
changes in the protein accompanying its DNA binding,43,48 and
helical (rather than straight) protein motions along the DNA,111

the mobility of TFs and other DNA bound proteins along the
1D DNA is often much slower than for 3D diffusion, that is
D1D { D3D.10–12,35 To introduce this important aspect into the
model, the proteins bound to the DNA are not updated at each
step in the simulations, unlike the ones undergoing 3D diffu-
sion. The bound proteins wait nw steps while other proteins are
being updated. The number of waiting steps nw depends on the
ratio of 1D and 3D diffusion constants for a realistic scenario.
In Section III we calibrate the value of nw versus D1D/D3D, see
Fig. 13. Thus, the conservation law gets modified as 2p + r + w = 1,
where w is the probability that the bound proteins wait and
do not move on the DNA.

The value of r = 10�4 we use for most of the results presented
below corresponds to a protein–DNA binding energy of
Eb E 9.2kBT. This is a typical value for a nonspecific TF
binding4,28,29,34,112 to B10–20 DNA base pairs.48,84 Weaker
binding energies will result in a larger probability of TF
unbinding from the DNA track, r. Clearly, different values of
the parameters r and nw will alter the 1D sliding distances of the
proteins and affect the target search times. In in vitro experi-
ments, r can be systematically controlled by e.g. varying the salt
concentration in the bulk solution.1,3,85

The electrostatic attraction of positive patches on the pro-
tein surface to the negatively charged DNA phosphate groups,
which is screened by surrounding electrolyte, creates an ener-
getic funnel with a thickness of about one Debye screening
length along the DNA.10,28,113 In the cytoplasm-like electrolyte,
the ionic strength is E0.15 M rendering the Debye length E7 Å.
This length is shorter than the DNA radius and can thus be
included into an effective binding constant acting upon a direct
contact of TFs to the DNA surface. This binding is assumed to
be insensitive to the underlying DNA sequence regulating
the overall fraction of DNA-bound versus free proteins. Our
simplistic model also neglects the effects of sequence-specific
TF–DNA affinities and the existence of rather broad energetic
funnels for 1D sliding of TF proteins along the DNA in the
vicinity of their respective binding sites, see the detailed recent

Fig. 4 Ratio Z of search times (10) versus randomly chosen distance D of
the starting position of protein bursts from the DNA target. The target is
fixed at (0, 0, 0) and Np = 20 proteins are simulated. The values of unbinding
probabilities r are indicated in the legend, corresponding to Eb/(kBT) E 11.5,
9.2, and 5.3, respectively. Error bars are also shown.
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analysis of ref. 114. The corrugated energetic landscape6,7,34

and localised energetic funnels for protein–DNA binding28,114

can further facilitate facilitated diffusion of TFs towards their
cognate sites, features to be examined in a separate future
publication.

We now relate the box dimensions and protein concentra-
tions cp to the respective values in a bacterial cell. The value of
s is obtained below by equating cp in the model to that inside a
typical E. coli cell. The average number of molecules for a
specific TF in an E. coli cell is Np B 109,11,77,82,115 corresponding
to intracellular concentrations of about 10 nM (or even less12)
and the cell volume is V E 2 mm3.77,116 We simulate Np = 20
tracers in a box of volume Vs = (150s)3. This yields

s ¼ 20� 2

10

� �1=3
1

150
mm � 10:6 nm for the elementary length

scale, or about 30 DNA base pairs per bead. Also note that the
size of the simulation box sets the effective DNA concentration,
which is a key parameter in search problems.28,85,86,117 In bacteria,
the concentration of nonspecific DNA sites is B0.01 M,118 while a
small TF protein recognises B10–20 unique DNA base pairs as its
cognate site.28,77,84

Our goal is to quantify to what extent the phenomenon of
GC can accelerate the target search process by multiple proteins
created in bursts. The model parameters we vary are the burst-
to-target distance D and the protein concentration cp, whereas
the values of r and nw are mostly kept constant.

III. Main results
A. Calibration of the model parameters

To calibrate the value of nw required to fix a particular D1D/D3D

ratio close to that in experiments, we perform simulations to
evaluate the mean squared displacement (MSD) for free 3D
diffusion of the tracer particle in a cubic box with side length
L = 150s and free 1D diffusion along the 1D DNA chain. To
extract the diffusion constants D1D and D3D, we use

hr2(n)i = 6D3Dn and hx2(n)i = 2D1Dn (6)

for 3D and 1D diffusion after n steps. The MSD growth for 3D
and 1D diffusion is linear, as expected for Brownian motion,
see Fig. 11 and 12 where the particle displacements are shown
in terms of s2. The values of D3D and D1D follow from fitting the
MSD. Namely, from eqn (6) we get D3D = Slope3D/6 E 0.17 and
from the MSD growth in the 1D case for nw = 50 we get
D1D = Slope1D/2 E 0.01 (note that D is given in terms of s2/Dn,
where Dn measures one simulation step). The MSDs of both 1D
and 3D free protein diffusion reveal a levelling off for large
numbers of simulations steps, because of the finite size of the
simulation box, see Fig. 11.151 The average sliding length of protein
molecules9 on the 1D DNA substrate can then be expressed as

lslh i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D1D t1Dh i

p
; (7)

where ht1Di is given by the inverse unbinding rate.
Fig. 12 demonstrates the expected decrease in D1D with

increasing nw value. For calibrating nw with the ratio D1D/D3D,

one can extract from Fig. 13 the relation D1D/D3D B 1/nw expected
for Brownian diffusion, see Fig. 12. From this, for a given D1D/D3D

ratio, the value of nw can be predicted. Experimentally, the value
of D1D/D3D varies over a broad range, D1D/D3D B 10�1–10�3,
depending, i.e., on the binding strength and size of the protein
molecules, external solution conditions, and DNA base pair
composition.6,7,11,89,103,114,119 For most of the results presented
below, D1D/D3D E 0.06 corresponding to nw = 50 waiting steps in
the simulations of 1D diffusion.

From the experimental evidence, the in vivo diffusivities of
the lac repressor proteins in living E. coli cells were measured
to be12 D3D E 3 � 0.3 mm2 s�1 by fluorescence correlation
spectroscopy and

D1D E 0.046 � 0.01 mm2 s�1 (8)

by single-molecule tracking. The 1D sliding length at moderate
to high salinities inside the cytoplasm of a living E. coli cell
was quantified to be hlsli E 45 � 10 base pairs,13 while in the
low-salt in vitro setups, the lengths of protein sliding can be
dramatically longer3,10 (see also ref. 29 and 89 for the theore-
tical estimate of hlsli and D3D,1D as well as for their functional
dependencies on the parameters). Comparing the protein 1D
diffusivities in our computer simulations and in single-particle
tracking experiments,13 using the elementary length scale s, we
find that the unit time step in the simulations corresponds to

dt B 0.02 ms. (9)

We note that further evidence of facilitated association
comes from single-stranded DNA binding proteins, such as
g32 proteins of the T4 bacteriophage, which are known to
destabilise DNA secondary structure.120 The contribution of
the 1D and 3D diffusive terms at varying concentration cp of
these proteins was examined.23,47,120 Note that the 1D diffusion
of g32 proteins with120 D1D B 0.1–1 mm2 s�1 is considerably
faster than the 1D motion of the lac repressor, see eqn (8).

B. Facilitated diffusion with protein bursts and colocalisation
effects

Having calibrated the parameters, we now study the facilitated
search by TFs and quantify GC effects. First, we confirm that
the current model results in a facilitated target search due to a
combination of 3D and 1D diffusion. In Fig. 4, we show the
average target search time hT3D onlyi—the mean first-passage
time of a first protein from a burst of Np = 20 proteins—via pure
3D diffusion (the Smoluchowski limit17) normalised to the total
time of combined 3D and 1D diffusion, namely

Z = hT3D onlyi/hT3D+1Di. (10)

The value of Z can be well above unity for a strongly facilitated
search. The ratio of search times is particularly large for short
distances D from the DNA, as expected. Namely, when the
proteins are produced rather close to the DNA, the probability
for one of them to bind to the 1D track after a given number of
steps is higher. Thus, the target will be found faster via a quick
3D diffusion followed by sliding (the unbinding is very improb-
able, r { 1) and the ratio of search times (10) is very large.
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In Fig. 4 we present for comparison the results for the
acceleration factor Z obtained for other unbinding probabilities
r, connected via eqn (5) to the protein–DNA affinity Eb. We find
that for weaker protein–DNA binding (larger r values), the
acceleration of the target search times Z decreases significantly,
as expected. Ultimately, as protein unbinding probability from
the DNA reduces even further (the case of Eb - 0), the
1D search route is used only rarely and almost no acceleration
in the target search kinetics is detected in the simulations
(results not shown). We thus confirm that—for our simulation
setup and other model parameters fixed—with a protein–DNA
binding strength Eb B 10kBT, the facilitated diffusion mecha-
nism accelerates the target search by Z B 102 times, consistent
with experiments.2,3,11,13 The strength of the protein–DNA
binding not only controls the degree Z of search speedup,
but also the equilibrium fraction of nonspecifically bound
proteins.9–11

Next, we study the role of the protein concentration cp in
enhancing the target search rate. We keep the initial position of
proteins and target constant, while varying cp. Here, the proteins
are created by translational bursts at the initial distances at the
start of the simulation, until a certain number of molecules is
produced and the required cp level is reached. For each cp value
and protein starting distance D, the average number of simula-
tion steps to reach the target is then evaluated, as shown in
Fig. 5. As expected, the number of simulations steps to reach the
target decreases monotonically and, in fact, quite dramatically
with the protein concentration. Note that for the relatively small
TF concentrations cp, the protein diffusion is hardly affected by
excluded volume effects (the molecules approximately behave as
independent walkers).

At high protein concentrations, however, the average number
of simulation steps to reach the target (the target search time)
starts to saturate, see Fig. 5, partly because the contribution of
the 1D chain is reduced and there are always proteins in the
solution close to the target.11,28 In simulations at large cp, the
proteins may visit a large fraction of the lattice sites before one of
them hits the target. We refer the reader to a previous study121

for the theory of multiple walkers on DNA and their space
coverage. Thus, even higher concentrations cp cannot perform
better than visiting all sites: the target is therefore not found
proportionally faster at higher cp levels. From Fig. 5, we conclude
that keeping the separation D between the protein production
site and target fixed, the effect of the protein concentration
itself is sufficient to get a faster search, possibly improving the
transcription efficiency.89

Notably, we observe a decrease of the search times at fixed
protein concentration with decreasing distances D, Fig. 5.
Moreover, for smaller protein concentrations, the discrepancy
between the target search times computed for different dis-
tances D becomes smaller, as expected. Namely, at low cp the
length of the initial 3D excursion before finding the DNA chain
can be very long, so that the effect of different distances D on
the target search time gets reduced. The separations listed in
Fig. 5 are the diagonal distances D from the protein production
site to the DNA target. The radial distance of the burst site to
the target in Fig. 5 was fixed at R = 10s.

The average target search times at different distances D and
varying protein concentrations cp can be presented in rescaled
coordinates T3Dþ1Dh i

�
D2 versus cp

1/3 to yield an approximate
master curve, as demonstrated in the inset of Fig. 5. The rescaling
of search times is based on the functional properties of the first-
passage time distribution (see Section 3.2.2. of ref. 122), while
for the other axis B1/cp

1/3 is the average separation between the
proteins at a given cp. The reader is also referred to a recent
study123 for first-passage time calculations in cylindrical geo-
metry, applicable, e.g., to the problem of reaching the bacterial
nucleoid by bio-molecules that first penetrate through the outer
cell membrane.

The data of Fig. 5 are shown on a log–log scale in Fig. 6a. We
find that in the limit of low protein concentrations, the slope of
the search time dependence varies with distance D. The expo-
nent for short D is found to be close to 2 so that

hT3D+1D(cp)i B cp
�2. (11)

This type of scaling in the low-cp limit agrees with the theore-
tical predictions for 1D-dominated search, see the findings of
ref. 23. Note that in the volume-dominated search mode, the
first-passage time is the inverse search rate that grows linearly
with cp. Under these conditions, due to the fact that a single
protein searches a respectively shorter stretch on the DNA, one
can write hlsli2 B (L/Nb)2 B D1DT, which yields23

hT3D+1D(Nb)i B Nb
�2. (12)

In our case, however, the number of DNA-bound proteins
Nb does not scale linearly with cp, see the inset of Fig. 6a plotted

Fig. 5 Number of simulation steps required for the first protein to reach
the DNA target hT1D+3Di versus protein concentration cp, for different
distances D from the protein production site to the DNA target and for
r = 10�4. The error bars—shown in red colour, often smaller than the
symbol size—are computed from M B 2000 realisations for each cp value.
The radial distance of protein burst position from the DNA is fixed at
R = 10s in this plot, while the total distance D is varied (see the legend)
via changing the target position, setting it at (xp-t = 0, 0, 0), (xp-t = 5s, 0, 0),
(xp-t = 10s, 0, 0), (xp-t = 15s, 0, 0), for the curves from bottom to top,
correspondingly. The inset shows the same data in rescaled coordinates,

T3Dþ1Dh i
�
D2 versus cp

1/3 (see text for details).
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for the fixed radial distance R and varying total separation D.
Namely, for shorter burst position to target distances, the
number of bound proteins Nb saturates as a function of cp. In
contrast, for largerD values, the Nb(cp) dependence is a growing
function of cp, and on average more proteins are associated with
the DNA at larger cp. The reason is that for the burst position just
above the target (e.g. at R ¼ D ¼ 10s), a rather small number of
proteins quickly finds the DNA and the target on it, as Fig. 5
and 6 support. In contrast, when the protein burst site and the
target are additionally separated along the DNA chain by a
substantial distance xp-t, more proteins bind to the DNA on
average, and they spend a considerably longer time in the sliding
mode before locating the target. This is an important effect of
varying initial separations D on Nb.

The average number of bound proteins Nb and their average
1D sliding length (presented in Fig. 7) thus both grow in this
case, as we show. The exponent of Nb(cp) growth is however
considerably smaller than unity, which is expected for the
standard Langmuir-type adsorption isotherm with Nb B cp.

In Fig. 6b, the search time plotted versus Nb also reveals the
‘‘saturation effect’’ at short D, due to a nontrivial Nb(cp)
dependence, so that the equilibrium assumptions of ref. 23
do not apply here.

As compared to our system, finite size and TF number
effects modify the expected and measured behaviour for large
in vitro systems with a large volume and protein number buffer.
For the data of Fig. 5, the average sliding length of proteins was
evaluated using the times of protein diffusion in 1D, eqn (7).
Note that for bursty proteins that bind to and slide along the
DNA chain, the times t1D include both the particles that found
the target as well as unsuccessful or unfinished protein runs.
We remind the reader here that the system of proteins is fully
reset after the first protein finds the DNA target, but in the
computations of the mean sliding length in Fig. 7, we used the
times of all protein paths along the DNA chain encountered in
simulations.

Accordingly, at low protein concentrations cp, the sliding
lengths for different burst position to DNA target distances D
do not differ much, see Fig. 7. In contrast, for relatively high cp,
the average sliding distances for larger D values are measurably
longer than for D ¼ 10s (the protein production site is just on
top of the target, at the radial distance of R = 10s). The longer
mean sliding lengths at longer distances D are, at least partly,
responsible for a larger instantaneous number of DNA-bound
proteins, as shown in the inset of Fig. 6a.

In the findings above, we studied the mean target search
times for an ensemble of Np bursty proteins searching for the
DNA target via diffusion. The distribution of individual first-
passage events, p(hT3D+1Di), is also interesting to quantify. For
different separations D from the protein production site to the
target, the results for the normalised distribution p(T3D+1D) are
shown in Fig. 8. We find that for relatively short distances D,
the distribution has a pronounced power-law tail at intermediate
times, in agreement with theoretical predictions.96 For very long
distances D, in contrast, p(T3D+1D) is often narrower and it
features a quite fast decay of tails for times much shorter and
much longer than the most probable search time, at the maxi-
mum of the distribution. Physically, for the conditions of a

Fig. 7 Variation of the average protein sliding length hlsli (in units of s)
versus protein concentration cp, computed from the data sets of Fig. 5 and 6.

Fig. 6 (a) The data of Fig. 5 on log–log scale (R = 10s = const.). The inset
shows the number of bound proteins Nb versus the bulk protein concen-
tration. With increasing distance D, as shown in panel (a), the fitting slopes
of the relation hT3D+1DiB cg

p computed at low cp values are gE�2.1,�2.0,
�1.9, and �1.6, compare to eqn (11). (b) The same data in the log–log scale
plotted versus the average number Nb of bound proteins. The slopes in the
relation hT3D+1Di B Nn

b generalising eqn (12) and shown in panel (b) for
increasing D values are n E �7.8, �5.7, �3.5, and �2.5.
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rather close protein’s starting point and DNA target, the direct
protein trajectories towards the target are responsible for the
maximum of the distribution at relatively short times. The
position of the maximum is thus geometry-dominated by the initial
burst-to-target diffusion. On the other hand, the particles walking
initially away from the target—and locating the DNA chain with the
binding site on it after the second, third, etc. approach—are
responsible for an extended power-law tail of p(T3D+1D) func-
tion, as we observe in Fig. 8 and Fig. 14.

As we illustrate in Fig. 14, for longer protein start-to-target
distances D, the long-time tail of the distribution p(T3D+1D) has
a distinct exponential shape. These features are consistent with
the theoretical findings for the target search kinetics by Brownian
walkers in bounded 2D/3D domains with reflecting and absorbing
boundaries96 (for the domain boundary and target, respectively).
The functional form proposed there for the first-passage times
distribution is96,124

p(T) B exp[�A/T]1/T1+m exp[�T/B]. (13)

The extent of the intermediate power-law region was shown96 to
become larger for closely positioned walker starting positions
and targets, while the two exponential functions above describe
the fast decays for very short and very long search times. The
existence of power-law tails results in pronounced trajectory-
to-trajectory fluctuations and, as a consequence, large uncer-
tainties in determining the mean first-passage time.95,96,124 We
do not present here any further quantitative analysis of the
first-passage distributions for this diffusive system with
multiple protein–DNA binding–unbinding events. We refer
the reader to the first-passage time calculations performed for
multiple walkers in the presence of reversible target binding
kinetics125 and to the recent reviews on mathematical methods
for computing the first-passage characteristics of diffusive
processes in cell biology contexts126 and other out of equilibrium
systems.127

These results suggest large fluctuations in the target search
times that biologically imply a noisy action of proteins on their

DNA sites. The reader is referred here to the recent mathe-
matical studies94,101 for the precision of molecular signalling,
universal proximity effects in the target search kinetics, and for
analytical forms of the first-passage time density distributions.
We note that the maximum of the first-passage time probability
distribution function stems from the initial separation of the
TF molecules searching for their target and thus witnesses the
geometry-control effect.94

C. 3D versus 1D diffusion

Fig. 9 illustrates an increasing average number of steps required
for the proteins to reach the target with separation D of the
protein production site from the DNA target, as intuitively
expected. This indeed demonstrates that GC is beneficial for
an overall acceleration of the search. The number of steps to
reach the target—characterising the total average search time
hT3D+1Di for Np proteins—can be decomposed into the total
times spent in the 1D (hT1Di) and 3D (hT3Di) diffusion modes,
namely

hT3D+1Di = hT1Di + hT3Di. (14)

This decomposition enables one to assess the relative contribu-
tions of 1D sliding and 3D bulk excursions by DNA-binding
proteins.11,50

In Fig. 9, the data for hT3D+1Di are shown as blue circles,
whereas the average number of steps in 1D and 3D are, respec-
tively, the green squares and black triangles. Note that the
dependencies of both hT1Di and hT3Di on the distance D reveal
a saturation at long distances from protein production site to the
target. Physically, for large D values, the search time grows only
very weakly withD because the target search process under these
conditions is fairly slow, so that it takes place effectively for
roughly uniformly distributed proteins in the box, at a finite cp.
The effect of colocalisation thus becomes pronouncedly weaker.

Fig. 8 Distribution of individual target search times, p(T3D+1D), evaluated
from the data of Fig. 5 for four burst-to-target separations, D, and pre-
sented on a log–log scale. The long-time asymptote for the shortest distance
D has the slope of �(1 + m) E �2.83, see eqn (13) in the text.

Fig. 9 Total mean numbers of simulation steps to locate the target
(hT1D+3Di, blue circles), total number of all 1D search steps (hT1Di, green
squares), and all 3D search steps (hT3Di, black triangles) plotted versus the
diagonal distance D from a randomly chosen protein production site to
the DNA target, which was fixed at (0, 0, 0). The data sets are shown
on log–log scale and computed for Np = 20 proteins in the model cell
(at r = 10�4). The error bars (shown in red in the plot) are evaluated for
M B 2000 realisations.
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Note that the random protein production sites in Fig. 9 are
sufficiently far away from the DNA chain.

We also mention that for small D values, the contribution of
1D sliding events prevails, as expected for the case of rather
small TF unbinding probability r we consider here. For long
separations between the protein production site and the DNA
target, the proteins spend significantly more time diffusing in
the 3D space. We quantify this stronger 1D contribution for
smaller D values in Fig. 10 below. The scaling exponent in the
relation

TðDÞh i � D2
� �b

(15)

for the data presented in Fig. 9 for the region of short distances
D is b E 1.21 for the total number of steps, b E 1.21 for the 1D
diffusion contribution, and b E 1.50 for the 3D search contri-
bution. The slightly sublinear initial growth ofD2 with the number
of steps hTi for a protein to reach the target (with exponent 1/b) is
intuitively expected. Namely, the target search process should be
slower than the linear Brownian-like b = 1 spreading of TF particles
in free space.

Using the elementary time scale dt estimated in eqn (9), one
can compare the search times from our simulations with the
experimental values,13 see eqn (2). For large distances D, in
Fig. 9, we obtain mean search times hti t 1 s. Note however
that for a larger simulation box and thus for longer potentially
realisable separations D, naturally, longer search times are
expected. Moreover, for conditions of less pronounced facilitated
diffusion—for instance, for weaker protein–DNA affinities, in
Fig. 4 compare the data for r = 10�4 and r = 0.005 for the same
Np = 20 proteins as in Fig. 9—we would observe a severe slowing
down of the search, as compared to htit 1 s for strong protein–
DNA binding. These factors, as well as the possibility of multiple
TF sliding events over the target without binding,13 will shift the
search times obtained in simulations towards the experimental
search times of several minutes, namely E350 s measured in
ref. 12, E310 s predicted in ref. 31, and tens of seconds in the
theoretical model of ref. 63.

Mathematically, 1D diffusion is a highly redundant search
process, as argued previously.9,11,85,89 In particular, for long
DNA molecules, this diffusion mode will over-sample the linear
substrate, multiply visiting target-free sites. In contrast, the
search in 3D is not redundant, but the proteins rarely bind the
target directly from the solution11 (except maybe at very high cp,
which is biologically less relevant). Target localisation typically
takes place from the 1D mode and a proper combination of 3D
and 1D rounds of diffusion enables the search time in facilitated
diffusion to be minimised.1,8,10,11,29

We combine the data sets of Fig. 9 and plot in Fig. 10
the relative time the proteins spent in the 1D diffusion mode,
hT1Di/hT1D+3Di, as a function of D. At very short distances D, the
searchers spend B80% of the total search time in the 1D diffu-
sion mode. Note that experimentally the lac repressor proteins
tracked in living E. coli cells were shown12 to spend B90% of
time in the nonspecifically bound mode, diffusing along the
DNA. Naturally, for longer randomly chosen distances D, the
duration of 3D searches increases, as compared to diffusion
times in 1D, rationalising a decreasing trend for hT1Di/hT1D+3Di
in Fig. 10a. For longer distances D, we find that the proteins
spend as little as B20% in 1D. As in this setup the initial radial
protein–DNA distances R are appreciable, for large separations
D the proteins need to wander through more lattice sites before
reaching the DNA. This describes a decreasing contribution of
1D search to the data shown in Fig. 10a. At long distances—as
compared to the box size—the times of 3D and 1D search reveal
a saturation, mirrored in the behaviour of the ratio hT1Di/
hT1D+3Di in Fig. 10a.

The variation of the number of rounds of 3D and 1D diffu-
sion with the distance D is illustrated in Fig. 10b. The number
of rounds NR = 1 corresponds to exactly one 3D and one 1D
round of diffusion before the target is located. We find that at
first, there is an increase in the number of rounds with distance,
after which NR saturates. As the probability of detachment from
the DNA is proportional to the overall time the protein diffuses
in the 1D mode, increasing hT1Di implies an increasing number
of rounds. The number of diffusion rounds we find in Fig. 10b
qualitatively agrees with the findings of recent computer

Fig. 10 Variation of the fraction of 1D diffusion time hT1Di/hT1D+3Di (panel a)
and the number of diffusion rounds NR (panel b) versus the separation
D randomly chosen in the simulations, computed for the parameters of
Fig. 9. The insets show the results for varying unbinding probability r, for
the same values as those in Fig. 4.
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simulations performed for comparable values of nonspecific
protein–DNA binding energies Eb, see Fig. 5 in ref. 50.

The main data sets in Fig. 10 are computed for r = 10�4. We
also find that with increasing protein–DNA binding strength
Eb (and thus with decreasing unbinding probability r), the
number NR of rounds of protein diffusion decreases, ultimately
approaching NR E 1. Concurrently, the fraction of search time
that the proteins spend in the 1D mode increases, as expected,
see the insets of Fig. 10a. For even smaller unbinding prob-
abilities (r = 10�5) the proteins only very rarely leave the DNA
chain in the simulations. In contrast, for r = 0.005, the tracers
spend very little time in the 1D mode, and the number of search
cycles for considerable distances D thus increases from
NR E 1.8 for r = 10�4 to NR E 6 found for r = 5 � 10�3, see
the insets of Fig. 10b.

The radial distance R of proteins from the DNA can itself be
a factor affecting the number of steps to reach the target for the
sameD (at least for short R). In Fig. 15, we show the variation of
the number of steps with the radial distance from the DNA,
while keeping the separation D constant, D � 13s. As one can
see, with increasing radial distance R, the proteins spend longer
times locating the target, as expected for a more 3D-dominated
process at larger R. In contrast, for close radial initial positions,
the proteins locate the linear DNA chain quicker and in the
facilitated diffusion scheme, they employ more sliding steps.

IV. Discussion and conclusions

The facilitated diffusion model is a paradigm in the description
of the protein search process for their cognate binding sites on
DNA. Typically, in such studies, either the search by a single
protein is exploited, or some equilibrated initial conditions are
selected. We here investigated by simulations the target search
problem on DNA focusing on the effects of the initial position
of bursting proteins with respect to the target position, and protein
concentration. We quantified the intuitive expectation that the
search time for the DNA target decreases due to increasing local
transient protein concentrations and due to shorter distances
between the sites of protein production and DNA targets, under-
lying the rapid search hypothesis.9 The central result of this study
is the physical quantification of GC effects taking place in bio-
logical cells achieved via computer simulations.

Experimentally, the search time by proteins for a specific
DNA site, as quantified by single-molecule detection experi-
ments, is often in the range of several minutes.12 The mean
number of simulation steps hTi to reach the target is propor-
tional to the average time htimeasured experimentally, hti = fhni,
where f is a proportionality factor. Knowing real distances in the
cells and using the fact that s E 10.6 nm in simulations, we can
compare the behaviour of the measured target search times hti
for a particular distance in experiments to our simulation-based
findings, while other system parameters, such as Eb and D1D/D3D,
are kept constant.

The current model represents a rather simple approach to
GC and facilitated diffusion effects, based on a straight DNA

fragment and Fickian diffusion of protein molecules in the 3D
and 1D propagation modes. Some modifications due to tran-
sient anomalous bulk diffusion—indeed detected for spreading
of proteins and other macromolecules inside crowded bio-
logical cells35,103,104,128–130—can be included in the model, thus
generalising the canonical Brownian motion picture.50 It is also
important that the implications of multiple targets present on
the DNA chain46,131 are quantified. The limitations of a straight
DNA chain—i.e. the absence of any DNA coiling85,86 and confor-
mational dynamics29,40,89,117,132 in the target search process—
can also be relaxed in future simulation-based models.

Another biologically important feature affecting the target
search time by the TF proteins is the presence of other proteins
bound to the DNA. These may be other TFs, specifically or
nonspecifically bound. In addition, these may be strongly DNA
bound protein complexes—such as histone-like HU/H-NS struc-
tural proteins in the nucleoids of prokaryotes and large nucleo-
some core particles in the nuclei of eukaryotes65,133—that often
establish a quasiperiodic and rather dense array of occupied
sites on the DNA acting as ‘‘road blocks’’. DNA targets (tran-
scription start sites) are positioned often between neighbouring
nucleosomes.134 This can result in dual effects on the target
search rate37,135 and also initiate some cooperative effects in
TF–DNA binding.136 For recent experimental advances, theore-
tical models and computer simulations on the target search
problems in the presence of obstacles, we refer to previous
studies.29,34,36,37,45,137–140

On the next level of DNA organisation, a number of additional
spacial proximity effects of the DNA can emerge for particular 3D
structures of genomic DNA molecules compacted inside prokaryotic
nucleoids13,40,92 or via a multilevel looping of chromatin fibers
ultimately forming eukaryotic chromosomes.9,61,88,109,141,142 In
particular, for the gene-rich Chr19 chromosome of humans,
large scale computer simulations have demonstrated spatial
proximity features for thousands of coregulated genes,88 in
agreement with the Hi-C experimental evidence available.
The possibility of jumps and intersegmental transfers of TF
proteins between proximally looped, supercoiled, or chromatin-
compacted fragments of genomic DNAs under realistic degrees
of DNA compaction inside cells is thus the most biologically
important feature to be included in future extensions of this
simulation approach.

Going beyond the mean first-passage times, considering the
entire distribution of target search and signal transfer times to
the target63,93 will reveal important additional insights. This is
vital when the statistics of events is insufficient94,95 and the
first-passage times are strongly spread (e.g., ‘‘fat’’ power-law
tails). Thus, the few-encounter limit considers the relevance of
the most likely binding event. Moreover, statistics of reprodu-
cibility of two first-passage events is an important feature to
analyse.94–96

Lastly, even in simple prokaryotic cells, the spatial distribu-
tion of TFs was demonstrated to be strongly heterogeneous.92

Therefore, new experimental evidence supports the need
for a full spatio-temporal modelling of protein–DNA binding
kinetics and of local variations in TF concentrations63 over
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thermodynamic approaches143–147 operating with bulk protein
levels (models valid only for large copy-number situations). We
believe that the current study will stimulate further experi-
mental and theoretical developments, aiming at a better under-
standing of physical–chemical effects of GC in gene regulation
taking place in living cells.
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Appendix

Fig. 11–15.

Fig. 11 MSD for 3D tracer diffusion in the simulation box without targets
plotted versus the number of steps, hr2(n)i/s2. The results are averaged
over M B 103 trajectories and recorded every 10 steps in simulations. The
line in this log–log plot is the best fit, in agreement with the linear MSD
growth (eqn (6)). The MSD reveals a saturation at long times, as expected
for confined Brownian motion, see ref. 106 and 148.

Fig. 12 MSD for target-free 1D protein diffusion, hx2(n)i/s2, computed for
varying waiting times nw given in the legend, with the data shown in the
linear–linear scale. The straight lines are fits by eqn (6). For longer
simulations times a plateau in the MSD is observed due to the finite model
cell size (not shown).

Fig. 13 Calibration curve for D1D/D3D versus nw, shown on log–log scale.
The expected slope of �1 is indicated.

Fig. 14 The data of Fig. 8 plotted on log-linear scale. The straight line
indicates an exponential decay of the first-passage time distribution for the
longest distance D in the data set, see eqn (13).

Fig. 15 Average number of steps hni for a protein from the burst
of Np = 20 molecules to reach the target, computed for varying radial
distances R of proteins from the DNA, at fixed distance D � 13s and
r = 10�4.
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