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Towards a full quantitative description of
single-molecule reaction kinetics in biological cells†

Denis S. Grebenkov, *a Ralf Metzler b and Gleb Oshanin c

The first-passage time (FPT), i.e., the moment when a stochastic process reaches a given threshold value

for the first time, is a fundamental mathematical concept with immediate applications. In particular, it

quantifies the statistics of instances when biomolecules in a biological cell reach their specific binding

sites and trigger cellular regulation. Typically, the first-passage properties are given in terms of mean

first-passage times. However, modern experiments now monitor single-molecular binding-processes in

living cells and thus provide access to the full statistics of the underlying first-passage events, in

particular, inherent cell-to-cell fluctuations. We here present a robust explicit approach for obtaining the

distribution of FPTs to a small partially reactive target in cylindrical-annulus domains, which represent

typical bacterial and neuronal cell shapes. We investigate various asymptotic behaviours of this FPT

distribution and show that it is typically very broad in many biological situations, thus, the mean FPT can

differ from the most probable FPT by orders of magnitude. The most probable FPT is shown to strongly

depend only on the starting position within the geometry and to be almost independent of the target

size and reactivity. These findings demonstrate the dramatic relevance of knowing the full distribution of

FPTs and thus open new perspectives for a more reliable description of many intracellular processes

initiated by the arrival of one or few biomolecules to a small, spatially localised region inside the cell.

I. Introduction

Many intracellular processes of signalling, regulation, infection,
immune reactions, metabolism, or transmitter release in neurons
are triggered by the arrival of one or few biomolecules to a small
spatially localised region.1,2 Such processes determine the cellular
function and are controlled by the statistics of the first-passage
time (FPT) to a reaction event (also called the reaction time), i.e.,
the instant in time when the respective molecules hit their target
site for the first time and initiate biochemical responses.3–8 With
modern techniques such as super-resolution microscopy, it is
possible to monitor individual, single-molecular biochemical
regulation and production processes in living cells, revealing,
for instance, pronounced fluctuations of production events of
individual messenger RNA or proteins within a single cell as
well as striking differences of production patterns between
genetically identical cells.9–11

Most available analytical results to quantify the first-passage
dynamics were obtained for the mean first-passage time
(MFPT),12–30 corresponding to the inverse of the mean rate
constant conventionally used in biochemistry. For a bounded
domain the MFPT is typically proportional to the domain
volume, and it diverges as the target region shrinks. In particular,
for the so-called narrow escape problem, which pertains to a variety
of situations when a diffusive particle has to leave a bounded
domain through a very small window on its boundary,30,31 the
MFPT determines the characteristic decay time of the exponential
long-time tail of the distribution of the FPT, likewise, in the case of a
small target inside bounded circular domains.32,33 This signifies
that the MFPT is dominated by rather rare, anomalously long
searching trajectories, and thus can be non-representative of the
actual behaviour, or, at least be not the only important characteristic
time-scale. Indeed, if a particle with diffusion coefficient D is
released within a short distance d to the target, the relevant time
scale would be d2/D, whereas the MFPT would be of the order of
L2/D, where L is the size of the domain. As a consequence, in this
case the kinetics of the aforementioned biological processes will
most likely be determined by the most probable FPT, which can be
orders of magnitude smaller than the MFPT, a scenario recently
called the few-encounter limit.32 Moreover, it was shown that two
FPT events in the same system may be dramatically disparate.34–36

In these common and biologically relevant situations, the whole
FPT distribution is needed to adequately quantify the molecular
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process and to meaningfully extract the kinetic parameters from
measurements.

However, the exact FPT distribution is known only for few
elementary cases such as the FPT to a perfectly reactive target
placed at the centre of a spherical region or to its boundary,
starting from a fixed location.3 At the same time, already
finding the distribution of FPTs to a small target region on
the otherwise reflecting boundary of a sphere remains an open
problem. To our knowledge, the only nontrivial case, for which
an exact FPT distribution was recently derived, is that of an
arc-shaped target on the boundary of a disk.39 To study the
FPT in more complicated realistic geometries, some approxi-
mate techniques have been developed, such as the uniform
approximation40 and the asymptotically exact Newton-series
approach.32 Otherwise, one resorts to the numerical analysis
of the full FPT distribution.41 We emphasise that an impact of a
finite reactivity on the form of the FPT distribution remains a
completely open question.

We here report the approximate, but explicit and very
accurate expression for the distribution of the FPT to a partially
reactive annular target on a cylinder, surrounded by a larger
impermeable cylinder and capped by two parallel planes (Fig. 1),
which is the relevant geometry to describe the first passage of
molecules to the nucleoid region of bacteria cells or to a central
filament trail in the axon of a neuronal cell. Another example of
such a geometry is provided by a usual experimental setup for
the analysis of a diffusive search by a transcription factor
protein for a specific binding site on a single strand of elongated
DNA (inner cylinder), with the outer cylinder being the wall of
the container. We also note that from a mathematical point
of view, the method underlying the derivation of this FPT
distribution can be formally generalised to arbitrary bounded
domains with a small target region, and thus become applicable
to the narrow escape problem in the presence of a barrier at the
escape window.

Our solution relies on the self-consistent approximation
(SCA) technique originally devised by Shoup, Lipari, and Szabo37

for the analysis of reaction rates between particles with inhomo-
geneous reactivity, and recently applied to the MFPT in spherical28

and cylindrical geometries.38 Within this approximation, the exact
mixed boundary condition is replaced by an effective one, reducing
the problem to finding self-consistent solutions. We adapt this
approximation to the modified Helmholtz equation governing the
survival probability in the Laplace domain and thus the FPT
distribution, which is subsequently checked against the numerical
solution of the original problem, and is shown to be in a remarkable
agreement with the latter. We note that the symmetries of the
geometry under study permit us to express the FPT distribution in a
compact form under rather general conditions: for arbitrary radii of
the inner and the outer cylinders, for arbitrary starting points, fixed
or averaged over the volume or over the cylindrical surface of a given
radius, and for an arbitrary chemical reactivity k defining the
probability of a reaction with the target upon encounter.

We illustrate various features of this distribution, e.g., its
progressive broadening as the outer cylinder becomes larger, or
the size of the target region becomes smaller, and highlight the
relevance of the most probable FPT. In addition, our analysis
unveils remarkable effects of the chemical reactivity k on the
functional shape of the FPT distribution which were not
studied systematically before (Fig. 2). In particular, we proceed
to show that upon lowering k, a plateau-like region develops
beyond the most probable FPT, such that, interestingly, the
values of the FPT in an interval ranging over several decades
turn out to be almost equally probable (see Fig. 5). Moreover,
the chosen shape of a capped cylindrical annulus allows us to
explore various features of effectively one- (semi-infinite cylindrical
annulus), two- (exterior of a capped cylinder), and three-dimensional
(exterior of a semi-infinite cylinder) search in unbounded domains,
for which the MFPT is infinite. In particular, we recover the
characteristic right tails t�3/2 and 1/(t ln2 t) of the FPT distribution
in effectively one- and two-dimensional geometries.3 Therefore,
our analysis also provides a seminal unifying framework in which
the behaviour specific to one-, two- and three-dimensional

Fig. 1 Schematic presentation of the cylindrical-annulus domain O
between two concentric cylinders of radii r and R and capped by planes
at z = 0 and z = L. The target region is the red annulus of radius r and
height e.

Fig. 2 Impact of the finite reactivity onto the FPT probability density
(shown as a ‘‘heatmap’’, in which the value of the FPT density is determined
by the colour code). When the reactivity decreases, the distribution
becomes much broader and extends toward longer reaction times. Blue
and white curves show respectively the mean and the most probable FPTs
versus the reactivity, and differ by orders of magnitude. The FPT probability
density was obtained via a numerical Laplace inversion of the solution (7).
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unbounded systems appears in particular limits. Overall, our
results emphasise an absolute necessity of studying the first
passage phenomena in biologically relevant systems beyond the
MFPT and mean rates, and show that the knowledge of the full
FPT distribution is indeed indispensable for getting a complete
understanding of the wealth of kinetic behaviour in such systems.

II. Results

We study the distribution of the FPT to an annular reactive
region G (the target site) on a cylinder of radius r when
diffusion is restricted by an outer, concentric and impermeable
cylinder of radius R (Fig. 1). In other words, diffusion occurs
within the confining cylindrical-annulus domain O spanned
by the interval z A (0,L) along the cylinder axis and the radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in the interval r A (r,R). The target consists of the

annular domain G on the inner cylinder, specified by the
interval z A (0,e) along the cylinder axis and the radius r = r.
Note that the cylindrical domain is capped by reflecting planes
at z = 0 and z = L so that the scenario is in fact equivalent to
diffusion in an infinite cylinder with a periodic arrangement of
targets. For a particle seeded at some point x A O, the survival
probability Sðx; tÞ ¼

Ð
OPðx; x0; tÞdx0 is calculated as the volume

integral of the (non-normalised) density function P(x,x0,t) to
find the particle at position x0 at time t. The negative derivative
of the survival probability with respect to time then produces the
probability density of first passage time, H(x,t) = �qS(x,t)/qt. In the

Laplace domain, defined in terms of ~f ðpÞ ¼
Ð1
0
expð�ptÞf ðtÞdt,

this relation can be rewritten as H̃(x,p) = 1� pS̃(x,p), where we used
the initial condition S(x,t = 0) = 1, that is, initially the particle is
present in the domain O with unit probability.

The survival probability, written in cylindrical coordinates
(r,z,j), satisfies the backward Fokker–Planck equation qS(x,t)/
qt = DDS, where D is the bulk diffusion coefficient, and D = qr

2 +
r�1qr + qz

2 + r�2qj
2 is the Laplace operator. In the Laplace

domain, this equation reduces to the modified Helmholtz
equation

( p � DD)S̃(x,p) = 1. (1)

Due to the axial symmetry of the problem, there is no dependence
on the polar angle j. The reflecting boundary conditions at the
outer boundaries are taken into account by setting the derivatives
qS/qr = 0 at r = R and qS/qz = 0 at z = 0, L, respectively. To simplify
the notations, we replace the axial coordinate z by y = pz/L, and
introduce e = pe/L. The mixed boundary condition on the inner
cylinder then reads

Dð@ ~S=@rÞr¼r ¼
k ~Sr¼r ð0o yo eÞ

0 ðeo yopÞ

(
(2)

in the Laplace domain. The reactivity coefficient k under the Robin
boundary condition determines the degree of stickiness of the
reactive boundary G and is associated with the probability of the
reaction with the target upon an encounter.42–44 In standard terms,
k (in units m s�1) is defined as the rate describing the number of

reaction events per unit of time within the volume of the reaction
zone around G, times the reaction radius and hence, is a material
property independent of e (see ref. 45 for more details). For a non-
reactive target one has k = 0, while k = N corresponds to the case
of a perfect reaction which, on encounter, occurs with probability
1. We note that the effect of k on the shape of the full distribution
of the FPT is a novel feature here. The only available previous
analysis concerned solely its effect on the MFPT, and showed that
in related settings it can indeed be decisive.28,38 This naturally
raises the question of the effects of a finite reactivity beyond
the MFPT.

We apply an SCA by replacing the mixed boundary condition
(2) by the inhomogeneous Neumann condition37

D(qS̃/qr)r=r = QY(e � y), (3)

in which Y(z) is the Heaviside step function and the effective
flux Q remains to be determined by imposing an appropriate
self-consistent closure relation,37 i.e., by requiring that the first
line in (2) holds on average: D

Ð e
0dyð@ ~S=@rÞr¼r ¼ k

Ð e
0dy ~Sr¼r.

We search a solution in the generic form

~Sðr; y; pÞ ¼ R2

D
u0ðrÞ þ

X1
n¼0

angnðrÞ cos ny
 !

; (4)

where the first term is the solution of the inhomogeneous
problem with Dirichlet boundary conditions at r = r, an are
unknown coefficients to be determined, and gn(r) are radial
functions satisfying the ordinary differential equation

gn
0 0 þ 1

r
gn
0 � p2n2

L2
þ s

R2

� �
gn ¼ 0; (5)

where the prime denotes the radial derivative and s = pR2/D
is the dimensionless Laplace variable. We emphasise the
dependence of u0(r), an and gn(r) on the Laplace variable,
although we do not write it explicitly for the sake of brevity.

The solution of (5) satisfying the boundary condition
(qgn/qr)r=R = 0 is a linear combination of modified Bessel
functions In(z) and Kn(z) of first and second kind,

gn(r) = I0(anr/L)K1(anR/L) + K0(anr/L)I1(anR/L), (6)

with an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2n2 þ sL2=R2

p
. The solution of the inhomogeneous

problem with Dirichlet boundary conditions at r = r reads
u0(r) = [1 � g0(r)/g0(r)]/s.3,46 The coefficients an are determined
and shown in the ESI,† Section I, and we obtain the final result
for the FPT density

~Hðr; y; pÞ ¼ Z
g0ðrÞ
g0ðrÞ

þ 2Z
g0
0 ðrÞ

g0ðrÞ
X1
n¼1

gnðrÞ
gn
0 ðrÞ

sin ne
ne

cosðnyÞ; (7)

in the Laplace domain, where

Z ¼ 1� pD
ke
þ L

p
Re

� �
g0
0 ðrÞ

g0ðrÞ

� ��1
(8)
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and

Re ¼ �
2p
L

X1
n¼1

gnðrÞ
gn
0 ðrÞ

sin ne
ne

� �2

: (9)

This approximate representation of the FPT density in the
cylindrical-annulus domain is one of the main results of this
paper. This result hinges on the SCA, which has already been
applied for the analysis of the MFPT in spherical28 and cylindrical-
annulus38 geometries, and verified against the numerical solution
of the mixed boundary problem. Moreover, a similar SCA approach
has been used in ref. 45 to calculate the self-propulsion velocity of
catalytically active colloids and was shown to be in very good
agreement with already known results, only slightly under-
estimating some insignificant numerical factors. In Section II
of the ESI,† we show that it is a remarkably accurate approxi-
mation for the problem under study, checking it for different
initial conditions against the numerical solution of the original
mixed boundary value problem.

The moments of this FPT distribution can be obtained from

H̃(r,y;p) in the form Tn ¼ ð�1Þn lim
p!0
ð@n=@pnÞ ~Hðr; y; pÞ. The first

moment T1 is the mean FPT that we also denote as T for brevity.
The explicit solution in (7) fully determines the statistics of the
FPT. Since S̃(r,y;p) and the FPT density H̃(r,y;p) are trivially
related in the Laplace domain, we focus on the latter quantity,
bearing in mind that all properties of the Laplace-transformed
survival probability follow immediately from those of H̃(r,y;p).
The inverse Laplace transform can be performed either by
determining the poles of H̃(r,y;p) and using the residue theorem,
or by numerical inversion using the Talbot algorithm. In Section
III of the ESI,† we discuss in more detail the former approach,
whereas the numerical inversion is used throughout the paper.
The solutions in the limiting cases R - N and L - N,
corresponding to effectively two- and one-dimensional geometries,
are presented in the ESI† (Sections VI and VII).

As already remarked, we will consider different situations
with respect to the starting point of the particle. If the starting
point is distributed uniformly in the bulk, the volume average
of H̃(r,y;p) can be evaluated exactly,

~HðpÞ ¼ 2

ðp
0

dy
ð
r

Rdrr
~Hðr; y; pÞ

p R2 � r2ð Þ ¼
�2rg0

0 ðrÞZ
s 1� r2=R2ð Þg0ðrÞ

; (10)

where we used the identity
Ð
r
RdrrgnðrÞ ¼ �rL2gn

0 ðrÞ
�
an2. If in

turn the average is taken over uniformly distributed starting
points on a cylindrical surface of radius r, we find

~HðpÞr ¼
1

p

ðp
0

dy ~Hðr; y; pÞ ¼ Z
g0ðrÞ
g0ðrÞ

: (11)

Setting r = r (when a particle starts from the inner boundary
with uniform density), this relation turns out to provide a
natural interpretation for the coefficient Z defined in (8).

As discussed in ref. 46, H̃(r,y;p) can also be interpreted as the
probability that a mortal walker with bulk killing rate p reaches
the target. For p = 0, the classical immortal walker reaches the
target with unit probability because of the recurrent character

of restricted Brownian motion in a bounded domain. In turn,
when p 4 0, the random walker can be killed during its search
for the target, and H̃(r,y;p) is the fraction of walkers that reach
the target before being killed.

III. Discussion

The explicit form of the Laplace-transformed FPT distribution
H̃(r,y;p) in (7) provides unprecedented opportunities for studying
the details of the first passage dynamics in a cylindrical-annulus
domain. The major challenge here is the relatively large number
of relevant parameters of this problem. In fact, the short-time
and the long-time behaviours of the FPT distribution (i.e., its left
and right tails) strongly depend on the four geometric parameters
R, L, r, and e, as well as on the reactivity k, and on the starting
point (in particular, whether it is fixed or randomly distributed
over some subdomain). For instance, the behaviour in the small-
target limit e- 0 is expected to be different from that in the thin
cylinder limit r - 0. Moreover, one can also investigate the
limiting cases of the unbounded exterior of a capped cylinder
(R - N), and of an infinitely long cylinder (L - N). In these
two limits, the distribution of the FPTs remains well defined,
although the MFPT is infinite, as shown in Sections VI and VII
of the ESI.† We discuss below the various facets of the FPT
distribution in different parameter ranges as well as some
direct applications.

A. General qualitative behaviour

The form of the left tail of the FPT distribution (corresponding
to short FPTs) strongly depends on the starting point of the
particle. If the starting point is fixed (or surface-averaged with
r 4 r), the FPTs are dominated by very rare trajectories from
x to the closest points of the target (called direct trajectories in
ref. 32 and 33). As t - 0, we thus expect the behaviour H(x,t) p
exp(�|x � G|/[4Dt]), where |x � G| is the Euclidean distance
between the starting point x and the target domain G. In this
limit, the FPT density vanishes very rapidly, meaning that very
short FPTs are extremely unlikely. In turn, if the starting point
is averaged over the volume or over the inner surface at r = r,
such that some particles are initially released right at the
surface of the target, one can expect that the FPT density is
peaked at t = 0 and then monotonically decreases with t. In this
case, an intermediate power law decay of the FPT distribution
is expected. In particular, the general asymptotic behaviour
derived in ref. 46 for the perfectly reactive target implies

~HðpÞ ’ ðjGj=jOjÞðp=DÞ�1=2, thus

HðtÞ ’ ð2reDÞp�3=2 R2 � r2
� ��1ðDtÞ�1=2 (12)

as t - 0. In the partially reactive case k o N, the intermediate
power-law decay has a different form; see Section III C.

The form of the right tail of the FPT distribution essentially
depends on whether the domain O is bounded or not. For any
bounded domain, the spectrum of the governing Laplace
operator is discrete, and the FPT density exhibits an exponential
decay whose rate is determined by the smallest non-trivial eigenvalue
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l0: H(x,t) p exp(�Dtl0) as t - N. In Section III B, we relate the
decay rate to the surface-averaged MFPT %Tr, which is finite. The
behaviour is different in the limits R - N or L - N when
the domain O becomes unbounded. In this case, the MFPT
is infinite, and the FPT density exhibits a power-law decay
(possibly with logarithmic corrections). We discuss this behaviour
in detail in the ESI† (see Sections VI and VII). It is important to
stress that the related power-law behaviour can also be relevant
even for bounded domains as an intermediate regime, before the
ultimate exponential cut-off; see also the findings for spherical
domains in ref. 32–36. As we will illustrate below, such an
intermediate power-law regime can spread over a quite broad
range of times and thus be the most interesting feature of
the underlying FPT phenomenon. In this situation, the most
probable FPT can differ from the MFPT by many orders
of magnitude.

B. The right tail of the FPT distribution

In the limit p - 0, the Laplace transform H̃(r,y;p) of the FPT
density determines both the moments Tn of the FPT and the
long-time behaviour of H(r,y;t) itself. Taking the respective
limits of the radial function discussed in Section IV of the ESI,†

we obtain HðtÞr as the inverse Laplace transformation of Z,

namely,

HðtÞr ’ exp �t
�
Tr

� ��
Tr; (13)

valid for t - N. The characteristic time is given by

Tr ¼
R2 � r2

2Dr
pD
ke
þ L

p
Reðp ¼ 0Þ

� �
; (14)

which corresponds to the surface-averaged MFPT investigated
in ref. 38. This result is expected for diffusion in a bounded
domain. The asymptotic behaviour of other quantities can be
obtained in a similar way. For instance,

HðtÞr ’ exp �t
�
Tr

� ��
Tr; (15)

with the characteristic time

Tr ¼ Tr þ
r2 � r2

4D
þ R2 lnðr=RÞ

2D

� �
; (16)

where the second term in the parentheses is the MFPT to the
inner cylinder from a uniformly distributed point at the cylindrical
surface at r. The additivity of two MFPTs reflects the fact that any
trajectory from such a point to the target can be split into two
independent parts: the path from the cylinder at r to the cylinder at
r, and the path from the cylinder at r to the target, similar to the
results for inhomogeneous diffusion in a cylindrical domain.56

C. The left tail of the FPT distribution

The form of the left tail of the FPT distribution stems from the
asymptotic behaviour of H̃(r,y;p) in the limit p - N. After the
transformations detailed in the ESI† (see Section IV), we obtain
the Laplace-transformed FPT density H̃(r,y;p) along with its

volume and surface averages, ~HðpÞ and ~HðpÞr. Here one needs
to distinguish the cases of perfect (k = N) and imperfect

(k o N) reactivity at the target. Note that the difference in
the asymptotic behaviours for perfectly or only partially reactive
targets was discussed for other geometries in ref. 57 and 58.

1. Perfect reactions. According to (11) the inverse Laplace
transform of asymptotic relation (S34) in the ESI† yields the

asymptotic behaviour of the surface-averaged FPT density HðtÞr
at small t, namely,

HðtÞr ’ ðe=pÞdðtÞ þ ðD=½8p�Þ1=2L�1t�1=2 þOð1Þ: (17)

The first term represents the fraction e/p of particles that
started right at the target, for which the first passage time
is zero. The next term accounts for the FPTs of particles with
non-zero initial separations from the target. Since (S33), ESI†
was derived for e r p/2, the above asymptotic behaviour is not

applicable for the case e = p, for which HðtÞr ¼ dðtÞ without

correction terms.
When the particles start from a cylindrical surface at r, (11)

has an extra factor g0(r)/g0(r). With the large-p asymptotic (S36),
ESI† we find the short-time behaviour

HðtÞr ’
e
p
r
�
4prDt3
� 	� �1=2

exp �ðr� rÞ2
�
½4Dt�

� �

� r� rþDt
pffiffiffi
2
p

Le
þ

ffiffiffiffiffiffiffiffi
1=r

p
�

ffiffiffiffiffiffiffi
1=r

p
4
ffiffiffiffi
R
p

 !
þO t2

� � !
:

(18)

Fig. 3(a) shows the surface-averaged probability density HðtÞr
for two choices of the target height: e = 0.2 and e = p. The latter
case describes the whole inner cylinder as reactive, while the
former value of e is chosen arbitrarily and meant to illustrate a
moderately small target. In both cases shown in the figure, the
short-time asymptotic (18) is very accurate up to Dt/R2 t 0.1.
When the target is the entire inner cylinder (e = p), this time
scale is of the order of the corresponding MFPT D %Tr/R

2 E 0.34.
For times of that order the FPT density has an exponential cut-
off. For the case of a partially reactive inner cylinder (e = 0.2),
the MFPT is, notably, around four decades longer than the
most likely FPT.

For the volume average, (10), together with (S34) (ESI†),
yields a different short-time behaviour, namely,

HðtÞ ’ rD
R2 � r2

2e

p
ffiffiffiffiffiffiffiffi
pDt
p þ 1ffiffiffi

2
p

L
þ e
pr

� �
þO t1=2


 �� �
: (19)

The leading term agrees with the general behaviour in (12).
Fig. 3(b) shows the FPT density obtained by numerical inversion

of ~HðpÞ from (7). In the particular case e = p (the entire inner
cylinder is absorbing), one has an = 0 and thus (7) is exact. One
can see that both distributions are broad. The asymptotic (19) is
remarkably accurate for both cases e = p and e = 0.2.

2. Imperfect reactions. For imperfect reactions with finite
reactivity k, the first arrival onto the target does not necessarily
imply a successful reaction, so that the reaction times are
increased. Indeed, for k o N, (S33) in the ESI† acquires the
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asymptotic (S37), ESI† from which we get the short-time
behaviours

HðtÞr ’
e
p

kffiffiffiffiffiffiffiffi
pDt
p � e

p
k2

D
þ k
2r

� �
þO

ffiffi
t
p� �

; (20a)

HðtÞr ’
e
p

ffiffiffiffiffiffiffi
r=r

p kffiffiffiffiffiffiffiffi
pDt
p exp �ðr� rÞ2

4Dt

� �
; (20b)

HðtÞ ’ 2rek
p R2 � r2ð Þ 1� 2k

ffiffiffiffiffiffi
Dt
p

D
ffiffiffi
p
p þOðtÞ

� �
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Interestingly, for imperfect reactions the leading short-time
behaviour of the FPT distribution appears to be distinctly

different, depending on the starting point: HðtÞr diverges as

t - 0, HðtÞr tends to zero in this limit, while HðtÞ approaches a
constant value.

Fig. 4(a) shows the surface-averaged FPT density HðtÞr at
r/R = 0.2 and kR/D = 1. One can see that the short-time
asymptotic (20b) accurately reproduces the behaviour of this

density up to its maximum. As a consequence, the position tm

of this maximum can be obtained by taking the derivative of
(20b) with respect to t and setting the resulting expression
equal to zero. This gives the following estimate for the most
probable FPT:

tm = (r � r)2/(2D). (21)

The estimated value of tm in (21) depends only on the distance
to the target but does not depend on either the target size e or
the reactivity k, nor on the inner radius of the cylinder. In this
example, Dtm/R2 = 0.005, whereas the MFPT is four orders of
magnitude higher. Similar to the findings in ref. 32, the most
likely FPT corresponds to geometry-controlled direct trajectories,
in which the initial distance from the target is decisive.

We also note that the probability density is broader in the
case e = 0.2, with a flat intermediate region between the maximum
hump and the exponential cut-off (in the region 0.2 r Dt/R2 r 10).
As the target size e or the reactivity k decreases, the MFPT increases
and thus the exponential cut-off moves towards longer times. In
turn, the position and shape of the maximum remain approximately
constant (dominated by the initial distance and the diffusivity D) so

Fig. 3 Surface-averaged (a) and volume-averaged (b) FPT densities HðtÞr
and HðtÞ as functions of t for perfect reactions (k = N) with L/R = p, r/R = 0.1,
r/R = 0.2, and e = 0.2 (solid line) and e = p (dashed line). Both curves are
obtained by the numerical Laplace inversion of (7). The two arrows indicate
the MFPT D %Tr/R

2 for both cases: 10.82 (e = 0.2) and 0.34 (e = p) for the
surface-averaged quantity, and 11.27 (e = 0.2) and 0.79 (e = p) for the
volume-averaged quantity. The dash-dotted lines indicate the short-time
asymptotic (18) and (19), and agree very well with the general result in (7)
well beyond the most probable FPT. Length and time scales are fixed by
setting R = 1 and R2/D = 1.

Fig. 4 Surface-averaged (a) and volume-averaged (b) FPT densities HðtÞr
and HðtÞ as functions of t for imperfect reactions (kR/D = 1, cf. Fig. 3), with
L/R = p, r/R = 0.1, r/R = 0.2, and e = 0.2 (solid line) and e = p (dashed line).
Both curves are obtained by numerical Laplace inversion of (7). The two
arrows indicate the MFPT D %Tr/R

2 for both cases: 88.58 (e = 0.2) and 5.29
(e = p) for surface-averaged quantity, and 89.03 (e = 0.2) and 5.74 (e = p) for
volume-averaged quantity. The dash-dotted lines show the short-time
asymptotic (20b) and (20c) (in which only the leading term is kept). The
length and time scales are fixed by setting R = 1 and R2/D = 1.
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that the intermediate region expands, as we checked for e = 0.05 and
for kR/D = 0.1 (not shown). This is a striking result: if the particle
does not manage to find the target and react within short times
comparable to tm (around the maximum), it explores the entire
confining domain with eventual returns to the target. As a
consequence, its reaction time is distributed almost uniformly
over a very broad range of times, up to the exponential cut-off
which is essentially determined by the MFPT. The latter, in
turn, is dominated by the chemical reactivity, while the diffusive
search for the target provides only a sub-dominant contribution38

(see also ref. 28 for a general discussion). One can see that the low
reactivity k leads to a homogenisation of the search process, as
evidenced in Fig. 5, and the plateau-like region past the most
probable FPT extends over progressively longer scales when k
becomes smaller. As a consequence, the values of FPTs ranging
over several orders of magnitude appear to be almost equally
probable.

Fig. 4(b) shows that the volume-averaged FPT density HðtÞ
remains almost constant at short times and then has an
exponential cut-off. This almost uniform behaviour at short
times resembles that shown in Fig. 4(a). The only difference is
that there is no maximum at short times as some particles start
infinitely close to the target.

D. Biological implications

The function of biological cells to a large extent relies on the passive
diffusion of regulatory molecules. In particular, the expression level
of any gene is controlled by the binding of transcription factor
proteins. Inside the chromosome a transcription factor locates its
specific binding site via facilitated diffusion combining volume
search with one-dimensional sliding along the DNA, as well as

intersegmental jumps.47–49 As many bacteria cells such as the
well-studied E. coli or bacilli have distinct cylindrical shapes, the
analysis here provides an answer to the question how fast a
given transcription factor can reach the chromosome from the
cytoplasm of the cell in the first place. Our results demonstrate
that for all considered scenarios the FPT to the nucleoid is
broadly distributed and may deviate significantly from the
respective MFPT. For reliable regulation it may thus be advantageous
that transcription factors, which often occur in very low copy
numbers in a cell, are inhomogeneously distributed in the
cell,50,51 and may thus be kept close to their target site on
the DNA. This reasoning is in accord with the results for the
downstream gene regulation model in ref. 52, supporting the
rapid search hypothesis53 as well as the geometry controlled
few-encounter scenario of ref. 32.

We also mention another relevant system for the cylindrical
geometry, namely, axons, the up to a meter long protrusion of
neuronal cells, whose diameter may span from 0.1 mm up to
20 mm.54 In the giant squid, the diameter may even reach the
macroscopic size of 1 mm. In such an axon, motor proteins
detach from the central bundle of microtubules, along which
the motors actively transport cargoes. The motors’ reattachment
dynamics after unbinding, governed by the results derived
herein for imperfect reactions, have been shown to be important
for the observed Lévy walk transport.55

IV. Conclusion

Although the necessity of knowing the full FPT distribution,
especially in situations when several length scales are involved,
has been emphasised earlier (e.g., in ref. 7, 8, 32, and 33), not
much progress has been achieved in this direction. For the first
time, we discuss here, using an analytical solution, the forms of
the full first-passage time distribution for different initial
conditions in a cylindrical-annulus geometry relevant for bacteria
cells and neuronal axons. Due to the quite large number of
parameters in the system, the full distribution of the FPT has a
complicated structure and appreciably changes its shape when
the parameters are changed. It would therefore be naive to expect
that the full complexity of the behaviour in the system could
be exhaustively characterised by just the first moment of this
distribution – the mean first-passage time – on which the
previous research has concentrated almost exclusively.

Within a self-consistent approach, proposed originally in a
completely different context in ref. 37, we found explicit,
approximate expressions for the full FPT distribution, which
we validated by extensive numerical analysis. One of the main
features that we uncovered is that, indeed, the full distribution
has an important structure and is rather sensitive to a slight
variation of the system’s parameters. Next, we showed that the
MFPT turns out to be several orders of magnitude longer than
the most likely FPT, the decisive quantity indicating when
typically the first molecule arrives at the target and triggers
biochemical follow-up reactions. Therefore, while the knowledge
of the MFPT is certainly helpful and important, it carries the

Fig. 5 Surface-averaged FPT density HðtÞr as a function of t for imperfect
reactions, with L/R = p, r/R = 0.1, r/R = 0.2, and e = 0.2. All curves are
obtained by numerical Laplace inversion of (7). Arrows indicate the
MFPT D %Tr/R

2: 10.82 (k = N), 18.60 (k = 10), 88.58 (kR/D = 1), and
788.36 (kR/D = 0.1). Note that (at fixed D) the MFPT grows with decreasing k.
In this regime, the MFPT becomes dominated by chemical reactivity, %Tr B 1/k
(see ref. 28 and 38). The most probable FPT exhibits a weak dependence
on k. Note also the appearance of a pronounced plateau-like region,
which stretches over progressively longer times scales upon lowering the
reactivity k. Hence, there is a broad range of times with equiprobable
realisations of the FPT. The length and time scales are fixed by setting R = 1
and R2/D =1.
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danger of being misleading, given that the MFPT largely over-
estimates the typical time scales involved in cellular processes. In
this context, former theoretical works devoted to the minimisation
of the MFPT do not necessarily reveal the optimal conditions for
the function of biological systems, because they do not affect the
most likely FPT.

An equally significant result of our analysis is the occurrence
of an extended plateau of the FPT distribution for lower
reactivity constants k, signifying that over more than a decade
all FPTs within this range become equally probable and thus
the triggering events even more unfocused. Moreover, within the
unique geometric setting, we could unveil intriguing dimensionality
features of the diffusive search in unbounded domains, for which
the MFPT is infinite and thus useless. The derived asymptotic
formulas correctly describe intermediate regimes of the FPT
distribution in the bounded case as well.

Having available expressions for the full FPT distribution
will allow a more faithful evaluation of measured reaction
dynamics, but also the planning of new experiments, in particular,
when single molecule resolution is accessible. We expect that our
results will lead to a new level of quantitative understanding of
molecular regulation processes on microscopic levels, for instance,
a renormalisation of rate constants extracted from MFPT inter-
pretations.
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