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Ergodicity, rejuvenation, enhancement, and slow relaxation of diffusion
in biased continuous-time random walks
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Bias plays an important role in the enhancement of diffusion in periodic potentials. Using the continuous-time
random walk in the presence of a bias, we report on an interesting phenomenon for the enhancement of diffusion
by the start of the measurement in a random energy landscape. When the variance of the waiting time diverges,
in contrast to the bias-free case, the dynamics with bias becomes superdiffusive. In the superdiffusive regime, we
find a distinct initial ensemble dependence of the diffusivity. Moreover, the diffusivity can be increased by the
aging time when the initial ensemble is not in equilibrium. We show that the time-averaged variance converges to
the corresponding ensemble-averaged variance; i.e., ergodicity is preserved. However, trajectory-to-trajectory
fluctuations of the time-averaged variance decay unexpectedly slowly. Our findings provide a rejuvenation
phenomenon in the superdiffusive regime, that is, the diffusivity for a nonequilibrium initial ensemble gradually
increases to that for an equilibrium ensemble when the start of the measurement is delayed.
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I. INTRODUCTION

Mixing of more than two fluids is a key operation of
microfluidic devices in chemistry, biology, and industry, in
which diffusion is an essential mechanism for mixing [1–3].
In particular, achieving an enhancement of the diffusivity is
pivotal for mixing of particles in heterogeneous environments
because diffusion in such systems is often slow. One of the
most applicable controls of the diffusivity is adding a directed
external force or a flow, i.e., a bias. In discrete-time random
walks the bias, characterized by the difference between the
probabilities of right and left jumps, suppresses the diffusivity.
In particular, the variance of the displacement grows linearly
with time [4]: Var(xn) ≡ 〈x2

n〉 − 〈xn〉2 = 4pqn, where xn is the
displacement of a random walker at the nth step, p and q = 1 −
p are the probabilities of right and left jumps, respectively, and
we assume the jump size is fixed to unity. Thus, the diffusivity
defined by D ≡ Var(xn)/n is given by D = (1 − ε)(1 + ε),
where ε = p − q. In the absence of a bias (ε = 0) the value
of D is maximized. In other words, the diffusivity is always
suppressed by the bias for discrete-time random walks.

This trend may in fact be reversed when the time steps
are continuous random variables. It is well-known that the
diffusivity can be enhanced by an external field for diffusion
in periodic potentials, i.e., tilted sinusoidal potentials [5,6]. In
particular, when the diffusivity in the absence of an external
force is small due to deep periodic potential wells or low
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temperatures, the diffusivity is greatly accelerated (“giant
acceleration”) at an optimal external force. As seen above,
the external force actually suppresses the diffusivity due to a
directed motion in discrete-time random walks. Conversely,
the bias decreases the escape time from a valley of a periodic
potential, which contributes to the enhancement of diffusivity.
With the aid of this trade-off relation, the diffusivity can be
maximized at some optimal external force. As the diffusivity
enhancement by a bias is a universal phenomenon in diffusion
in periodic potentials, many experiments have been designed
to realize this effect [7–12].

Effects of a bias in many-body systems has also attracted
a considerable interest aiming to unravel nonequilibrium
properties [13–16]. In particular, it is essential to investigate
the implication of an external force on the diffusion of a
particle in many-particle systems [17,18]. In many crowding
systems, such as diffusion in cells and active diffusion of
colloidal particles, diffusion becomes anomalous; i.e., the
mean-squared displacement does not increase linearly with
time [19–22]. Recently, it became known that dynamics of
a biased tracer particle in a crowding environment become
anomalous. In particular, an external field in crowding systems
induces superdiffusion; i.e., 〈r (t )2〉 ∝ tβ with β > 1, where
r (t ) is a position of a tracer particle [23–28].

The continuous-time random walk (CTRW) is a simple
stochastic model of anomalous diffusion and often used as
a model of diffusion in heterogeneous environments because
it contains many aspects of anomalous transport in disor-
dered media [29–32]. In the CTRW, the time steps of a
random walker are continuous random variables and the time
between steps is called the waiting time. Effects of a bias in
the CTRW have been studied in the context of anomalous
transport in porous media [33–35]. In particular, field-induced
superdiffusion may be observed when a bias is added in the
CTRW [34–38]. This field-induced phenomenon is essential
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to unraveling enhancement of the diffusivity in heterogeneous
systems.

In this paper, we investigate an initial-ensemble dependence
of the variance of the displacement and ergodic properties of
the time-averaged variance of the displacement in the CTRW
with drift. When the second moment of the waiting time
diverges, the variance becomes superdiffusive. In this regime
there is a clear initial-ensemble dependence of statistical quan-
tities such as the correlation function and the mean-squared
displacement [39,40], which will give rise to a nonequivalence
of time and ensemble averages [40,41]. Therefore, it is a
fundamental question of whether the system is still ergodic.
If the system is ergodic, it is also important to clarify how the
initial ensemble affects the relaxation process.

II. MODEL

The quenched trap model (QTM) is used to describe a
random walk in a quenched random potential landscape, in
which the depths of the potential wells are randomly distributed
[42]. A particle will be trapped in a potential well and escape
from the well. When the distribution of depths follows an
exponential law, the escape-time distribution (we will call it
the waiting-time distribution later) becomes of power-law form
[43], where the power-law exponent depends on the temper-
ature. CTRW is a random walk with random waiting times,
corresponding to an annealed model of the QTM. In CTRW,
waiting times are independent and identically distributed (IID)
random variables, which do not depend on the position of
a particle. On the other hand, the waiting-time distribution
clearly depends on the position in the QTM. In this sense, the
CTRW is homogeneous and sometimes fails to capture some
physical properties in the QTM due to the annealed features
[44–48]. However, the CTRW is a good approximation when
the spatial dimension is equal and greater than 2 [49] or in the
presence of a bias minimizing the risk of back stepping [31].

To investigate the effects of the bias on the diffusive proper-
ties in heterogeneous environments, we consider a CTRW with
a drift. We assume that the waiting-time distribution follows a
power-law distribution

ψ (τ ) ∼ ατα
0 τ−1−α (τ � τ0). (1)

The Laplace transform for the caseα > 1 considered here reads

ψ̂ (s) =
{

1− μs + csα + o(sα ) (1 <|, α < 2),

1− μs + 1
2 (σ 2 + μ2)s2 + o(s2) (2 < α),

,

(2)
where the mean and the variance of the waiting time are
denoted by μ and σ 2, respectively, and c = |�(1 − α)|τα

0 .
For ψ (τ ) = ατα

0 τ−1−α (τ � τ0), μ and σ 2 + μ2 are given by
ατ0/(α − 1) and ατ 2

0 /(α − 2), respectively.
Let Nt be the number of jumps of a random walker until

time t . Then, we have the first moment of displacement x(t )
with x(0) = 0 as

〈x(t )〉 = (p − q )〈Nt 〉. (3)

The variance of the displacement, Var[x(t )] ≡ 〈x(t )2〉 −
〈x(t )〉2, is expressed through Nt as

Var[x(t )] = (p − q )2
(〈
N2

t

〉 − 〈Nt 〉2
) + 4pq〈Nt 〉. (4)

Moreover, the variance of δx(t, t + �) ≡ x(t + �) − x(t ), is
given by

Var[δx(t, t + �)]

= (p − q )2
(〈
N2

t+�

〉 − 〈
N2

t

〉 − 2〈Nt,t+�Nt 〉
)

− (p − q )2(〈Nt+�〉2 − 〈Nt 〉2 − 2〈Nt,t+�〉〈Nt 〉)

+ 4pq(〈Nt+�〉 − 〈Nt 〉), (5)

where Nt,t+� = Nt+� − Nt is the number of jumps in [t, t +
�]. Therefore, the mean and variance of the displacement can
be calculated using the moments and the correlation function
of Nt , which can be obtained from renewal theory [50].

Here, we consider two typical renewal processes, i.e.,
ordinary and equilibrium renewal processes [50]. Renewal
processes are point processes in which the time intervals be-
tween successive renewals are IID random variables. Because
the waiting times are IID random variables in the CTRW,
statistical properties of CTRW can be obtained using the
renewal processes [51]. In CTRW, the distribution of the
time intervals between successive renewals corresponds to the
waiting-time distribution ψ (τ ).

One has to be careful about the first renewal event because
the distribution of the first renewal time is not the same as ψ (τ )
in general [50–52]. An ordinary renewal process is a renewal
process in which the distribution of the time when the first
renewal occurs follows ψ (τ ) [50]. In other words, a renewal
occurs at the time when the observation starts. In equilibrium
renewal processes, a measurement starts after the system has
evolved for a long time, and thus the distribution of the first
renewal time is not the same as ψ (τ ), except for the case when
the waiting-time distribution follows an exponential law. When
the mean waiting time exists (μ < ∞), the distribution of the
first renewal time is given by [50,52]

ψ0(τ ) = μ−1
∫ ∞

τ

ψ (τ ′)dτ ′. (6)

III. ENSEMBLE-AVERAGED VARIANCE

The first moment 〈Nt 〉, called the renewal function, has a
well-known expression in renewal theory [50,52]: for α > 1
it becomes 〈Nt 〉 ∼ t/μ for t � τ0. In particular, it is exact;
i.e., 〈Nt 〉 = t/μ for t > 0, when the first renewal time follows
the equilibrium distribution (6). Using Eq. (3) and the renewal
function, we have the mean displacements,

〈x(t ) − x(0)〉eq = (ε/μ)t (7)

for t > 0 and

〈x(t ) − x(0)〉or ∼ (ε/μ)t (8)

for t � τ0 in equilibrium (〈·〉eq) and ordinary (〈·〉or) renewal
processes, respectively. Therefore, the flow velocity cε is given
by cε = ε/μ for both types of renewal processes.

The second moment of Nt is also well-known in renewal
theory [50]. For α > 2, the asymptotic behavior of the variance
of Nt is not affected by the initial ensemble and is given by

Var(Nt ) ≡ 〈
N2

t

〉 − 〈Nt 〉2 = σ 2

μ3
t + o(t ). (9)
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FIG. 1. Effect of bias ε on diffusivity for different α, where
the mean is set to unity (μ = 1). Solid and dashed curves are the
theoretical results, Eq. (16), i.e., D = 1 + (σ 2 − 1)ε2. The diffusivity
can be enhanced by the bias for α > αc.

Therefore, the variance of the displacement for both ordinary
and equilibrium processes becomes

Var[x(t )] ∼
(

1

μ
+ σ 2 − μ2

μ3
ε2

)
t (10)

for t � τ0 and α > 2. The diffusion coefficient given by

Dε ≡ 1

μ
+ σ 2 − μ2

μ3
ε2 (11)

is increased by the bias ε when σ 2 > μ2. The critical value αc,
i.e., σ 2 = μ2 at α = αc, is given by αc = 1 + √

2. Therefore,
the diffusion is enhanced when 2 < α < αc (Fig. 1). When
the variance σ 2 of the waiting time is greater than μ2, an
enhancement of the diffusivity due to the external force is
achieved. In a general situation, the diffusion coefficient was
already derived in Refs. [30,35]. We note that this enhancement
mechanism is completely different from that for diffusion in
tilted periodic potentials [5,6].

The ratio between cε and Dε becomes

cε

Dε

= ε

1 + (σ 2/μ2 − 1)ε2
. (12)

It is an increasing function of ε on [0,1] for σ 2 < 2μ2,
i.e., α > α∗ ≡ 1 + √

6/2. Conversely, it has a peak at ε∗ =
μ/

√
σ 2 − μ2 for 2 < α < α∗.

To obtain Var[δx(t, t + �)], we need to calculate the
correlation function 〈NtNt,t+�〉. Following Ref. [53], one can
obtain the Laplace transform of 〈NtNt,t+�〉 with respect to t

and � as

L
u,s

〈NtNt,t+�〉eq = ψ̂ (s) − ψ̂ (u)

μus(u − s)[1 − ψ̂ (u)][1 − ψ̂ (s)]
(13)

and

L
u,s

〈NtNt,t+�〉or = [ψ̂ (s) − ψ̂ (u)]ψ̂ (u)

s(u − s)[1 − ψ̂ (u)]2[1 − ψ̂ (s)]
. (14)

By the inverse Laplace transform, we have

〈NtNt,t+�〉 ∼ t�

μ2
+ (σ 2 − μ2)�

2μ3
+ o(�) (15)

for α > 2 and τ0 � � � t , which is valid for both types of
renewal processes. Therefore, the variance

Var[δx(t, t + �)] ∼ ε2 σ 2

μ3
� + (1 − ε2)

�

μ
= Var(x�)

(16)

is stationary, i.e., independent of t in the asymptotic limit.
Unlike the asymptotic behavior of the variance for α > 2,

interesting aging effects are observed for 1 < α < 2 [54]. In
fact, we obtain the following initial-ensemble dependence:〈

N2
t

〉
or − 〈Nt 〉2

or = (α − 1)D(α)t3−α + o(t3−α ), (17)

and 〈
N2

t

〉
eq − 〈Nt 〉2

eq = D(α)t3−α + o(t3−α ), (18)

where D(α) = 2cμ−3/�(4 − α). It follows that the variances
of the displacement for ordinary and equilibrium renewal
processes become

Var[x(t )]or = ε2(α − 1)D(α)t3−α + 4pq
t

μ
+ o(t ) (19)

and

Var[x(t )]eq = ε2D(α)t3−α + 4pq
t

μ
+ o(t ), (20)

respectively. Therefore, the spreading of particles with respect
to the mean in the regime 1 < α < 2 becomes superdiffusive
with exponent (3 − α). We note that the coefficients of the
leading terms differ by a factor (α − 1) according to the initial
ensemble. This initial-ensemble dependence is sometimes
observed when the second moment of the waiting time diverges
[39–41,55].

For 1 < α < 2 and � � t , the correlation function
〈NtNt,t+�〉 becomes

〈NtNt,t+�〉or ∼ t�

μ2
+ 2ct2−α�

μ3�(3 − α)
− c�3−α

μ3�(4 − α)

+ ct1−α�2

2μ3�(2 − α)
+ o(t1−α�2). (21)

It follows that for the ordinary renewal process the variance of
δx(t, t + �) with t � � becomes

Var[δx(t, t + �)]or ∼ ε2D(α)�3−α − ε2c�2

μ3�(2 − α)tα−1

+ 4pq

(
�

μ
+ (2 − α)c�

μ2�(3 − α)tα−1

)
.

(22)

Therefore, the variance of δx(t, t + �) for the ordinary re-
newal process has a clear t dependence and approaches that
of the equilibrium renewal process (see Fig. 2). Although the
dependence on the aging time t gradually disappears, i.e.,
Var[δx(t, t + �)]or → Var[x(�)]eq for t → ∞, the aging ef-
fect lasts for a long time when α is close to unity. This recovery
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FIG. 2. Ensemble-averaged variance of δx(t, t + �) divided by
Var[x(�)]or for different aging times t (α = 1.5). Symbols: numerical
simulations, in which we generated waiting times according to
the PDF ψ (τ ) = ατ−1−α (τ � 1). Solid lines: Eqs. (19) and (22).
The variance increases with growing t and approaches that of the
equilibrium renewal process, Eq. (20).

of diffusivity (rejuvenation of diffusivity) is achieved at a longer
aging time. In other words, if one waits to start measurements
for a long time, the observed diffusivity approaches that of the
equilibrium initial ensemble, which is enhanced by the factor
(α − 1)−1. This enhancement becomes significant especially
for α → 1.

IV. TIME-AVERAGED VARIANCE

Here, we define the time-averaged variance (TAV) of the
displacement as

Var(x�; t ) = 1

t − �

∫ t−�

0

(
δx(t ′, t ′ + �) − ε�

μ

)2

dt ′,

(23)

where ε�/μ = 〈δx(t ′, t ′ + �)〉eq, which does not depend on
t ′. The variable t in Eq. (23) now corresponds to the total
measurement time, � is the lag time, and the overline denotes
time averaging. Expanding the integrand, the TAV can be
written as

Var(x�; t ) −
(

�

μ

)2

ε2 = 1

t − �

∫ t−�

0
δx(t ′, t ′ + �)2dt ′

− 2ε�

μ(t − �)

∫ t−�

0
δx(t ′, t ′ + �)dt ′.

(24)

As follows from Eqs. (16) and (22), the ensemble average of
the TAV converges to a constant for α > 1,〈

Var(x�; t )
〉 → Var〈x(�)〉eq (25)

as t → ∞. In particular, the ensemble average of the TAV for
the ordinary renewal process becomes〈

Var(x�; t )
〉
or − Var〈x(�)〉eq ∼ K (α)t1−α (26)

for t → ∞, where K (α) = ε2c�2

μ3�(2−α) ( μ

ε2�
− 1) for 1 < α < 2.

Thus, the convergence to Var[x(�)]eq becomes significantly
slower for α ∼= 1.

The time average of the displacement can be approximated
by

∫ t−�

0 δx(t ′, t ′ + �)dt ′/(t − �) ∼ ∑Nt

k=1 zk�/t for t � �,
where zk is the kth jump (zk = ±1). By the law of large
numbers, i.e.,

∑n
k=1 zk/n → 〈zk〉 = ε for n → ∞, we have

1

t − �

∫ t−�

0
δx(t ′, t ′ + �)dt ′ ∼ Nt

t
ε�. (27)

Here, we use a similar approximation for the squared dis-
placements invented in Ref. [56] (see also the argument in
Refs. [51,57]). While this approximation is used for the CTRW
without bias, it is also valid for the CTRW with bias [57].
Therefore, we have

1

t − �

∫ t−�

0
δx(t ′, t ′ + �)2dt ′ ∼ Nt

t
[� + ε2h(�)], (28)

where h(�) is a function of �. For α > 1 (μ < ∞), the TAV
becomes

Var(x�; t ) − ε2

(
�

μ

)2

∼ Nt

t
H (�), (29)

where H (�) = � + ε2h(�) − 2ε2�2

μ
. Taking the ensemble

average of Eq. (29) and using Eq. (25) lead to h(�) =
σ 2−μ2

μ2 � + �2

μ
and h(�) = μD(α)�3−α − � + �2

μ
for α > 2

and 1 < α < 2, respectively. We confirmed numerically that
this relation is valid only for α < 2 (results not shown here).
For α > 2, the ensemble average of H (�) is indeed given by
〈H (�)〉 = � + ε2h(�) − 2ε2�2

μ
but deviations of H (�) from

〈H (�)〉 cannot be ignored, and will be considered in detail
elsewhere.

To characterize the relaxation process, we consider the
relative standard deviation (RSD) [58] of the TAV

�(t ; �) ≡
√〈{

Var(x�; t )
}2〉 − 〈

Var(x�; t )
〉2〈

Var(x�; t )
〉 . (30)

This is the squared root of the ergodicity breaking parameter,
which is widely used to investigate ergodic properties [57,59].
For 1 < α < 2 using Eq. (29) we have

�(t ; �) ∼
√〈

N2
t

〉 − 〈Nt 〉2

t2

|H (�)|
Var(x�)

. (31)

Therefore, the RSD for τ0 � � � t becomes

�(t ; �) ∼
√

D(α)

∣∣∣∣μ − ε2�2

μVar(x�)

∣∣∣∣t− α−1
2 (32)

for the equilibrium initial ensemble. For 1 < α < 2, the RSD
decays as t−

α−1
2 , which is anomalously slower than the usual

case, t−
1
2 [59]. Therefore, trajectory-to-trajectory fluctuations

of the TAV remain large even for long measurement times. For
CTRW with 1 < α < 2, similar anomalies are ubiquitous in
time-averaged observables [60,61].

V. CONCLUSION

The diffusivity for diffusion processes with drift is char-
acterized by the variance of the particle displacement. In the
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paradigmatic CTRW model, a bias plays a significant role in the
enhancement of diffusion, which is supported by an increased
variance of waiting times. In particular, the diffusivity becomes
infinite (superdiffusive) when the variance diverges. In the
superdiffusive regime, we found an intrinsic difference of
the diffusivity due to the initial ensembles, e.g., for ordinary
and equilibrium renewal processes. For the ordinary renewal
process, we uncovered that the diffusivity increases approach-
ing that of the corresponding equilibrium process for a long
aging time. If one allows the system to age before start of the
measurement, for a longer aging time the diffusivity is found
to be greatly enhanced compared with that in the absence
of aging, especially when the exponent α is close to unity.
This recovering of diffusivity has a significant implication
of rejuvenation in superdiffusive physical systems. We also

showed that TAVs converge to a constant, which is given by
the ensemble-averaged variance with the equilibrium initial
ensemble. Therefore, the system is ergodic, whereas there
is a distinct dependence of the ensemble-averaged variance
on the initial ensemble. Finally, we found that trajectory-to-
trajectory fluctuations of the TAVs decay anomalously slowly,
as compared to standard random walks.
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