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Abstract. In ageing systems physical observables explicitly depend on the time span elapsing between
the original initiation of the system and the actual start of the recording of the particle motion. We here
study the signatures of ageing in the framework of ultraslow continuous time random walk processes with
super-heavy tailed waiting time densities. We derive the density for the forward or recurrent waiting time
of the motion as function of the ageing time, generalise the Montroll–Weiss equation for this process, and
analyse the ageing behaviour of the ensemble and time averaged mean squared displacements.

1 Introduction

Deviations from the normal-diffusive law 〈x2(t)〉 ' t of
Brownian motion are routinely measured in a wide range
of systems [1–8]. In particular, subdiffusion of the form
〈x2(t)〉 ' tα with 0 < α < 1 is observed in the crowded
and structured environment of biological cells [3–5,9–13]
or their membranes [14–17]. Similarly, subdiffusion is
observed in artificially crowded systems [18–20] and for in
silico lipid membranes [21–25]. Also superdiffusion with
1 < α < 2 is often found in live cells due to active
processes [26–28].

When the disorder of the system is increased beyond the
above examples, instead of the power law form 〈x2(t)〉 '
tα for the observed process we may also encounter loga-
rithmically slow (ultraslow) anomalous diffusion with the
mean squared displacement 〈x2(t)〉 ' lnγ t with γ > 0.
The prime example for ultraslow diffusion is Sinai dif-
fusion, in which a random walk occurs in the potential
landscape created by a seed random walk [29–34]. Loga-
rithmic diffusion was found in non-linear maps [35] as well
as for the random motion of particles in the homogeneous
cooling state of granular gases with constant restitution
coefficient [36,37]. In disordered channels, while a single
particle would perform power-law anomalous diffusion of
the above form 〈x2(t)〉 ' tα, due to excluded volume inter-
actions in a single file of particles the mutual blocking
gives rise to logarithmically slow diffusion [38]. Theo-
retical frameworks for ultraslow diffusion include ageing
continuous time random walks [39], strongly localised dif-
fusivity in heterogeneous diffusion [40,41], ultraslow scaled
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Brownian motion [42,43], and distributed order fractional
diffusion equations [44,45].

Here we consider a model for ultraslow diffusion, based
on continuous time random walks with super-heavy tailed
waiting time densities [35,46,47]. These were introduced
as a mean field, annealed description of Sinai diffusion,
characterised by the quenched disordered environment.
Random walks with super-heavy tailed waiting time den-
sities were shown to share several important features
with Sinai diffusion [47]. In particular, we here ask the
experimentally relevant question how ageing changes the
statistic of ultraslow motion. By ageing we understand the
explicit dependence of physical observables on the delay
ta (the ageing time) between the original initiation of the
system and the actual start of the observation. The occur-
rence of ageing signifies the non-stationary character of
the measured system. This contrasts stationary dynamics
such as regular Brownian motion or fractional Brownian
motion, whose observables are independent of ta [6,48].
Probing for ageing effects is thus an important diagnosis
for the nature of observed diffusion processes [9,10,16,17].
A direct consequence of ageing in some systems is the
population splitting of an ensemble of diffusing particles
into those which are completely immobile during the mea-
surement and others exhibiting more or less vivid motion
[40,41,49,50].

We here develop the framework for the study of age-
ing effects in ultraslow continuous time random walks. In
particular we obtain analytical expressions for the ensem-
ble and time averaged mean squared displacements, the
density of the recurrence or forward waiting times, as
well as the Green’s function (propagator) of the pro-
cess. We proceed as follows. In Section 2 we first recall
some basic definitions of the continuous time random walk
framework. Section 3 then introduces the concept of super-
heavy tailed waiting time densities and the associated
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basic properties of the emerging ultraslow continuous time
random walk. In Section 4 the forward or recurrent wait-
ing time density is derived and evaluated in the limits
of weak and strong ageing. The ageing analogue of the
fundamental Montroll–Weiss equation is derived and anal-
ysed in Section 5. Sections 6 and 7 provide results for the
ensemble and time averaged mean squared displacements,
respectively. Finally, we draw our conclusions in Section
8.

2 Continuous time random walks

For a continuous time random walk process with given
probability densities for the jump lengths and waiting
times, λ(x) and ψ(t), respectively, the Greens’ function
PMW (x, t) for the initial condition PMW (x, 0) = δ(x) is
given in terms of the Montroll–Weiss equation [1,2,51–53]

PMW (k, u) =
1− ψ(u)

u
× 1

1− λ(k)ψ(u)
. (1)

Here, we denote the Laplace transform

ψ(u) = L {ψ(t)} =

∫ ∞
0

ψ(t)e−utdt, (2)

and the Fourier transform with its inverse

λ(k) =

∫ ∞
−∞

λ(x)eikxdx,

λ(x) =
1

2π

∫ ∞
−∞

λ(k)e−ikxdk, (3)

by explicit dependence on the Laplace and Fourier vari-
ables, u and k, respectively. We assume that the proba-
bility density for the jump lengths has a finite variance

σ2 =

∫ ∞
−∞

x2λ(x)dx, (4)

such that its Fourier transform has the small wave number
expansion [1,2,53]

λ(k) ∼ 1− σ2

2
k2. (5)

In the following we only consider this finite variance case
for the density of jump lengths. The mean squared dis-
placement of the process follows directly from equation (1)
through inverse Laplace transform of

〈x2(u)〉 = − ∂2

∂k2
PMW (k, u)

∣∣∣∣
k=0

. (6)

For a Poissonian waiting time density ψ(t) =
τ−1 exp(−t/τ) the Laplace transform has the short
Laplace frequency expansion

ψ(u) ∼ 1− uτ, (7)

so that in combination with relation (5) the Montroll–
Weiss equation can directly be rewritten as

PMW (k, u)× [u+K1k
2] = 1. (8)

With the Fourier–Laplace transform 1/u of the δ(x) initial
condition, the inverse Fourier and Laplace transform of
relation (8) is but the normal diffusion equation

∂PMW (x, t)

∂t
= K1

∂2

∂x2
PMW (x, t), (9)

with the diffusion coefficient K1 = σ2/(2τ) [1,2,53]. The
associated mean squared displacement is 〈x2(t)〉 = 2K1t.
A typical case considered in this framework is that of a
one-sided Lévy stable form

ψ(u) = exp (−[uτ ]α) , (10)

with 0 < α < 1 in Laplace space, corresponding to the
power-law density

ψ(t) ' τα

t1+α
. (11)

In combination with the Montroll–Weiss equation (1)
this gives rise to a fractional diffusion equation in (x, t)-
space and the subdiffusive mean squared displacement
[1,2,54–56]

〈x2(t)〉 = 2Kαt
α, (12)

where the generalised diffusion coefficient is given by
Kα = σ2/[2τα] [1,2,53–56]. In this formulation, the limit
α = 1 reduces exactly to Brownian motion, as then ψ(u)
transforms back to a Dirac delta form of ψ(t), correspond-
ing to the renormalisation argument of Hughes [57].

3 Super-heavy tailed waiting time densities

In the following we consider a waiting time density
with extremely slow asymptotic behaviour of the form
[47,58,59]

ψ(t) ∼ `(t)

t
, (13)

valid in the long time limit. Here, `(t) denotes a slowly
varying function with the property `(qt) ∼ `(t) for q > 0 in
the limit t→∞. We remind the reader of two important
properties of the density ψ(t) in equation (13): (i) Since for
the slowly varying function `(t) the condition tρ`(t)→∞
for all ρ > 0 at t→∞, all fractional moments of ψ(t) are
infinite. (ii) The slowly varying function `(t) in equation
(13) is not arbitrary in the sense that it must be compat-
ible with the normalisation condition for ψ(t), implying
that `(t) should decay faster then 1/ ln(t) at t→∞.

https://epjb.epj.org/


Eur. Phys. J. B (2017) 90: 205 Page 3 of 12

The special choice `(t) = A/ ln1+γ(t/τ) for ` with γ > 0
leads to the Havlin–Weiss waiting time density [46]

ψ(t) ∼ A

t [ln(t/τ)]
1+γ . (14)

The (cumulative) stalling probability that no jump
occurs up to some time t is given by [1,2,53]

Ψ(t) = 1−
∫ t

0

ψ(t′)dt′ =

∫ ∞
t

ψ(t′)dt′, (15)

corresponding to the relation

Ψ(u) =
1− ψ(u)

u
, (16)

in Laplace space. For the special form (13) the stalling
probability is also a slowly varying function, that is,
Ψ(µt) ∼ Ψ(t) in the limit t→∞ [60]. With this property
of slow variation and with relation (16) it follows that

ψ(u) = 1− uΨ(u) = 1− u
∫ ∞

0

Ψ(t)e−utdt

= 1−
∫ ∞

0

Ψ
( q
u

)
e−qdq, (17)

where we substituted q = ut. In the limit u→ 0 relevant
for the long time asymptotic entering the Montroll–Weiss
equation in the diffusion limit, we can replace Ψ(q/u) in
the above integral with Ψ(1/u), which is independent of
the integration variable. As the remaining integral equals
unity, we thus get the asymptotic equality

ψ(u) ∼ 1−Ψ(t)
∣∣∣
t=1/u

. (18)

Given that Ψ(t) is slowly varying, we can express all
our results without taking any specific form. To illustrate
our results we use the generic form

Ψ(t) =
lnγ η

lnγ(η + t)
, (19)

where the finite constant η guarantees convergence at
short times. From this choice for the stalling probabil-
ity we obtain the corresponding waiting time density by
differentiation,

ψ(t) =
γ lnγ η

(η + t) ln1+γ(η + t)
. (20)

Asymptotically, this is equivalent to the Havlin–Weiss
form (14). Therefore, the asymptotic form entering equa-
tion (18) is

Ψ(t)
∣∣∣
t=1/u

∼ lnγ η

lnγ(1/u)
, (21)

in the limit u → 0. Concurrently, the asymptotic
behaviour of ψ(u) in the small u limit for the specific
choice of the regularised Havlin–Weiss form (20) is [46]

ψ(u) ∼ 1− lnγ η

lnγ(1/u)
. (22)

To obtain the mean squared displacement we use
relation (6), yielding

〈x2(u)〉 =
ψ(u)

u[1− ψ(u)]
×
(
−∂

2λ(k)

∂k2

)
k=0

. (23)

Now, we use the asymptotic equality (18) to get

〈x2(u)〉 ∼ σ2

uΨ(t)|t=1/u
×
(

1−Ψ(t)|t=1/u

)
. (24)

By Tauberian theorems [57,61], we then find the mean
squared displacement

〈x2(t)〉 ∼ σ2

(
1

Ψ(t)
− 1

)
, (25)

valid in the long time limit. For the regularised Havlin–
Weiss waiting time density (20) the concrete form becomes

〈x2(t)〉 ∼ σ2

lnγ η
lnγ(η + t). (26)

To obtain the Green’s function for the ultraslow con-
tinuous time random walk we rewrite the Montroll–Weiss
equation (1) in the identical form

PMW (k, u) =
1− ψ(u)

u
+

[1− ψ(u)]ψ(u)

u

× λ(k)

1− λ(k)ψ(u)

∼
Ψ(t)t=1/u

u
+

Ψ(t)t=1/u

u

×
1−Ψ(t)t=1/u

σ2k2/2 + Ψ(t)t=1/u
, (27)

where in the last step we took the limit of small k and u,
taking into account relations (5) and (18). Inverse Fourier
transform yields

PMW (x, u) ∼
Ψ(t)t=1/u

u
δ(x) +

1−Ψ(t)t=1/u

u

√
Ψ(t)t=1/u

2σ2

× exp
(
−|x|

√
2Ψ(t)t=1/u/σ2

)
. (28)

This result is normalised, that is,
∫∞
−∞ PMW (x, u)dx =

1/u. We note that the spatial integral over the first part
is of order Ψ(t)t=1/u/u while that of the second part is
1/u. As in the limit u → 0 we have that Ψ(t)t=1/u → 0
the first part can be neglected at x = 0.
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4 Forward or recurrent waiting time

After defining the tools we need in the following and
acquainting the reader with the otherwise quite unfamil-
iar ultraslow continuous time random walk process, we are
now ready to derive the ageing properties of the process.
This analysis is based on the probability density of the
first or recurrent waiting time [49,50,62–65].

In an ageing continuous time random walk process we
are interested in the physical situation that the experimen-
tal observation of the system starts only at an ageing time
ta after the original initiation of the system at t = 0. For
any continuous time random walk process with a diverging
characteristic waiting time scale

〈t〉 =

∫ ∞
0

tψ(t′)dt′, (29)

the waiting times typically become longer and longer.
When the system is allowed to age for an appreciable
time ta, the likelihood that the start of the observation
occurs during a long waiting period is significant. In such
a scenario the probability to observe the first jump in the
system is not given by ψ(t) but by the modified statistic
given by the probability density h(t1, ta), referred to as
forward or recurrent waiting time density [49,50,62–65].
Here t1 is the time for the first jump to occur after start
of the observation at ta > 0. The dual Laplace transform
of this forward or recurrent waiting time density

h(u, s) =

∫ ∞
0

∫ ∞
0

h(t1, ta)e−ut1−stadt1dta, (30)

according to Cox [66], see also Godrèche and Luck [62], is
given by the algebraic relation

h(u, s) =
1

1− ψ(s)
× ψ(s)− ψ(u)

u− s
. (31)

It is straightforward to show that h(t1, ta) is normalised
with respect to t1 and its Laplace inversion converges to
the regular waiting time density ψ(t1) in the limit s →
∞ corresponding to short ageing times. The properties
of h(t1, ta) for power-law waiting times are discussed in
references [49,50,63–65].

The inverse Laplace transform of equation (31) is given
by

h(t1, s) =
1

1− ψ(s)

×
(
est1ψ(s)−L −1

{
ψ(u− s+ s)

u− s

})
, (32)

where in the last term in the curly brackets we expanded
the argument of ψ(u) by zero. This last term by help
of standard theorems of the Laplace transformation

becomes

L −1

{
ψ(u− s+ s)

u− s

}
= est1

∫ t1

0

L −1{ψ(u+ s)}dt′1

= est1
∫ t1

0

e−st
′
1ψ(t′1)dt′1. (33)

Combining result (33) with equation (32) we obtain the
compact relation

h(t1, s) =
est1

1− ψ(s)

[
ψ(s)−

∫ t1

0

e−st
′
1ψ(t′1)dt′1

]
=

1

1− ψ(s)

∫ ∞
t1

est1−st
′
1ψ(t′1)dt′1. (34)

From here we proceed for the limiting cases of long and
short ageing times.

4.1 Long ageing time limit of the first or recurrent
waiting time

We first consider the long ageing time limit ta � t1, cor-
responding to the inequality st1 � 1 in the ageing time
conjugated Laplace space. This implies that exp(st1) ∼ 1.

Moreover if we use the form ψ(s)−
∫ t1

0
ψ(t′1) exp(−st′1)dt′1

for the integral in the nominator of equation (34) we
also observe the inequality st′1 < st1 � 1 and thus
exp(−st′1) ∼ 1 in the integral. Therefore, with the use of
relation (18) the forward waiting time density becomes

h(t1, s) ∼
ψ(s)−

∫ t1
0
ψ(t′1)dt′1

1− ψ(s)

∼
1−Ψ(t)|t=1/s

Ψ(t)|t=1/s
− 1−Ψ(t1)

Ψ(t)|t=1/s

=
Ψ(t1)

Ψ(t)|t=1/s
− 1. (35)

Since Ψ(t)|t=1/s → 0 when s→ 0 we may neglect the term
−1 on the right hand side, thus

h(t1, s) ∼
Ψ(t1)

Ψ(t)|t=1/s
, (36)

when s → 0. Via the Tauberian theorem [57,61] the
Laplace inversion of the remaining s dependence in the
denominator becomes

L −1

{
1

Ψ(t)|t=1/s

}
∼ d

dt

(
1

Ψ(t)

)
=

ψ(t)

Ψ(t)2
. (37)

Plugging this expression into the forward waiting time
(36), we thus find

h(t1, ta) ∼ Ψ(t1)
ψ(ta)

Ψ(ta)2
, (38)

https://epjb.epj.org/
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in our limit ta � t1. Specifically, for our regularised
Havlin–Weiss waiting time density involving equations
(20) and (21) we thus obtain

h(t1, ta) ∼ γ

lnγ(η + t1)

lnγ−1(ta)

ta
, (39)

for ta � t1. Thus the leading order long waiting time
behaviour of 1/t of the waiting time density ψ(t) in expres-
sion (20) is replaced by the ageing time dependence 1/ta
here. The forward waiting time has an extremely slow
logarithmic decay in t1. Therefore, the first waiting time
is significantly more spread than for the power-law case
investigated in references [49,50,63–65].

4.2 Short ageing time limit of the first or recurrent
waiting time

Let us now get to the limit of short ageing times corre-
sponding to ta � t1 or st1 � 1. Since in our numerical
simulation η is the shortest time scale we have the addi-
tional inequality t1 � ta � η or 1/t1 � s� sη = 1/η. As
typically we can choose η ∼ O(1), this implies that s� 1.
In the denominator of equation (34) we can therefore use
the replacement 1 − ψ(s) ∼ Ψ(t)|t=1/s and see that the
integral in the numerator can be written as∫ ∞

t1

e−st
′
1ψ(t′1)dt′1 = t1

∫ ∞
1

e−st1qψ(qt1)dq. (40)

Due the limit st1 � 1 of interest, the latter integral will
be dominated by its lower boundary, and thus∫ ∞

t1

e−st
′
1ψ(t′1)dt′1 ≈

t1 exp(−st1)ψ(t1)

st1

=
exp(−st1)ψ(t1)

s
. (41)

Combining this result with expressions (34) and (18) we
find that

h(t1, s) ∼
ψ(t1)

sΨ(t)|t=1/s
, (42)

and thus

h(t1, ta) ∼ ψ(t1)

Ψ(ta)
. (43)

For the regularised Havlin–Weiss waiting time density (20)
this lead to

h(t1, ta) ∼ γ lnγ(η + ta)

(η + t1) ln1+γ(η + t1)
, (44)

valid in the limit ta � t1. In this short ageing time
limit ta only features in the logarithm in the nominator
and thus only leads to minor corrections to the lead-
ing [t1 ln1+γ(t1)]−1 behaviour, as it should (compare with
equation (20)).
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Fig. 1. Forward or recurrent waiting time density h(t1, ta) as
function of the forward waiting time t1, shown for different
ageing times ta, for the case of the waiting time density (20)
with γ = 4. In the strong ageing regime when ta � t1, relation
(39) shows very good agreement with the data, while in the
opposite limit t1 � ta equation (44) agrees equally well with
the data. The crossover times also nicely correspond to the
crossover behaviour in the simulations results. We note that
the relatively small discrepancy in the case ta = 1 is due to
the fact that in this case the limit ta � η is not fulfilled for
the value η = e chosen here.

Figure 1 shows the forward or recurrent waiting time
density as function of t1 and for different ta for the
case of he Havlin–Weiss waiting time density (20). Good
agreement with the results (44) and (39) is observed.

5 Ageing Montroll–Weiss equation for
ultraslow continuous time random walks

Which form does the analogue to the classical Montroll–
Weiss equation (1) assume for ageing ultraslow continuous
time random walks? Barkai showed how the ageing effects
modify the Montroll–Weiss equation for power-law wait-
ing time densities with diverging characteristic waiting
time [63–65]. Similar to that approach we consider the
ageing probability density function P (x, t, ta) depending
on both the process time t and the ageing time ta. For the
convenience of the reader we summarise the related for-
malism in Appendix A. From these results we can rephrase
the Fourier (x→ k) and double Laplace transform (t→ u
and ta → s) of P (x, t, ta) in the form

P (k, u, s) = p0(u, s) + h(u, s)λ(k)PMW (k, u), (45)

where p0(t, ta) denotes the probability of making no jumps
up to time t given the ageing time ta, see equations (A.2)
and (A.3). The normalisation condition P (k = 0, u, s) =
1/(us) is fulfilled, as can be seen from equations (A.3) and
(31). As observed in references [49,50] this way of writing
the ageing Montroll–Weiss equation shows that the dif-
fusing particles split up into a discrete, fully immobile
fraction proportional to p0 and those particles that per-
form a distribution of steps after the recurrence waiting

https://epjb.epj.org/
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Fig. 2. Peak height p0(t, ta) of the singular part of the prob-
ability density function P (x, t, ta), for the case of the waiting
time density (20) with γ = 4 and η = e. Good agreement of
the simulations with the numerical evaluation of result (50)
is observed in its regime of validity, ta � t. Inset: Histogram
representing the probability density function P (x, t, ta), from
simulations of 106 trajectories. The peak according to equation
(45) is distinct.

time. This population splitting is one of the characteris-
tic features of ageing continuous time random walks with
diverging characteristic waiting time [49,50].

Let us investigate the singular part p0 in more detail for
the regularised Havlin–Weiss waiting time density (20).
In the strong ageing limit with ta � t � η we use our
previous result (39) and insert this into equation (A.2),
yielding

p0(t, ta) = 1− γ lnγ−1(ta)

ta

∫ t

0

dt′

lnγ(η + t′)
. (46)

For the concrete value γ = 4 of Sinai-like diffusion case
used in our numerical examples herein, the integral can
be evaluated as follows. An integral of the form∫

dx

ln4 x
=

∫
xdx

x ln4 x
, (47)

can, via integration by parts, be brought to the form∫
dx

ln4 x
= − x

3 ln3 x
+

1

3

∫
dx

ln3 x
. (48)

Repeated use of this trick leads to the form∫
dx

ln4 x
= − x

3 ln3 x
− x

6 ln2 x
− x

6 lnx
+

1

6

∫
dx

lnx
. (49)

Thus, we find the closed form expression

p0(t, ta) = 1− 4 ln3 ta
ta

× I(t), (50)

where

I(t) =

∫ t

0

dt′

ln4(η + t′)

= − η + t

6 ln3(η + t)
×
(
2 + ln(η + t) + ln2(η + t)

)
+

η

6 ln3 η

(
2 + ln η + ln2 η

)
+

1

6
(li(η + t)− li(η)) , (51)

with the logarithmic integral

li(t) =

∫ t

0

dt′

ln t′
. (52)

In Figure 2 we show the peak height p0(t, ta) of the sin-
gular part of the probability density function P (x, t, ta).
We observe very good agreement with the numerical eval-
uation of result (50) for longer ageing times. In the inset of
Figure 2 we also demonstrate the shape of the probability
density function P (x, t, ta), illustrating the distinct peak
versus the continuous remainder according to equation
(45).

We note that it is worthwhile comparing the ageing
properties of the annealed ultraslow continuous time ran-
dom walk model studied here with those of the quenched
Sinai model [29–34]. Thus, the probability corresponding
to our p0(t, ta) is given by equation (138) of reference [33]
which in the strong ageing regime t � ta reads (in our
notation, the upper index stands for the Sinai model)

p
(S)
0 (t, ta) ∼ 1− 4

3

(
ln(ta + t)

ln ta
− 1

)
∼ 1− 4

3

t

ta ln ta
. (53)

This behaviour is different from our result (50) for
the annealed continuous time random walk formulation,
clearly demonstrating the difference in the dynamics of
the two models. As the probability is not a mean field
quantity, this difference is not really surprising. We will
see below, in contrast, that the ageing second moment of
both models is indeed equivalent, similar to the non-ageing
case studied in reference [47].

6 Ageing ultraslow mean squared
displacement

Differentiation of expression (A.7) twice with respect to
the wave number k and setting k = 0, we find that

〈x2(u, s)〉 =
σ2h(u, s)

u[1− ψ(u)]
, (54)

where, as above, σ2 is the second moment of the jump
length density λ(k). With the property (18) for ultraslow
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Fig. 3. Mean squared displacement 〈x2(t, ta)〉 of the ageing
ultraslow continuous time random walk based on the wait-
ing time density (20) with γ = 4 and η = e, as function
of time t shown for the different ageing times ta = 0 (top
curve), ta = 104, 105, . . . , 109. Good agreement with the linear
t-dependence predicted by the theoretical result (61), shown by
the orange lines, is observed. At long times, according to result
(58), all curves merge, independent of the ageing time ta. Note
that the crossover time between both regimes agrees nicely
with the indicated ageing times. For each curve an average
over 106 trajectories was performed.

motion we obtain

〈x2(u, s)〉 ∼ σ2

u(u− s)

(
1

Ψ(t)|t=1/s
− 1

Ψ(t)|t=1/u

)
. (55)

For short ageing times with t � ta or s � u we have
that 1/Ψ(t)|t=1/s � 1/Ψ(t)|t=1/u and thus

〈x2(u, s)〉 ∼ σ2

us

1

Ψ(t)|t=1/u
, (56)

such that

〈x2(t, ta)〉 ∼ σ2

Ψ(t)
, (57)

which matches exactly the mean squared displacement of
the non-ageing ultraslow continuous time random walk
[47]. For the regularised Havlin–Weiss waiting time den-
sity (20), this corresponds to [47]

〈x2(t, ta)〉 ∼ σ2 lnγ(η + t)

lnγ η
, ta � t. (58)

At long ageing times with ta � t or u� s we have the
opposite case, 1/Ψ(t)|t=1/u � 1/Ψ(t)|t=1/s and thus

〈x2(u, s)〉 ∼ σ2

u2

1

Ψ(t)|t=1/s
, (59)

such that

〈x2(t, ta)〉 ∼ σ2t
ψ(ta)

Ψ(ta)
. (60)

For the regularised Havlin–Weiss waiting time density we
find

〈x2(t, ta)〉 ∼ σ2γ

lnγ η

lnγ−1(η + ta)

η + ta
t, ta � t, (61)

according to which the leading order behaviour exhibits a
normal diffusive scaling proportional to t, albeit with an
ageing time corrected prefactor.

Figure 3 shows the mean squared displacement 〈x2(t)〉
as function of time t for different ageing times, for the
Havlin–Weiss waiting time density (20). Good agreement
of the simulations results with the theoretical predictions
is observed. Small fluctuations at very long ageing times
are due to the fact that most of the trajectories do not
exhibit any jumps at all up to some large time t. Thus the
value of the MSD is determined by those few trajectories
containing jumps, while the MSD curves get smoother for
longer t.

Let us come back to our comparison with the ageing
Sinai model [32–34]. The analogue to the ageing mean
squared displacement for the Sinai case is given by equa-
tion (153) in reference [32–34] (note that their second
moment of the relative displacement corresponds exactly
to our 〈x2(t, ta)〉). Thus, in the strong ageing limit t� ta,
up to a numerical prefactor (see Eqs. (153) and (157) in
that paper) and in our notation, we see that

〈[x2(t, ta)](S)〉 ∼ ln4 ta

(
ln(ta + t)

ln ta
− 1

)
∼ ln3 ta

ta
t, (62)

which agrees with our result (61). Thus, the ageing mean
squared displacement of the ultraslow continuous time
random walk model coincides (up to a prefactor) with that
of the quenched Sinai model. As mentioned above (and
for the non-ageing case in reference [47]) in the mean field
sense both the annealed ultraslow continuous time random
walk and the quenched Sinai model are equivalent.

7 Ageing ultraslow time averaged mean
squared displacement

In experiments tracking individual particles such as arti-
ficial or endogenous tracers in living biological cells [3–
5,9–13] often few but long individual trajectories x(t) of
length T are measured. These are routinely evaluated in
terms of the time averaged mean squared displacement

δ2
a(∆) =

1

T −∆

∫ T+ta−∆

ta

(
x(t+ ∆)− x(t)

)2

dt. (63)

When ta = 0 this is the regular time averaged mean
squared displacement. In the presence of an ageing period
ta before the measurement of length T , the ageing time
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explicitly features in the integration limits [49,50]. In order
to extract analytical quantities for continuous time ran-
dom walk processes, we introduce the additional average
〈·〉 over an ensemble of N trajectories,

〈
δ2
a(∆)

〉
=

1

N

N∑
i=1

δ2
a,i(∆)

=
1

T −∆

×
∫ T+ta−∆

ta

〈(
x(t+ ∆)− x(t)

)2
〉
dt. (64)

For the evaluation of experiments, this additional aver-
aging is often taken in order to produce a smoother
behaviour of the time average.

To proceed we note that the mean squared displace-
ment in the non-aged case is readily obtained from the
equivalence with the mean number 〈n(t)〉 of steps up to
time t, multiplied with the variance of the jump lengths
[49,50,67,68],

〈x2(t)〉 = σ2〈n(t)〉. (65)

Due to relation (25) we see that the number of jumps
can be reexpressed for ultraslow continuous time random
walks in terms of the stalling probability,

〈n(t)〉 ∼ 1

Ψ(t)
. (66)

Thus,〈(
x(t2)− x(t1)

)2
〉

= σ2
(
〈n(t2)〉 − 〈n(t1)〉

)
. (67)

Plugging this into the definition (64) for the time averaged
mean squared displacement, we find

〈
δ2
a(∆)

〉
∼ σ2

T −∆

×
∫ T+ta−∆

ta

(
1

Ψ(t+ ∆)
− 1

Ψ(t)

)
dt. (68)

To proceed, we approximate the integrand by a first
order Taylor expansion as

1

Ψ(t+ ∆)
− 1

Ψ(t)
∼ 1

Ψ(t) + ∆dΨ(t)
dt

− 1

Ψ(t)

∼ 1

Ψ(t)

(
1

1 + ∆dΨ(t)
dt Ψ(t)

− 1

)

∼ −∆
dΨ(t)
dt

Ψ2(t)
= ∆

d

dt

(
1

Ψ(t)

)
. (69)
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Fig. 4. Ageing time averaged mean squared displacement〈
δ2a(∆)

〉
as function of the lag time ∆ (Top) and measurement

time T (Bottom) shown for the indicated ageing times, based
on the waiting time density (20) with γ = 4 and η = e. In
the top panel the different curves correspond to the different
measurement times T = 10, 102, . . . , 109 (top to bottom in
this panel), where the curves for shorter T show significant
overlap in the plot. In the bottom panel we varied the lag
times as powers of 2, i.e., ∆ = 2, 4, . . . , 1024 (bottom to top
in this panel). Excellent agreement with the analytical result
(70) is found in both panels.

For sufficiently small ∆ we can therefore evaluate the
integral in equation (68) and obtain (see Appendix B)

〈
δ2
a(∆)

〉
∼ σ2∆

T

(
1

Ψ(T + ta)
− 1

Ψ(ta)

)
. (70)

In the absence of ageing, ta → 0, the leading behaviour is〈
δ2
a(∆)

〉
∼
〈
δ2(∆)

〉
∼ σ2∆/[TΨ(T )], (71)

which matches the result found for the non-ageing
ultraslow continuous time random walk in reference [47]
(Fig. 4).
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Let us illustrate our result (70) for the regularised
Havlin–Weiss waiting time density (20). Plugging in the
associated stalling probability (21), we find〈

δ2
a(∆)

〉
∼ lnγ(T + ta + η)− lnγ(ta + η)

lnγ(T + η)

×
〈
δ2(∆)

〉
, (72)

in terms of the non-aged time averaged mean squared
displacement. Thus, similar to other ageing anomalous
diffusion processes [6,49,50,69–71], the physically relevant
functional dependence on the lag time ∆ is completely
unaffected by ta, the latter entering solely through a
prefactor.

8 Conclusions

We here established the framework for ageing ultraslow
continuous time random walk processes. In particular, we
derived the expression for the forward or recurrent wait-
ing time, the peak hight of the singular part of the ageing
probability density function as well as the ensemble and
time averaged mean squared displacements. Asymptotic
results were presented for the limits of short and long
ageing times. Good agreement is observed between our
analytical results and stochastic simulations.

Ultraslow diffusion arises in numerous strongly disor-
dered or interacting systems. In these ageing effects occur
naturally in many experimental situations. The generali-
sation of the seminal continuous time random walk theory
for the ultraslow case in the presence of ageing is therefore
a relevant step towards the completion of the continuous
time random walk framework.

RM acknowledges financial support from the Academy of
Finland within the Finland Distinguished Professorship pro-
gramme. RM and AVC acknowledge funding from the Deutsche
Forschungsgemeinschaft, project ME 1535/6-1.

Author contribution statement

All authors were involved in the preparation of the
manuscript. All authors have read and approved the final
manuscript.

Appendix A: Ageing Montroll–Weiss
formalism

The dual Laplace transform t→ u and ta → s and Fourier
transform x→ k of P (x, t, ta) can then be written in the
form

P (k, u, s) =
∞∑
n=0

pn(u, s)λn(k), (A.1)

where pn(t, ta) is the probability to make n steps in an
interval of length t after the ageing period ta, and λ(x)

is our jump length density. The probability of making
no jumps up to time t can be expressed by help of the
recurrence waiting time.

p0(t, ta) = 1−
∫ t

0

h(t′1, ta)dt′1, (A.2)

or

p0(u, s) =
1

us
− h(u, s)

u
=

1− sh(u, s)

us
. (A.3)

A number n ≥ 1 of jumps up to time t requires the first
step and then (n− 1) regular steps, before a stalling time
up to t,

pn(u, s) = h(u, s)ψn−1(u)
1− ψ(u)

u
. (A.4)

Note that in the absence of ageing (ta → 0) we read-

ily find that p0(t, ta → 0) = 1 −
∫ t

0
ψ(t′)dt′ = Ψ(t), as it

should. Now, from equation (A.1) we have (see Eq. (31)
for h(u, s))

P (k, u, s) = p0(u, s) +
∞∑
n=1

pn(u, s)λn(k)

=
1− sh(u, s)

us

+
∞∑
n=1

h(u, s)ψn−1(u)
1− ψ(u)

u
λn(k)

=
1

us
+

ψ(u)− ψ(s)

u(u− s)[1− ψ(s)]

+
[ψ(s)− ψ(u)][1− ψ(u)]

u(u− s)[1− ψ(s)]

×
∞∑
n=1

ψn−1(u)λn(k)

=
1

us
+

ψ(u)− ψ(s)

u(u− s)[1− ψ(s)]

×

(
1− [1− ψ(u)]

∞∑
n=1

ψn−1(u)λn(k)

)

=
1

us
+

ψ(u)− ψ(s)

u(u− s)[1− ψ(s)]

×

(
1−

∞∑
n=1

ψn−1(u)λn(k)

+
∞∑
n=1

ψn(u)λn(k)

)
. (A.5)
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The last expression in large round parentheses can be
rewritten as

1 +
∞∑
n=1

ψn(u)λn(k)− 1

ψ(u)

∞∑
n=1

ψn(u)λn(k)

=
1

1− ψ(u)λ(k)
− 1

ψ(u)

(
1

1− ψ(u)λ(k)
− 1

)
=

1− λ(k)

1− ψ(u)λ(k)
. (A.6)

We thus obtain the result for the ageing Montroll–Weiss
equation,

P (k, u, s) =
1

us
+

ψ(u)− ψ(s)

u(u− s)[1− ψ(s)]

× 1− λ(k)

1− ψ(u)λ(k)
, (A.7)

which features the additional pre-factor proportional to
the dual Laplace transform of the forward waiting time
in comparison to the standard Montroll–Weiss equation.
This result was obtained previously by Barkai [63–65].

It is instructive to rewrite the result (A.7) in terms of
the regular Montroll–Weiss expression

PMW (k, u) =
1− ψ(u)

u

1

1− ψ(u)λ(k)
. (A.8)

We expand equation (A.7) by h(u, s) in the form

P (k, u, s) =
1

us
− h(u, s)

u
+
h(u, s)

u

×
(

1 +
u

h(u, s)

ψ(u)− ψ(s)

u(u− s)[1− ψ(s)]

× 1− λ(k)

1− ψ(u)λ(k)

)
= p0(u, s) +

h(u, s)

u

×
(

1− 1− λ(k)

1− ψ(u)λ(k)

)
, (A.9)

from which equation (45) follows immediately.

Appendix B: Derivation of equation (70)

Here we confirm the result obtained in equation (70) by
direct calculation of the integral (68) for the case of Sinai-
like diffusion with γ = 4. Plugging Ψ(t) from equation (19)
into equation (68) we use∫

ln4 xdx = x ln4 x− 4xln3x

+12x ln2 x− 24x lnx+ 24x, (B.1)

leading us to the somewhat lengthy expression

〈
δ2
a(∆)

〉
=

σ2

(T −∆) ln4 η

×{(T + ta + η) ln4(T + ta + η)

−(T + ta + η −∆) ln4(T + ta + η −∆)

−(ta + ∆ + η) ln4(ta + ∆ + η)

+(ta + η) ln4(ta + η)

−4(T + ta + η) ln3(T + ta + η)

+4(T + ta + η −∆) ln3(T + ta + η −∆)

+4(ta + ∆ + η) ln3(ta + ∆ + η)

−4(ta + η) ln3(ta + η)

+12(T + ta + η) ln2(T + ta + η)

−12(T + ta + η −∆) ln2(T + ta + η −∆)

−12(ta + ∆ + η) ln2(ta + ∆ + η)

+12(ta + η) ln2(ta + η)

−24(T + ta + η) ln(T + ta + η)

+24(T + ta + η −∆) ln(T + ta + η −∆)

+24(ta + ∆ + η) ln(ta + ∆ + η)

−24(ta + η) ln(t+ a+ η)}. (B.2)

Now we assume that ∆� T, ta, expand all expressions
and restrict ourselves to terms linear in ∆. For instance,

(T + ta + η −∆)× ln4(T + ta + η −∆)

= (T + ta + η)

(
1− ∆

T + ta + η

)
× ln4

[
(T + ta + η)

(
1− ∆

T + ta + η

)]
∼ (T + ta + η)

(
1− ∆

T + ta + η

)
×
[
ln(T + ta + η)− ∆

T + ta + η

]4

∼ (T + ta + η) ln4(T + ta + η)

×
[
1− ∆

T + ta + η
− 4∆

(t+ ta + η) ln(T + ta + η)

]
(B.3)

and

(ta + ∆ + η)× ln4(ta + ∆ + η)

∼ (ta + η) ln4(ta + η)

×
[
1 +

∆

ta + η
+

4∆

(ta + η) ln(ta + η)

]
, (B.4)

and so forth. After plugging in all these expression in to
equation (B.2) successive terms turn out to cancel such
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that the linear approximation in ∆ finally produces

〈
δ2
a(∆)

〉
∼ σ2∆

T ln4 η

×
[
ln4(T + ta + η)− ln4(ta + η)

]
, (B.5)

which is equivalent to equation (70).
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