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Biomembranes are exceptionally crowded with proteins with typical protein-to-lipid ratios being
around 1∶50 − 1∶100. Protein crowding has a decisive role in lateral membrane dynamics as shown by
recent experimental and computational studies that have reported anomalous lateral diffusion of
phospholipids and membrane proteins in crowded lipid membranes. Based on extensive simulations
and stochastic modeling of the simulated trajectories, we here investigate in detail how increasing
crowding by membrane proteins reshapes the stochastic characteristics of the anomalous lateral
diffusion in lipid membranes. We observe that correlated Gaussian processes of the fractional Langevin
equation type, identified as the stochastic mechanism behind lipid motion in noncrowded bilayer, no
longer adequately describe the lipid and protein motion in crowded but otherwise identical membranes.
It turns out that protein crowding gives rise to a multifractal, non-Gaussian, and spatiotemporally
heterogeneous anomalous lateral diffusion on time scales from nanoseconds to, at least, tens of
microseconds. Our investigation strongly suggests that the macromolecular complexity and spatio-
temporal membrane heterogeneity in cellular membranes play critical roles in determining the
stochastic nature of the lateral diffusion and, consequently, the associated dynamic phenomena
within membranes. Clarifying the exact stochastic mechanism for various kinds of biological
membranes is an important step towards a quantitative understanding of numerous intramembrane
dynamic phenomena.
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I. INTRODUCTION

The dynamics of biomembranes plays a crucial role in
the regulation of numerous cellular processes. This is
largely due to the fact that membrane proteins carry out
a substantial fraction of cellular functions. For instance,
they are involved in cellular signaling, in which the
functional complex can be a single protein as well as an
oligomer [1–3] together with an appropriate pool of lipids
modulating the protein function by protein-lipid inter-
actions [4–7]. Since the formation of protein-lipid com-
plexes is reversible, proteins and lipids are repeatedly
probing the membrane for functionally favorable surround-
ings, thereby allowing the diffusive motion to largely
control their reaction kinetics.

Cell membranes are known to be extremely complex
fluids characterized by heterogeneity [6,8] and compart-
mentalization [9,10]. Similar to the crowded cytoplasm of
biological cells [11], membranes are crowded with proteins
and other macromolecules [12]. These effects substantially
complicate the relationship between the dynamics and
function of cell membranes. Notably, crowding has been
a neglected feature of the intracellular environment [11]
until recently, when numerous studies have identified the
role of crowding in multiple phenomena including, inter
alia, protein stability [13], signaling [14,15], and gene
transcription [16]. Most notably, crowding shapes the
reaction kinetics [11,17–19] by modifying the mobility
[20] as well as association rates [21–25]. This multitude of
examples together with the shift in dimensionality from
three to two hints that, besides the cytoplasm, crowding
plays a substantial role also in cellular membranes. Indeed,
similarly to the cytoplasm [26–28], one can argue that
reaction kinetics in two dimensions are optimized by the
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degree of crowding as the slower mobility is compensated
by the higher reactant concentration [29,30].
Cytoplasmic crowding in living biological cells is known

to cause anomalous diffusion with a mean-squared dis-
placement (MSD) of the form [31,32]

hr2ðtÞi≃ Kαtα; ð1Þ

with the generalized diffusivity Kα of physical dimension
m2=sα and the anomalous diffusion exponent α [33–35].
Normal Brownian motion corresponds to the limit α ¼ 1.
For passively moving tracer particles in living cells such as
green fluorescent proteins [36], fluorescently labeled mes-
senger RNA [37,38], and chromosomal loci [38,39], as
well as visible, submicron tracer particles [40,41], sub-
diffusion with 0 < α < 1 is observed. Control experiments
in artificially crowded environments consistently reveal
subdiffusion [42–44]. In the presence of active driving,
superdiffusive motion with 1 < α < 2 is also observed [45–
47] in living cells.
In cellular membranes crowding is known to induce

heterogeneous and confined motion. While some studies
argue that crowding leads to the slowing-down of diffusion
in terms of an effective diffusivity in an otherwise Brownian
diffusion scenario [48], others suggest that diffusion
becomes anomalous instead [48–58]. Anomalous diffusion
of the form Eq. (1) was observed in various cellular
membranes [32,55,57,58], emphasizing its general nature
in membranes. Intriguingly, while anomalous diffusion
would be expected to hinder the efficiency of diffusion-
limited processes, in suitably crowded conditions it can
surprisingly also result in favorable effects, such as to
enhance the search of nearby reaction partners, which
further leads to increased protein complex formation and
a subsequent boost in reaction rates [59,60]. Confinement
and corralling effects can also lead to enhanced protein
oligomerization [61] and bursts in reaction rates [62].
Another important effect is the observation of aging
[63], the explicit dependence of the dynamics of different
membrane proteins on the length of the observation
time [55,58].
While a lot of work has been conducted on the develop-

ment of reaction-diffusion theories in the subdiffusive
regime [64,65], such theories have not been widely applied
to biological systems [15,32,66,67]. Therefore, resolving
the diffusion mechanisms of molecules in crowded and
compartmentalized conditions of cellular membranes could
greatly improve our understanding of diffusion-controlled
reactions in the cells. Moreover, membrane protein com-
plexes [2,68] are targeted by a major fraction of current
drugs. Therefore, understanding and thereafter altering the
dynamics that govern the formation of functional protein–
protein [69,70], lipid–protein [71,72], or domain–protein
[73] units is an intriguing approach to the treatment of
numerous diseases.

Single-particle superresolution techniques, such as
stimulated emission depletion fluorescence (lifetime)
correlation spectroscopy (STED-FCS) and single-particle
tracking, have recently improved the understanding of
biomolecular motion quite dramatically, identifying lat-
eral nanoscale membrane heterogeneities as well as
anomalous motion [51,55,58,74,75], yet the limit of
probing nanoscale single-particle motion is still a formi-
dable experimental challenge. Here, the added value
given by molecular simulation approaches can be impres-
sive [49,52,53,76–79].
In this work, we show through extensive molecular

simulations and theoretical analysis that protein crowding
changes the membrane dynamics drastically. We find that
the dynamics of lipids in crowded conditions is no longer
described by the mechanism consistent with the fractional
Langevin equation (FLE) typically associated with the lipid
motion in noncrowded membranes [52,53], or by any
single known mechanism. Instead, the motion becomes
non-Gaussian and heterogeneous, yet maintains its ergodic
properties. In particular, while the time-averaged MSD
scales sublinearly, no aging is observed. Concurrently, a
strong dynamic heterogeneity is observed among different
lipids as well as membrane-embedded proteins. Our find-
ings are central to resolving the mechanisms governing
how molecules move along crowded membranes and,
therefore, to understanding how the multitude of processes
occurring in cellular membranes are controlled by anoma-
lous diffusion-reaction dynamics.
This paper is structured as follows. After a brief

introduction to the model and simulations in Sec. II,
we present our results in Sec. III. In particular, we
demonstrate that the motion of the membrane constituent
molecules is multifractal and anomalous. In contrast to
noncrowded membranes, significant non-Gaussian shapes
for the particle diffusion are observed and the inhomo-
geneity of the motion of individual particles is shown to
be slowly varying with time. In Sec. IV, we discuss our
results and conclude the paper. Additional results to
support those presented in the main text are given in
Supplemental Material [80].

II. MODELS AND SIMULATION

For our investigation of the stochastic characteristics
of the lateral molecular diffusion in protein-crowded
lipid membranes, we simulate three lipid bilayer
systems similar to those employed in our study of the
emergence of anomalous diffusion in the presence of
membrane-embedded proteins [49]. Two protein-crowded
membrane systems are modeled by embedding a total of 16
NaK channels (Protein data bank (PDB) entry 2AHY),
respectively, in bilayers of 1600 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) and 1,2-dilauroyl-sn-glycero-3-
phosphocholine (DLPC) lipids. The lipid-to-protein ratio
is 1∶50 per leaflet, corresponding to a protein surface
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coverage of approximately 34%, which is known as a
typical value in cellular membranes [81]. Both systems
span a lateral membrane area of approximately 25×25nm2

with periodic boundary conditions. The main difference
between the two systems, as shown in Fig. 1, is that the
NaK proteins tend to strongly aggregate with the others to
form a larger complex in the DPPC system while they do so
to a much lesser extent in the DLPC membrane. This is
most likely due to a different hydrophobic mismatch of the
proteins with the two lipid environments. In this spirit,
the two systems chosen for this study are used to gauge
the dynamics in two physically different settings often
found in cell membranes—protein aggregating and protein
nonaggregating. As a reference, we also simulate a protein-
poor membrane composed of 2045 DPPC lipids and a
single NaK channel.
In order to study large systems consisting of multiple

proteins over a time scale of 100 μs, the computationally
efficient coarse-grained Martini-based [82,83] force field
[84] is employed. The protein-poor case is simulated for
25 μs, which corresponds to 100 μs of efficient time when
the commonly used coarse-grained-to-atomistic compari-
son factor of 4 is taken into account. Compared to the
protein-poor case, the protein-crowded systems turn out to
have slower lateral dynamics [49]. Because of this, in this
work, we simulate them for 100 μs (corresponding to
400 μs of effective time), which is fourfold longer than
our previous simulation (25 μs) for similar systems. All
simulation parameters are identical to our previous
simulation study [49]. The analyses on the simulation
results below are carried out in terms of the real simulation
time.

III. RESULTS

In this section, we showcase the various aspects of the
protein and lipid motion in the simulated lipid membranes.
As we see, major changes are effected at higher protein
crowding fractions.

A. Protein crowding induces multifractal anomalous
lateral diffusion in membranes

We start our analysis by examining the diffusion proper-
ties of single phospholipid and protein molecules in our
model membranes. From an individual two-dimensional
trajectory riðtÞ encoding the motion of such a single
molecule, the time-averaged MSD,

δ2i ðΔÞ ¼
1

T − Δ

Z
T−Δ

0

½riðtþ ΔÞ − riðtÞ�2dt; ð2Þ

is evaluated as a function of the lag time Δ and the overall
observation time T. Here and throughout the study, riðtÞ
refers to the in-plane coordinate of the center of mass of a
given ith lipid or protein molecule with respect to the
center of mass of the entire membrane, thus removing
the effect of membrane drift during the simulations [53].
In protein-rich membranes the membrane drift does
not need to be removed separately with respect to each
leaflet because the drift of the monolayers with respect to
each other is negligible due to the anchoring effect of the
proteins; see Figs. S1 and S2 in Supplemental Material
[80]. The advantage of the time-averaged MSD Eq. (2)
over the ensemble average Eq. (1) is that for sufficiently
long trajectories riðtÞ resolves differences between
the motion of individual particles, as we show below.
We note that in so-called weakly nonergodic systems the

long-time scaling of the time-averaged MSD δ2i ðΔÞ may
differ fundamentally from the corresponding ensemble
average hr2ðtÞi, reflecting the nonstationarity of the
underlying motion [31,32,35,85,86]. Experimentally and
from simulations, such weak nonergodicity was indeed
observed in the cytoplasm [40,41] and the plasma mem-
brane [55,58] of living cells, as well as quite different
systems such as blinking quantum dots [87] or granular
gases [88].
Figure 2 depicts time-averaged MSD of all lipid mol-

ecules (thin gray lines) and proteins (thick red lines) in

FIG. 1. Snapshots of the membrane systems at the end of the respective simulations runs. From left to right: (i) protein-poor membrane
composed of 2045 DPPC phospholipids and a single NaK channel protein; (ii) protein-rich membrane system composed of 1600 DPPC
lipids and 16 NaK proteins: aggregating system; (iii) protein-rich membrane system composed of 1600 DLPC lipids and 16 NaK
proteins: nonaggregating system; (iv) schematic structures of a DPPC phospholipid and a NaK channel protein employed in our coarse-
grained simulations. For both DPPC and the NaK channel, the transparent coarse-grained structure is shown on top of the atomistic
representation.
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noncrowded and crowded membranes. Along with the
individual time-averaged MSDs, the mean

hδ2ðΔÞi ¼ 1

N

XN
i¼1

δ2i ðΔÞ ð3Þ

as the blue solid line is plotted for all lipids. From this
averaged curve, the anomalous scaling exponents α are
estimated as a function of the lag time Δ, shown in the
upper panels in Fig. 2. The results show that protein
crowding significantly affects the character of the lateral
diffusion in the membranes. While the lipids and the single
protein in the noncrowded membrane exhibit trivial
Brownian diffusion at lag times Δ longer than some
10 ns, consistent with previous studies [52–54,89,90],
those in the crowded membrane exhibit significant anoma-
lous diffusion. The plot of α as a function of Δ tells us that
the lipid carries out multifractal subdiffusion until tens of
microseconds, where the scaling exponent α is temporally
varied with Δ in a broad spectrum of values. Additionally,
the subdiffusive dynamics extends for around 3 orders of
magnitude longer than for noncrowded lipid membranes.
The variation in α indicates that the lipid motion is strongly
affected by the proteins until around 10 μs. The behavior at
time scales of > 10 μs is not conclusive for our analysis
due to the limited simulation time. It appears that the strong
fluctuation in the scaling exponent αðΔÞ for the proteins
stems from the comparatively small numbers of proteins
and will be different for independent runs. Interestingly, the
diffusion dynamics of the proteins is affected by their own

crowded state. In contrast to the normal diffusion of a single
protein in a noncrowded membrane, 16 proteins in the
crowded membranes exhibit strong subdiffusion. This
effect is also clearly seen in the corresponding trajectories
(see Fig. S3 in Supplemental Material [80]). Without any
signature of transient behavior, it persists until the end of
the simulations at 100 μs with an anomalous diffusion
exponent that is smaller than the value for the lipids. The
magnitude of α becomes smaller when the proteins are
aggregated in the DPPC membrane compared to the case
where they do not aggregate in the DLPCmembrane. These
results are consistent with our earlier study [49], even
though the exact lag time dependence of α is affected by the
confinement effects which strongly depend on the inci-
dental aggregation geometry of the proteins. Note that the
lateral dynamics of the proteins is about 10 times slower
than the lipid dynamics.
It is also noteworthy that, owing to the protein crowding,

individual lipids have various diffusion patterns which are
distinct from the averaged behavior hδ2ðΔÞi; in both
protein-rich DPPC and DLPC membranes there are some
lipids whose time-averaged MSD curves almost completely
follow those of the proteins, which suggests that these
lipids move together with the proteins during the entire
simulation time, possibly in nonannular binding sites.
In line with this view, it is found that approximately

30 lipids in the vicinity of a protein are considerably
slowed down compared to lipids far from the protein (see
Fig. S13 in Supplemental Material [80]). For the case of the
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FIG. 2. Time-averaged MSD traces δ2ðΔÞ for both individual lipids (gray thin lines) and NaK proteins (red thick lines) in protein-poor
DPPC (left), protein-rich DPPC (middle), and protein-rich DLPC (right) membranes. In each panel, the blue thick line represents the

mean time-averaged MSD hδ2ðΔÞi for all lipids in the membrane. The upper panels represent the variation of the scaling exponent α
versus the lag time Δ for lipids (blue line) and proteins (red line) in each membrane system from fits to the corresponding mean time-
averaged MSDs. In this plot, the offset Δ ¼ 10 ns is due to the finite interval in fitting the instantaneous slope of the time-averaged
MSD. Note the different scales of the ordinates in the different panels. We check that the change of the fit range does not seriously alter
the αðΔÞ curves. Note that, in general, the scaling exponents α of the proteins exhibit larger fluctuation than those of the lipids. In
particular, its sudden decrease for Δ > 5 μs shown in the noncrowded membrane reflects the statistically insignificant fluctuation of a
single time-averaged MSD curve.
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protein-aggregating DPPC membrane, some other lipids,
while unbound from the proteins, undergo restricted sub-
diffusion in confined space in between aggregated proteins;
see the sample trajectory in Fig. S3 in Supplemental
Material [80]. Such a confined diffusive pattern is not
observed if the lipids easily move through the nonaggre-
gating proteins in the DLPC membrane. The majority of
lipids appear to carry out unrestricted anomalous diffusion
in the bulk. We quantify the effect of protein crowding
on the mobility of individual lipids by comparison of
the amplitude scatter in the time-averaged MSD for the
protein-poor and protein-rich membranes in Fig. S4 in
Supplemental Material [80]. The amplitude scatter has a
markedly broader distribution in the protein-crowded
membrane. Notably, in this case, the shape of the distri-
bution becomes asymmetric with respect to the average
because of the existence of a fraction of less mobile lipids
caused by the presence of the proteins.

B. Protein crowding induces non-Gaussian
anomalous diffusion

We now proceed to investigate whether the fractional
Langevin equation, identified previously as a governing
process for the lateral diffusion in pure lipid bilayers
[52–54], is still able to reproduce the behavior of the
lateral motion in protein-crowded membranes. The FLE, a
special case of the generalized Langevin equation [91] with
power-law friction kernel compensating the power-law
correlations of the driving fractional Gaussian noise,
typically describes the motion of tracer particles in visco-
elastic media [92].
We first examine the (non-)Gaussianity of the diffusion

process by looking at the cumulative distribution of the
squared displacements Πðr2;ΔÞ ¼ R

r
0 Pðr0; t ¼ ΔÞ2πr0dr0

for the two-dimensional motion [55,93,94]. Here, P is the
propagator, i.e., the probability density that the spatial
increment of the particle is found to be at [r, rþ dr] over
the lag time interval Δ. Gaussian anomalous diffusive
processes such as the FLE are described by the propagator
in free space Pðr;ΔÞ ¼ exp½−r2=ð2σΔÞ�=ð2πσΔÞ, with
σΔ ¼ 2KαΔα, which yields the cumulative distribution
Πðr2;ΔÞ ¼ 1 − exp½−r2=ð4KαΔαÞ�. Thus, the plot of
− log½1 − Πðr2;ΔÞ� versus r2 displays a power-law scaling
with the exponent 2 [94]. As we show in Fig. 3, the lipids in
the noncrowded membrane are in very good accord with the
Gaussian scaling law.
However, both protein-crowded systems in Fig. 3

clearly show that the lateral diffusion is not Gaussian.
It appears that the cumulative distributions for the
crowded membranes follow a power-law relation
− log½1 − Πðr2;ΔÞ� ∼ rδ, with a single or multiple scaling
exponent δ < 2 over the entire range of r2 plotted. It turns
out that these non-Gaussian scaling curves are found to be
consistently preserved at different overall observation times
T (see Fig. S5 in Supplemental Material [80]). Such a

power-law scaling with an exponent δ ≠ 2 may be
explained with a non-Gaussian propagator P of the form

Prðr;ΔÞ ∝ exp

�
−
�

r

cΔα=2

�
δ
�
; ð4Þ

which leads to a cumulative distribution − log½1 −
Πðr2;ΔÞ� ∼ ðr=cΔα=2Þδ in the large-displacement limit.
Here, Prðr;ΔÞ is the radial part of the propagator given
by Prðr;ΔÞ ¼

R
2π
0 dθPðr; θ;ΔÞ, with r ≥ 0, and c is a

scaling constant of dimension [m=sα=2]. We confirm the
non-Gaussianity of the propagators in Fig. 4 by examining
the profiles of logPrðr;ΔÞ at several lag times with the fit
curves based on the above non-Gaussian (solid lines) and
the Gaussian (dashed lines) propagators. The lipids in
the protein-poor membrane (Fig. 4, top left) have the
anticipated Gaussian propagator at all given times. In the
protein-crowded DPPC membrane (Fig. 4, top right and
bottom), the two fit curves unambiguously suggest that the
propagators are non-Gaussian with exponents δ < 2.
Moreover, we find that the propagators require a composite
fit function involving two non-Gaussian components (see
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FIG. 3. Cumulative distribution Πðr2;ΔÞ for squared displace-
ments r2 ¼ ½rðtþ ΔÞ − rðtÞ�2 of individual lipids. The value
− log½1 − Πðr2;ΔÞ� is plotted against r2 at lag times Δ ¼ 1 ns
(red), 10 ns (green), 100 ns (blue), 1000 ns (brown), and 5000 ns
(magenta), from left to right. For a Gaussian process the scaling
of − logð1 − ΠÞ ∼ r2 is obtained [94] as indicated with dashed
lines in the plot. Data are for the noncrowded DPPC (top),
aggregating protein-crowded DPPC (middle), and nonaggregat-
ing protein-crowded DLPC (bottom) systems. For the latter two
cases the exponent deviates substantially from a value of 2, as
seen from the Gaussian guide lines. The solid lines depict the
theoretical curves [Eq. (5)] of − logð1 − ΠÞ expected from the
non-Gaussian propagator P fitting to the simulation data shown
in Fig. 4.
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the caption of Fig. 4 and also Fig. S7 in Supplemental
Material [80]) to fully explain the behavior at both small
and large displacements. For the two-component non-
Gaussian propagator (shown in the caption of Fig. 4), its
cumulative distribution can be exactly obtained as

log½1 − Πðr2Þ� ¼ logf1 − 4c1δ−11 σ21γ½2δ−11 ; ðr=2σ1Þδ1 �
− 4c2δ−12 σ22γ½2δ−12 ; ðr=2σ2Þδ2 �g; ð5Þ

where γðs; xÞ ¼ R
x
0 t

s−1 expð−tÞdt is an incomplete gamma
function. The solid lines in Fig. 3 depict the theoretical
cumulative distribution Eq. (5) expected from the non-
Gaussian propagator, which fits the simulation data in
Fig. 4. For all cases, the theoretical curves display excellent
agreement with the cumulative distribution, which in turn
supports the validity of the proposed non-Gaussian propa-
gator. We notice that the theoretical curves do not show a
tip at the end. This suggests that the sharp bending at the tip
in the simulation likely results from insufficient statistics.
As we discuss further below, the character of the above
non-Gaussian propagator is different from the non-
Gaussian propagators in other complex soft matter systems
found in recent experimental studies [95–99]. There is no
single master curve describing all propagators obtained at
different times, since the estimated δ values vary with time.
The variation trend of δ in time appears to be system
specific depending on the extent of the transient confine-
ment effect due to protein crowding; see Fig. S6 in

Supplemental Material [80]. For the protein-crowded
DPPC system (where many lipids experience strong tran-
sient confinement), the values of effective δ tend to
decrease with increasing lag time Δ. This indicates that
the non-Gaussianity is enhanced until, at least, Δ ¼ 5 μs as
time elapses. In contrast, the tendency is opposite in the
nonaggregating DLPC system, in which δ increases and
thus P becomes more Gaussian over time.
As our analysis shows, the non-Gaussian lateral anoma-

lous diffusion revealed by Π and P cannot be explained by
the model of multiple-component Gaussian processes that
has often been introduced for modeling complicated anoma-
lous diffusion processes found in experiment [93,100]. For
our protein-crowded membranes, one can invoke a two-
component (anomalous) diffusion model composed of
slowly diffusing lipids in the proximity of the proteins and
fast lipids in bulk [101], with the propagator Pðr;ΔÞ¼
mexp½−r2=ð2σslowÞ�=ð2πσslowÞþð1−mÞexp½−r2=ð2σfastÞ�=
ð2πσfastÞ, with 0 < m < 1. As demonstrated in Fig. S7 in
Supplemental Material [80], this model does not properly fit
the distribution of displacements at various lag times.
Additionally, we examine in Fig. S8 [80] whether the
propagators are explained by the two-component model
composed of a Gaussian center and a non-Gaussian tail as
employed in some recent studies [95–97]. While this model
explains the propagators better than the two-component
Gaussian model, it also shows a deviation from the propa-
gators, especially when the center is sharply peaked.
The protein diffusion exhibits similar characteristics. The

corresponding cumulative distributions and propagators are
plotted in Fig. 5. This analysis demonstrates that an isolated
single protein in the noncrowded membrane (top panels)
shares the property of Gaussian diffusion. The plot of
− log½1 − Πðr2;ΔÞ� scales as r2, and Prðr;ΔÞ follows the
Gaussian propagator (dashed lines). The inconsistent
cumulative distribution curve for Δ ¼ 5 μs is statistically
inconclusive because it was obtained from a single trajec-
tory of length T ¼ 25 μs. The proteins in the crowded
DPPC (middle panels) and DLPC (bottom panels) mem-
branes display non-Gaussian scaling with δ being signifi-
cantly below 2 at any analyzed displacements. The depicted
solid lines are the expected cumulative distributions
[Eq. (5)] from the fitted non-Gaussian propagators. The
non-Gaussian protein diffusion appears to be more complex
than the non-Gaussian behavior of the lipids, presumably
due to the slow lateral dynamics of the proteins and
nontrivial, effective lipid-mediated interactions among
proteins. The cumulative distributions are typically char-
acterized by multiple scaling curves.
We perform additional analyses to cross-check the fail-

ure of the FLE model for the protein-crowded membranes.
Figure 6 presents the results of the moment ratios
hr4i=hr2i2 (regular) and hr4MMEi=hr2MMEi2 (mean maximal
excursion [102]) for lipids in the protein-poor and protein-
rich membranes [53,102]. Note that in the literature the
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c1 exp½−ðr=2σ1Þδ1 � þ c2 exp½−ðr=2σ2Þδ2 �, where the annotated δ
values are the fit values. (Top left) The protein-poor case with
Δ ¼ 1 ns (red), 10 ns (green), and 100 ns (blue). The other panels
are for the protein-rich case with Δ ¼ 1 ns (top right), 100 ns
(bottom left), and 1000 ns (bottom right). The two-component
Gaussian fit to the P is supplemented in Fig. S7 in Supplemental
Material [80].
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regular moment ratio is alternatively redefined to a
non-Gaussian parameter α2ðtÞ¼ð1=2Þhr4ðtÞi=hr2ðtÞi2−1
[32,103]. It was theoretically shown that for a two-
dimensional Gaussian process including FLE motion the
moment ratio should be 2 for the regular moment and
< 1.49 for the MME [53,102]. The lipids in the non-
crowded membrane are in good agreement with these
criteria. In contrast, in Fig. 6, the lipids in the crowded
membranes are shown to have regular moments > 2 and
the MME > 1.49 (dashed line), thus disobeying the
Gaussianity criteria. Again, the obtained moment ratios
are inconsistent with the FLE Gaussian model. We also
note that the obtained moment ratios do not satisfy the
criteria for anomalous diffusion in fractal media, which is
characterized by moment ratios < 2 for the regular and
< 1.49 for the mean maximal excursion [102]. This rules
out the possibility that the protein-induced non-Gaussian
diffusion in our model membranes is caused by a fractal-
like obstacle structure formed by proteins.
The velocity autocorrelation function

CðΔÞ ¼ hvδtðtþ ΔÞ · vδtðtÞi ð6Þ
is also found to be inconsistent with the FLE model. From
the trajectory, we obtain CðΔÞ for average velocities
vδtðtÞ ¼ ½rðtþ δtÞ − rðtÞ�=δt, with a varying time interval
δt [53,104], comparing them to the corresponding theo-
retical curve of the FLE model. Previously it was shown
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FIG. 5. Cumulative distribution Πðr2;ΔÞ and propagator Prðr;ΔÞ for proteins: (top) Protein-poor DPPC, (middle) protein-rich DPPC,
and (bottom) protein-rich DLPC membranes. For all panels the color code denotes the results at Δ ¼ 1 ns (red), 10 ns (green), 100 ns
(blue), 1000 ns (brown), and 5000 ns (magenta). As in Fig. 4, the dashed and solid lines in logPrðr;ΔÞ represent the fit curve using the
Gaussian and the non-Gaussian propagators, respectively. The annotated δ values are the estimated non-Gaussian exponents δ from
fitting.
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FIG. 6. Moment ratio of lipid molecules, hr4i=hr2i2 (regular)
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DPPCs in the protein-poor membrane, (top right) DPPCs in
the protein-rich membrane, (bottom left) DLPCs in the protein-
rich membrane. Here, the MME distance rMMEðtÞ refers to the
maximum distance reached from the origin until time t [102]. For
two-dimensional FLE motion with 0 < α < 1, the moment ratio
is 2 for regular and< 1.49 (dashed line) for MME. (Bottom right)
Velocity autocorrelation function CðΔÞ ¼ hvδtðtþ ΔÞ · vδtðtÞi
for the average velocity vδtðtÞ ¼ ½rðtþ δtÞ − rðtÞ�=δt with the
chosen time interval δt ¼ 100 ðnsÞ. The result for DPPCs in the
protein-rich membrane is compared to the corresponding theo-
retical curve of FLE [53].
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that the CðΔÞ is excellently explained by the FLE model in
the noncrowded case [53,54]. Figure 6 (bottom right)
shows the result for DPPC lipids in the protein-rich
membrane. While the antipersistent tendency in the lipid
motion is observed, the relaxation profile does not follow
the FLE model.

C. Protein crowding induces spatiotemporal
heterogeneity in lateral diffusion

In order to obtain more insight into the physical nature of
the protein-induced non-Gaussian diffusion, we visualize
the spatiotemporal character of the lateral diffusion through
diffusion maps at different times in Fig. 7. Since in our
membrane systems the diffusion is anomalous with a time-
dependent scaling exponent, neither the map of the gen-
eralized diffusion coefficient Kαðx; y; tÞ nor the scaling
exponent αðx; y; tÞ properly quantify the degree of the local
diffusion preference. We thus generate a 2D contour map of
the local mean-squared displacements ½rðtþ t0Þ − rðtÞ�2 at
time t over a short time interval t0 set to be 1 ns in our
analysis. Usually there are only 1–2 particles (or even none)
at each site of the square grid in space, so the averaged local
mean-squared displacements can be highly fluctuating in
space regardless of the true local diffusional preference. To
obtain a statistically meaningful contour map averaged over
these fluctuations, we evaluate the diffusion map at time t
by averaging 10 consecutive contour maps evaluated at
times t, tþ 1;…; tþ 9 ns, based on the observation that
during 10 ns the protein position remains almost unchanged
compared to that of the lipids. By this procedure, the
diffusion maps of lipids are evaluated at t ¼ 1, 10, 100, and
1000 ns.

Figure 7 compares the diffusion maps of DPPC mole-
cules in protein-poor and protein-rich cases. Therein, the
blue regions represent the unoccupied space by the lipids,
which almost overlaps with the dashed circles denoting the
positions of the NaK proteins at that moment, as estimated
from the trajectory. In the case of the protein-poor mem-
brane, the profile of the diffusion map changes with time.
Except for the tendency that the lipid diffusion becomes
slowed down in the proximity of a protein, the hot regions
in which large lipid diffusion occurs emerge randomly in
space. The rapidly varying spatiotemporal heterogeneity
effectively produces homogeneous lipid diffusion over
time, as seen above in the time-averaged MSD curves
and their distribution. In sharp contrast to this, the diffusion
map for the protein-crowded membrane exhibits a hetero-
geneous profile that strongly depends on the protein
configuration in space. The diffusion tends to be slower
in the protein-crowded regions and faster in between two
distant protein complexes. It is surprising that the protein-
induced diffusion heterogeneity has a very long life span.
The given pattern of the diffusion map is maintained for
more than 1 μs. Thus, a lipid molecule will experience a
space-dependent diffusivity while diffusing across the
membrane, as quantified below. The persistent pattern of
the diffusion map originates from the slow diffusion
dynamics of the protein complexes compared to the lipid
motion in the investigated time range.
The spatiotemporal heterogeneity in the lateral diffusion

of the lipids is further corroborated in Fig. 8. Here, we
present the time-averaged MSD traces as a function of
measurement time T for DPPC molecules in protein-poor
and crowded membranes. To quantify the degree of
amplitude fluctuations of the time-averaged MSDs upon

FIG. 7. Diffusion maps of DPPC lipid molecules in protein-poor (top) and protein-rich (bottom) membranes. In each case the four
plots depict the diffusion maps at t ¼ 1, 10, 100, and 1000 ns from left to right. Blue regions are the unoccupied space by the lipid at the
given time, while the gray dashed circles illustrate the position of the proteins. Axis coordinates are in nanometers.
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the increase of T, we evaluate the ergodicity breaking
parameter [35,104,105]

EBðTÞ ¼
D
ðδ2ðTÞÞ2

E
−
D
δ2ðTÞ

E
2

D
δ2ðTÞ

E
2

: ð7Þ

In the noncrowded membrane the heterogeneity of the
time-averaged MSD in Fig. 8 is consistent with that for
typical homogeneous ergodic diffusion, such as FLE
motion. While individual time-averaged MSD traces show
an erratic profile, their mean depicted by the thick gray line

is independent of the observation time T, hδ2ðTÞi≃ T0,
and the time-averaged MSD heterogeneity decreases with
increasing T in accordance with the expected convergence
law EBðTÞ ∼ T−1 as for FLE [106–109]. Meanwhile, the
lipids in the protein-rich membranes suffer strong hetero-
geneous diffusion. There exist lipids showing continuously
decreasing, aginglike time-averaged MSDs upon increas-
ing T. Additionally, it is observed that a fraction of lipids
experience a sudden increase in the time-averaged MSD at
a certain T 0 while having been independent of T for shorter
observation times T < T 0. From the diffusion map it can be
inferred that those lipids diffusing successively through
slow and fast diffusivity regions in space can have such
temporal mobility heterogeneities. This new picture on the
lipid diffusion in protein-crowded membranes is corrobo-
rated in Fig. 9, where we plot the temporal fluctuation of
the diffusivity Kα for some individual lipid molecules and
the probability density PðKαÞ for the obtained diffusivity
from all trajectories. The traces of KαðtÞ indeed show that
the individual lipids display fluctuating diffusivity. The

bimodal profile of P tells us that the diffusivity fluctuates
within a finite range of values with two favorable diffu-
sivity states. For some lipids (e.g., Fig. 9, bottom left), the
transitions between the high and low diffusivity states are
clearly seen. In this case, the lipids explore the low
diffusivity region with a surprisingly long sojourn time
of ∼10 μs. Such patterns of diffusivity fluctuation lead to
the decrease or the increase of time-averaged MSD δ2ðTÞ
with increasing T, as observed in Fig. 8. A supporting
simulation described in Sec. S7 in Supplemental Material
[80] suggests that the temporal fluctuation in δ2ðTÞ may be
attributed to a temporal change of the diffusivity whether or
not the particle is under transient confinement. Geometrical
effects like confinement are unable to change the amplitude
of δ2ðTÞ, which can be decreased or increased if the
diffusivity is changed with time. In spite of the strong
heterogeneity on the single molecule level, on average the
lipid diffusion does not age in the sense of hδ2ðTÞi≃ T0.
This ergodic nature of the lipid diffusion is consistent
with the diffusivity fluctuation in Fig. 9 in that a typical
sojourn time for a given diffusivity state is always bounded.
In other words, no diverging sojourn time exists for a
low diffusivity state, which may be necessary for induc-
ing nonergodicity, as shown in recent studies on the
fluctuating diffusivity model [58,110,111]. The EB param-
eter indicates that the space-dependent diffusivity only
leads to a slower ergodic convergence than the conventional
Brownian case EBðTÞ ∼ T−1. This observation indicates
the importance of the proper averaging procedure in the
analysis of the crowded membrane dynamics.

IV. DISCUSSION AND CONCLUSIONS

Based on extensive computer simulations and single
trajectory analyses, we here provide a systematic
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(Right) Ergodicity breaking parameter EBðTÞ, Eq. (7), depicted
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investigation of the anomalous lateral molecular diffusion
of lipid molecules and embedded proteins in protein-
crowded membranes. Recently, several experimental and
computational studies reported that anomalous lipid dif-
fusion is present in protein-crowded membranes up to time
scales of microseconds to milliseconds and even up to 100 s
in living cells [49,55,58,100]. Going beyond these studies,
our focus here is to pin down the stochastic character and
physical origins of the anomalous lateral diffusion induced
by protein crowding. The three major results of this work
are as follow. (1) The protein crowding significantly
enhances the anomalous lateral diffusion in membranes.
The subdiffusive lipid dynamics becomes much slower and
spans up to several orders of magnitude longer than the
typical crossover time of a few nanoseconds in a protein-
poor membrane. This observation is in line with the above-
discussed previous studies for crowded artificial or cellular
membranes [49,55,58,100]. The protein channel motion
observed in the plasma membranes of living cells also
exhibits pronounced aging effects [55,58,63], a phenome-
non not observed in our much simpler model membranes.
(2) The protein crowding effects a non-Gaussian character
in the anomalous diffusion, which is incompatible with the
known models describing lateral diffusion. Previously,
several groups, including us, found that in protein-free
lipid bilayers, at any lipid phases, the lateral diffusion is
consistently governed by the Gaussian FLE process (or,
equivalently, fractional Brownian motion [112–114]),
which thus appears to be a universal platform for the
description of lateral diffusion in membranes [52–54].
However, our current study demonstrates that the inclusion
of proteins in the membranes drastically changes the
diffusion character: the picture suggested earlier no longer
holds under protein crowding, thereby implying that the
current paradigm of anomalous diffusion in membranes has
to be revised. We show in this work that in protein-rich
membranes, regardless of the lipid species, the lateral
diffusion of phospholipids and proteins becomes highly
non-Gaussian, and can no longer be explained by the
Gaussian FLE model. This is clearly seen in the propagator
Prðr;ΔÞ obtained from the simulated lipid trajectories,
which obeys a compressed (or stretched) exponential form
[Eq. (4)]. The analyses also show that the observed non-
Gaussian character is not explained by some other lateral
diffusion models, such as the anomalous diffusion in fractal
space [32,115], the free-volume jump diffusion [116,117],
or the nonergodic continuous time random walk model
[55,89]. (3) Protein crowding creates significant spatio-
temporal heterogeneity in lateral diffusion dynamics with a
very long life span of > 1 μs (Fig. 7). An individual lipid,
while diffusing across such an environment, undergoes a
spatially varying diffusivity, stemming largely from
slowed-down diffusion in the vicinity of membrane pro-
teins [101] compared to fast diffusion in protein-free
regions. This results in strong heterogeneity in the motion

of individual lipids, as seen in the amplitude scatter of the
time-averaged MSD curves shown in Fig. 8 and also in
Fig. S4 in Supplemental Material [80], but does not give
rise to nonergodic properties.
Collecting these findings, it can be concluded that the

protein crowding completely reshapes the lateral anoma-
lous dynamics in membranes in its duration and stochastic
character.
There are a few remarks on the non-Gaussian lateral

diffusion observed in this work. Often, complicated dif-
fusion patterns found in living cells have been modeled
heuristically by a multicomponent Gaussian model
[93,100]. Our computational study shows that this
approach is not valid even in our crowded model mem-
branes although they are much simpler than crowded
cellular membranes. That is, the lateral diffusion in highly
protein-crowded environments is not decomposed into the
superposition of slow Gaussian diffusion in the proximity
of proteins and fast Gaussian diffusion away from the
proteins. This is mainly because a lipid molecule, whose
dynamics is much faster than the protein dynamics,
explores both slow and fast regions in space multiple times
during its lateral diffusion and, thus, there is no distinction
between slow and fast particles. While our study does not
invalidate the use of multicomponent Gaussian approxi-
mation in general, it cautions the excessive interpretation of
the results in terms of multiple-component Gaussian
models when no further information is available.
Recently, a series of experimental and computational

studies reported non-Gaussian diffusion dynamics in vari-
ous soft complex systems [95–99]. Examples include
colloidal beads on lipid bilayer tubes, particle diffusion
in entangled actin networks, liposomes in nematic actin
filaments, and colloidal suspensions. In these studies it was
shown that the complex environments give rise to transient
non-Gaussian diffusion on a certain time scale over which
the propagator P typically has an exponential tail notwith-
standing the diffusion dynamics maintaining the normal
Einstein scaling law. On the one hand, the non-Gaussian
lateral diffusion reported in this work is in line with these
cases in that it is a phenomenon arising from the spatial
complexity of the system. On the other hand, it is
distinguished from them in that the non-Gaussian displace-
ments are described by the compressed-exponential propa-
gator [Eq. (4)] and lead to the anomalous diffusion

dynamics δ2 ∼ Δα.
What physical origins govern the observed non-Gaussian

anomalous diffusion present in the protein-crowded mem-
branes? Is it a system-specific phenomenon only shown in
the protein-crowded membrane or a universal character
commonly valid for similar crowded systems? Through
additional computational work, we find that a very similar
non-Gaussian anomalous diffusion can take place in a
much simpler crowded, quasi-two-dimensional Lennard-
Jones (argon) system. Simulation results are summarized in
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Fig. 10. The inert atoms, otherwise displaying normal
Brownian self-diffusion, undergo multifractal non-
Gaussian anomalous diffusion when placed in an
obstacle-crowded space where the immobile obstacles
are aligned to give a transient confining effect to the
diffusing particles. It is remarkable that an analogous
profile of αðΔÞ over a long time window, similar to that
observed in the protein-rich DPPC membrane (Fig. 2), is
obtained when the obstacles are aligned in a similar fashion
to the aggregating proteins [Fig. 10(e)]. The propagators
are also shown to have a similar non-Gaussian character as
in the case of the crowded membranes studied [Fig. 10(h)].
These results strongly suggest that the obstacle-induced
hindrance and the transient confinement have a major
responsibility for the non-Gaussian anomalous diffusion
found in this work. We also find that the specific aggre-
gation dynamics of proteins and the associated transient
effect, as well as finite-size effects, are not significantly
attributing to the non-Gaussian anomalous lipid dynamics.
This is corroborated by the fact that the spatial correlation
lengths and correlation times of proteins and lipids are
considerably smaller than the membrane size and the
simulation time (see Sec. S9 in Supplemental Material
[80]). Our speculation on the origin of the observed non-
Gaussian diffusion also gives an explanation of why the
FLE Gaussian model, seemingly a universal dynamic
model for the anomalous diffusion in protein-free mem-
branes in all physical phases, fails to reproduce the
diffusion characteristics in the protein-crowded mem-
branes. This is because the observed non-Gaussianity is
an effect of geometrical origin due to protein alignment, not
from the viscoelasticity of a lipid membrane stemming
from the lipid polymeric tail.
What dynamic model then replaces the Gaussian FLE

model for the description of the non-Gaussian hetero-
geneous diffusion occurring in protein-crowded mem-
branes? While it will be a challenging task to establish
the quantitatively accurate model, we speculate that it will
be based upon a hybrid model combining the obstructed
diffusion with a diffusion process with space-dependent or
fluctuating diffusivity. Several versions of the latter model
were introduced recently where the local diffusivity is
deterministically given by a specific functional form
K1ðx; yÞ or randomly given with a probability density
PðK1Þ [58,96,99,110,118–120]. These models were shown
to generate heterogeneous diffusion processes having
pronounced fluctuations in the time-averaged MSDs and
in some cases induce weak ergodicity breaking. It was
demonstrated that the fluctuating diffusivity model
describes the nonergodic subdiffusion of a DC-SIGN
receptor in the living-cell membranes [58] and the reptation
dynamics in entangled polymer systems [111]. As we learn
from the diffusion map and the trace of the diffusivity
fluctuation in Figs. 7 and 9, the heterogeneous lateral
diffusion in our protein-crowded membranes may be

understood within the framework of the fluctuating
diffusivity model. While in the literature heavy-tailed
distributions of the diffusivity and the sojourn time are
usually introduced to explain a nonergodic subdiffusion
[58,110,111], in our membrane systems the diffusivity
fluctuation is shown to have a finite variance and bounded
sojourn times. Such moderate diffusivity fluctuation indu-
ces heterogenous lateral diffusion without weak ergodicity
breaking.
Expanding the idea introduced in Ref. [99], we consider

a Gaussian subdiffusive process with a fluctuating diffu-
sivity KαðtÞ, where the evolution dynamics of Kα is
modeled by stochastic motion of a particle confined in
the double-well potential landscape of − logPðKαÞ shown
in Fig. 9. The physical scenario for this description is that
the individual lipids experience an annealed fluctuating
diffusivity induced by the protein crowding, while they
carry out a FLE-like Gaussian subdiffusion if the presence
of the obstacles (i.e., the proteins) is ignored. Then, in the
long-time limit where KαðtÞ reaches the stationary state
with PðKαÞ, the average propagator for this heterogeneous
process is given by

Pðx;ΔÞ ¼
Z

∞

0

dKα
PðKαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πKαΔα

p exp

�
− x2

4KαΔα

�
: ð8Þ

It can be shown that a non-Gaussian propagator P is
attained for the given form of P found in Fig. 9 (see
Fig. S15 in Supplemental Material [80]). This means that
the non-Gaussian, heterogeneous anomalous diffusion we
find in our crowded membranes can be reasonably
explained within the framework of the fluctuating diffu-
sivity model. However, it turns out that the propagator
Eq. (8) based on the Gaussian kernel does not successfully
explain the obtained propagator for the lipids in the
simulations (see Fig. S15 in Supplemental Material
[80]). Previous studies [58,96,110,118,120] inform us that
a multifractal anomalous diffusion is not seen in these
space-dependent diffusion processes. It is speculated that
the heterogeneous lateral diffusion attains the additional
non-Gaussian, multifractal nature by the effect of obstruc-
tion in space. Thus, the proper diffusion model for the
protein-crowded membranes should integrate the non-
Gaussian feature associated with the obstruction in space
into the above-discussed fluctuating diffusivity model. In
line with this idea, we find that the propagator Eq. (8) with a
non-Gaussian kernel stemming from the presence of
obstacles shows reasonable agreement with the propagator
for the lipids; see Fig. S16 in Supplemental Material [80].
A thorough theoretical investigation of this model remains
for future work. Complementary stochastic analysis tools
will be of crucial assistance in this task [35,121–123].
Finally, we note in passing that our proposed diffusion
mechanism for the protein-crowded membranes does not
negate other possible diffusion mechanisms in other
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crowded artificial or living-cell membranes [124–126].
Various diffusion patterns markedly different from the
current non-Gaussian heterogeneous diffusion can emerge
due to the presence of additional complexity.
Is the non-Gaussian anomalous diffusion expected to be

biologically relevant? There are many reasons to assume
so. First, as cell membranes are crowded with proteins [81],
their influence on membrane dynamics has to be accounted
for. Second, a great fraction of cellular functions are due to
proteins working in unison as protein dimers or higher
oligomeric complexes, and in order to function, the proteins
have to form a complex where the relative orientation and
the distance of individual proteins renders the function
possible. This implies that the proteins should sample their
relative conformational space for sufficiently long times in
order to find the functional structure for the protein
complex, and this sampling process is obviously fostered
by correlated motion of the proteins. In the same spirit, in
agreement with the lipid raft paradigm [3], it is known that
for a number of membrane proteins there are lipid binding
sites [127] where a specific lipid binds to a protein in a
manner where it is able to modulate protein conformation
and dynamics, and thus also activation and function. Here,
too, the formation of the protein-lipid complex may be a
slow process where correlated motion of the lipids next to
the protein would increase the formation rate of the
functional protein-lipid unit.
As we learn from this study, a new component in

complexity may significantly affect the diffusion dynamics
in protein-crowded membranes, thereby reshaping the
stochastic character of the motion. A systematic under-
standing of the role of various complex components in
living cellular membranes for the lateral membrane
dynamics will be a challenging task in the future.
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APPENDIX: MOLECULAR DYNAMICS
SIMULATION ON THE CROWDED SIMPLE

FLUID SYSTEMS

Here, we support our observations on the anomalous non-
Gaussian lipid dynamics reported in the main text with
additional simulations on a much simpler two-dimensional
crowded system, i.e., a Lennard-Jones (LJ) fluid. The
dynamics of this fluid are studied by simulating both

obstacle-free [Fig. 10(a)] andobstacle-containing [Figs. 10(b)
and 10(c)] systems. In the obstacle-containing case, two
different arrangements of the obstacles are considered in
order to produce the effects of transient weak and strong
confinement.
The obstacle-free system consists of 9000 particles,

whereas in the two obstacle-containing systems 20
obstacles are placed among 1900 particles. Each of these
obstacles is built of an aggregate of 55 particles that are
permanently fixed in space.
The simulations are run in the NVT ensemble at the

boiling point of argon (87.3 K), whose LJ parameters
(ϵ ¼ 0.996 kJ=mol, σ ¼ 0.3405 nm [128]) are used for the
particles. The area of the obstacle-free system is adjusted so
that its 2D diffusion coefficients correspond to the value
calculated for the same model in 3D at the same temper-
ature and at a pressure of 1 bar. The areas of the two
obstacle-containing systems are fixed to provide a very
similar surface density and liquidlike behavior.
The obstacle-free system is simulated for 100 ns,

whereas the obstacle-containing systems showing weak
and strong confinement are simulated for 500 ns and 1 μs,
respectively. All simulations are performed using an
integration time step of 2 fs. The LJ interactions are cut
off at 1 nm and a dispersion correction is applied to both
energy and pressure. The temperature is kept constant at
87.3 K using the Berendsen thermostat [129]. Periodic
boundary conditions are employed in the xy plane where
diffusion takes place. The simulations are performed with
the GROMACS simulation package version 4.5.x [130].
Figure 10 presents the highlights of the simulation

results. The time-averaged MSD and the anomalous dif-
fusion exponent α in Figs. 10(d) and 10(e) show that the
obstacles in space induce anomalous diffusion. In the case
of strong transient confinement [Fig. 10(c)], mimicking the
protein-crowded DPPC (aggregating) case in Fig. 2(b),
the variation of α in time reproduces the behavior of α for
the lipids in the crowded membrane. Further, the duration
of anomalous diffusion in the argon system, as also in the
DPPC membrane, is significantly elongated.
It is important to note that here the anomalous diffusion

(consistent with the results we discuss in the main text) is
observed for simple LJ particles with static obstacles. This
suggests that the effect of protein-aggregating dynamics in
Fig. 2(b) is not essential for the observed strong anomalous
lipid diffusion. Once the obstacles give rise to transient but
strong confinement, the diffusing particles carry out
anomalous dynamics. Moreover, the analyses of the propa-
gators for the three systems in Figs. 10(f)–10(h) show that
the anomalous diffusion in the strongly confined case
[Fig. 10(c)] is indeed non-Gaussian. Analogously to the
membrane system, P is described by a combination of two
stretched-exponential propagators. Further, to rule out
possible finite-size effects, we repeat this analysis for a
LJ argon system whose size is 9 times (3 × 3) larger than
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the one discussed here. Consistent non-Gaussian diffusive
behavior is observed (data not shown).
Summarizing, our simulation study on the simple LJ

fluid systems corroborates the validity of the non-Gaussian
anomalous lateral diffusion observed in protein-crowded
membranes. The non-Gaussian lateral diffusion is not a
system-specific, out-of-equilibrium transient dynamic
property dependent upon the system preparation. Instead,
it is a general dynamic equilibrium property induced by
obstacle crowding.
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