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It is generally believed that random search processes based on scale-
free, Lévy stable jump length distributions (Lévy flights) optimize the
search for sparse targets. Here we show that this popular search
advantage is less universal than commonly assumed. We study the
efficiency of a minimalist search model based on Lévy flights in the
absence and presence of an external drift (underwater current, atmo-
spheric wind, a preference of the walker owing to prior experience,
or a general bias in an abstract search space) based on two different
optimization criteria with respect to minimal search time and search
reliability (cumulative arrival probability). Although Lévy flights turn
out to be efficient search processes when the target is far from the
starting point, or when relative to the starting point the target is
upstream,we show that for close targets and for downstream target
positioning regular Brownian motion turns out to be the advanta-
geous search strategy. Contrary to claims that Lévy flightswith a crit-
ical exponent α = 1 are optimal for the search of sparse targets in
different settings, basedonour optimization parameters the optimal
αmay range in the entire interval (1, 2) andespecially includeBrownian
motion as the overall most efficient search strategy.

search optimization | stochastic processes | Lévy foraging hypothesis

How do you find the proverbial needle in the haystack or an
enemy submarine in the vast expanse of the sea? Scientists

have studied the dynamics and optimization of search processes
for decades, their interests ranging from military tasks such as
locating enemy vessels or mines in the ocean and search strategies
of animals for food to diffusion control of molecular processes in
biological cells (1–4). Without prior knowledge about the location
of the target, a searcher randomly explores the search space.
However, as already argued by Shlesinger and Klafter (5), instead
of performing a Brownian walk a better search strategy for sparse
targets is that of a Lévy flight (LF): The agent moves randomly
with a power-law distribution λðxÞ ’ jxj−1−α of relocation lengths.
Owing to their scale-free, fractal character, LFs combine local ex-
ploration with decorrelating, long-range excursions. These effect a
reduced oversampling compared with Brownian search (i.e., the
forager is less likely to return to previously visited sites). In the field
of movement ecology (6), such random jump-like search processes
are often referred to as “blind search” using saltatory motion, which
is typical for predators hunting at spatial scales that exceed their
sensory range (7–10). Such blind search, inter alia, was observed for
fully aquatic marine vertebrate predators including plankton-feeding
basking sharks (Cetorhinus maximus) (11), jellyfish predators,
leatherback turtles (Dermochelys coriacea) (12), and southern
elephant seals (13). This is the kind of search motion we inves-
tigate here.
How commonly are LFs actually observed in nature? Apart

from the flight of the albatross (14, 15), power-law relocation sta-
tistics were reported for a variety of species including mussels (16),
spider monkeys (17), jackals (18), marine predators (8, 9), and even
for human motion patterns (19, 20). Also for microscopic creatures
LF search may be found; for instance, for the movement of
Escherichia coli owing to the power-law statistics underlying
their flagella rotation switching (21, 22). In engineering the

optimal search behavior of robots was identified to follow LF
behavior (23). However, in several cases the reports of LFs are
debated. Thus, spider monkeys actually move deterministically
(24), and mussels are believed to have multimodal and not
power-law relocation patterns (25, 26). Similarly, plant lice have
Lévy movements at the population level but not for the motion
of individuals (27). However, the discussion of the LF nature of the
flight of the albatross recently saw an interesting twist. Whereas
a reanalysis of albatross flights showed that they generally are
not LFs (28), strong evidence was presented according to which
LFs are indeed a search pattern for individuals (29).
Despite this ongoing controversy the LF search hypothesis is

a widely accepted dogma in the statistical and biological physics
communities and corroborated by a number of careful studies us-
ing extensive movement data. Viswanathan et al. (4) indeed pro-
mote the LF foraging hypothesis: “Superdiffusive motion governed
by fat-tailed propagators optimize encounter rates under specific
(but common) circumstances: hence some species must have
evolved mechanisms that exploit these properties [. . .].” How
justified is this dogma? We here investigate the generic problem
of the efficiency of LF search based on complementary optimi-
zation criteria such as the search time and the search reliability
(cumulative arrival probability) for a single target in a large
(infinite) one-dimensional search space. We consider different ini-
tial separations between target and searcher and explicitly allow for
an external bias in the search process. The latter occurs naturally
due to underwater currents, atmospheric winds, or a tilt in a com-
plex algorithmic search space. Such a bias could also mimic the
directional preference of a searcher based on previous experience.
In our approach we assume that the target is fixed in space, for
instance, we could envisage a bird of prey searching for a mouse
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or snake in a field on a windy day, or search robots trying to locate
a shipwreck on the sea floor in the presence of underwater streams.
Based on the statistics of first arrival of one-dimensional LFs

to the target we show here that the optimal search strategy cru-
cially depends on the initial searcher–target distance and the
presence of even a small bias, in particular, on the direction of the
bias with respect to the target location relative to the initial po-
sition of the searcher. We find that Brownian search may be more
efficient than LF search when the stream is toward the target or,
alternatively, when the target happens to be close to the searcher.
Conversely, LF search wins out when the target is difficult to
locate. Our results shed new light on the long-standing question of
optimization in random search processes and challenge the generic
role of the LF foraging hypothesis. Without any prior knowledge it
might actually be advantageous to use Brownian search methods.
In what follows we first define the LF model and the associated

first arrival process. We then define our measures to gauge the
optimization of the search process in terms of the search effi-
ciency and the search reliability (cumulative success probabil-
ity). In Results we present our results for the cases without and
with an external drift. In Discussion we analyze these results in
detail. We also comment on the relation of the simplified LF
approach to other search models such as intermittent search or
Lévy walk (LW) models. Finally, we also argue that the one-
dimensional analysis presented here is relevant to the case of
(effectively) 2D search.

Model
LFs and First Arrival Time.Consider the scenario sketched in Fig. 1:
A walker searches one-dimensionally for a stationary target by
performing random jumps, with a prescribed distribution of jump
lengths x. In the blind search scenario with saltatory motion
studied herein, location of the target occurs when at the end of a
jump the walker hits the target. For LFs the distribution of jump
lengths is of the power-law form λðxÞ ’ jxj−1−α with 0< α< 2 (30,
31). The associated variance hx2i of the jump lengths diverges,
such that the resulting scale-free jump process features occasional,
extremely long jumps. In contrast to Brownian search with frequent
returns to previously visited points in space, as originally pointed
out by Shlesinger and Klafter (5) these long jumps improve the
efficiency of the search process by leading the random walker to
uncorrelated areas of the search space. We recall that for LFs
long leap-overs with length distribution pðℓÞ ’ ℓ−1−α=2 across a
point may frequently occur, and thus the probability of actually
arriving at a point is significantly smaller than the passage of the
walker across this point (32–34). Leap-overs are crucial to the
understanding of the first arrival of LFs. They occur radially in
all dimensions.
As discussed here, the jumps may be biased by a drift repre-

senting an external bias (wind or water current) or by the searcher’s
previous experience. We refer to the bias as “downhill” when the

target lies in the direction of the stream as seen from the initial
position of the walker, and vice versa. Discovery of the target
then corresponds to the process of first arrival of the walker at
the target position. The basis for our description of the first arrival
process for LFs is the fractional Fokker–Planck equation (FFPE)
for LFs in the presence of the bias (drift velocity) v (30, 31):

∂f ðx; tÞ
∂t

=
∂ αf ðx; tÞ
∂jxjα − v

∂f ðx; tÞ
∂x

−℘faðtÞδðxÞ [1]

defined for 0< α≤ 2. The distribution f(x, t) is the density function
to find the walker at position x at time t, for which we assume the
initial position x0, i.e., f ðx; 0Þ= δðx− x0Þ. In our rescaled units, we
note that we encounter a unit (generalized) diffusivity in Eq. 1.
The fractional derivative ∂α=∂jxjα is simply defined in terms of its
Fourier transform,

R∞
−∞ eikx∂α=∂jxjαf ðx; tÞdx= − jkjαf ðk; tÞ, where

f ðk; tÞ= R∞
−∞ eikxf ðx; tÞdx is the Fourier transform of f(x, t). Intrin-

sically, this is a nonlocal operator reflecting the spatial correlations
introduced by the scale-free nature of the jump length distribution
λðxÞ. In the limit α = 2 we recover the standard second-order
derivative ∂2=∂x2 of the Brownian diffusion term of the Fokker–
Planck equation. In Eq. 1, we introduced rescaled, dimensionless
variables, such that v is a measure for the amplitude of the drift
(see SI Text for the rescaling of the FFPE). Eq. 1 contains a point
sink at x= 0 representing the target: the random walker is removed
when the target is hit, and℘faðtÞ is the density of first arrival. Eq. 1
generalizes the first arrival dynamics in absence of a drift of ref. 32.
Owing to the sink term, f ðx; tÞ is not normalized, that is, the cu-
mulative survival S ðtÞ= R∞

−∞ f ðx; tÞdx is a decreasing function of
time. Using the properties of the fractional derivative, integration
of Eq. 1 over the position coordinate x delivers the first arrival
density, ℘faðtÞ= − ðd=dtÞS ðtÞ.
The solution of Eq. 1 can be obtained via Fourier–Laplace

transform, and for the first arrival density ℘fa we find

℘faðsÞ=
Z∞

−∞

eikx0ξdk
� Z∞

−∞

ξdk; ξ= ðs+ jkjα − ikvÞ−1; [2]

where the Laplace transform with respect to time of the function
f ðx; tÞ is defined through f ðx; sÞ= R∞

0 e−stf ðx; tÞdt. The result of
Eq. 2 instantly shows an important feature: For discontinuous
LFs with 0< α≤ 1, the quantity ℘faðsÞ vanishes, because the in-
tegral in the denominator diverges while the integral in the nu-
merator converges. Thus, Lévy search for a point-like target will
never succeed for 0< α≤ 1. This property reflects the transience
of LFs with α< d, where d is the embedding spatial dimension
(35); we refer also to the discussion of higher dimensions in
Discussion. In this sense the value α= 1 obtained for optimal
search for sparse targets in drift-free search (14, 36–41) is to
be seen as a limiting point for α from above unity. We obtained
analytical results for the first arrival behavior encoded in Eq. 2.
in the limit of a small bias, discussed in SI Text . In the following
we combine numerical analysis and complementary definitions
of the search efficiency to study the optimal random search of
Brownian versus LF strategies.

Search Efficiency and Reliability. What is a good measure for the
efficiency of a search mechanism? There are two frequently used
definitions of search efficiency: counting the number of successfully
located targets either per traveled unit distance or per number of
steps (7). These definitions work well when there is a finite target
density, as is often assumed in the literature. Here we are interested
in the more natural problem of the search for a single target, a
countable number of targets, or a finite target area. In such cases
the average search time 1=hti diverges, and we thus need a modified

Fig. 1. Scheme of the blind random search process. A walker performs ran-
dom jumps in the search space until he hits the target. Here, the search is
biased by a drift away from the target. Such an uphill drift caused, for in-
stance, by underwater streams or above-ground winds affects the search
efficiency. Note that for LFs the walker may overshoot the target (the so-
called leap-overs) such that the first arrival to the target is less efficient than
the passage across the target.
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definition for the search efficiency. We advocate the average over
inverse search times,

E =
�
1
t

�
=

Z∞

0

℘faðsÞds: [3]

Owing to this definition of E as the mean of the inverse first arrival
times, contributions from short and intermediate times dominate the
efficiency. To demonstrate the usefulness of the definition in Eq. 3
we determined E for a Brownian searcher for both downhill and
uphill situations with arbitrary v and x0 > 0. We find, respectively,

E = 2
x20

�
1+

jvjx0
2

��
1; v≤ 0

expð−vx0Þ; v≥ 0: [4]

Consistently we observe that the search efficiency increases with v
when the stream pushes the searcher toward the target, whereas
the efficiency decreases exponentially in the uphill case. The latter
can be interpreted as an activation barrier for target detection. In
the absence of a drift the efficiency is just the inverse mean diffu-
sion time (on average, the diffusive scaling x20 ∼ 2t holds in dimen-
sionless units).
Combining expressions Eq. S4 from SI Text and Eq. 3 we obtain

the search efficiency for an LF in the presence of a weak bias,

E = α

xα0

�
cos

	
π
h
1−

α

2

i

ΓðαÞ− 2

�
1−

1
α

�
Peα

�
; [5]

for 1< α≤ 2. Here we introduced the generalized Péclet number
Peα = vxα−10 =2 that quantifies the relative strength of the external
drift v versus the (unit) diffusivity. The length scale is set by the
distance x0 between the walker’s initial position and the target. Note
that Peα is in fact dimensionless, owing to the rescaling of variables
(see Eq. 1). This is our first main result. In the Brownian limit α= 2
the efficiency is E ’ 2x−20 ð1−Pe2Þ, which corresponds to the small v
expansion in Eq. 4. For α→ 1 andwith x0 fixed the efficiency drops to
zero. Although α= 1 is the optimal parameter for LF search of
sparse but finite target density, for the case considered here the
transition to discontinuous LFs at α= 1 means that the target can
no longer be detected. Already these simple observations show
that the standard dogmas on the efficiency of random search
processes are more specific than usually assumed.
A complementary measure for the quality of a given search

process is the cumulative probability

P =
Z∞

0

℘faðtÞdt= 1− lim
t→∞

S ðtÞ [6]

that the walker ever arrives at the target. For some purposes this
search reliability may be more relevant than the efficiency E. A large
value of P for given parameters corresponds to a high success prob-
ability to eventually locate the target. Even for Brownian search,
when the drift points away from the target with respect to the
walker’s initial position, the search reliability may be smaller than
unity (i.e., there is a finite residual probability that the walker
never locates the target).

Results
Drift-Free Case. Let us analyze the efficiency of LF search in more
detail, starting with the case of vanishing drift strength v. This sit-
uation is usually analyzed in the search literature. Because the time
to reach the target grows substantially with initial distance x0, we
compare the search efficiency for different values of x0. In Fig. 2 we
show the dependence of the relative efficiency Erel = E=Eopt on the
stable index α defining how steep the power-law tail of the jump
length distribution λðxÞ is. Here Eopt is the maximal value of E for
given x0 attained at the optimal stable index αopt. We observe that
when the starting point of the walker x0 is close to the target, the
optimal search strategy is Brownian. This is intuitively clear:
Brownian motion with its local jumps cannot overshoot the target
and therefore leads to quick target localization. For more distant
targets the oversampling of Brownian walks, that is, the tendency
to multiply return to previously visited points, reduces the Brownian
efficiency and LFs win out. This is shown for the larger x0 values in
Fig. 2. Interestingly, the behavior of the relative efficiency Erel can
acquire a nonmonotonic dependence on α and becomes sharper
for increasing x0. In the limit of very large x0 the optimal value of
the stable index α tends to unity, consistent with previous obser-
vations (14, 36–41). The nonmonotonicity of Erel is another cen-
tral result in the present work that has crucial consequences for
the optimization of a given blind random search process.
At fixed starting position x0 in the drift-free case the implicit

expression to determine the optimal stable index αopt follows from
the extremal condition dE=dαjαopt = 0. The result reads

x0 = 2exp
�

1
αopt

+
1
2
ψ
	αopt

2



+
1
2
ψ

�
1− αopt

2

��
: [7]

Here ψ denotes the digamma function. Eq. 7 allows us to plot
αopt as a function of the initial position of the LF searcher shown
in Fig. 3. Interestingly, if for our dimensionless units the initial
position is closer to the target than x0 ≈ 2:516, then the optimal

Fig. 2. Relative efficiency Erel for LFs with vanishing drift v = 0, as a function
of the stable index α, Eq. 5. The curves are drawn for the initial positions
x0 = 1 (dashed green), x0 = 10 (dotted red), x0 = 100 (dashed blue), and
x0 = 1,000 (solid black). With growing x0 the functional shape changes from
a monotonic to nonmonotonic shape and then becomes sharper, the max-
ima shifting toward unity. Thus, for x0 = 10 we find αopt ≈ 1:5, whereas for
x0 = 1,000, αopt ≈ 1:15.

Fig. 3. Optimal stable index αopt as function of the initial position x0 of the
walker, as obtained from Eq. 7. For x0 <∼∼ 2:516, the optimal search strategy
turns out to be Brownian (shaded area).
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search strategy is Brownian; otherwise, it corresponds to LFs
with αopt < 2 (in math mode).

Searchwith External Drift.Once an external drift biases the walker,
the behavior of the arrival to the target as a function of the initial
position x0 and the drift strength v changes dramatically. In
particular, there may exist a finite residual survival probability
limt→∞S ðtÞ mirroring cases when the walker is being pushed
away from the target and never reaches it. From dimensional
analysis it is straightforward to show that the search reliability
P solely depends on the single parameter Peα, and is thus a
meaningful characteristic for the search process. The search re-
liability P= 1−S ð∞Þ for the biased case is displayed for a large
range of the generalized Péclet number Peα in Fig. 4, Left. In
addition, Fig. 4, Right shows a blow-up for the behavior at small
Peα. These results are obtained from numerical solution of Eq. 2
and are thus not restricted to small Peα values. We confirmed the
FFPE results with simulation for jPeαj≤ 0:1 (Fig. 4, Right) based
on the Langevin Eq. S3 in SI Text with very good agreement.
Each simulations point was obtained as a ratio of particles to the
overall number of 10,000 runs. We estimated the error bars by
computation of the deviations P for each of 1,000 consecutive
runs. We note that higher values of jPej require longer Langevin
equation simulations times.
As seen from Fig. 4, in the downhill case when the searcher is

pushed toward the target by the stream (Peα < 0) the best strat-
egy in terms of the search reliability P is always that of Brownian
search, in which case P= 1 for all values of Peα. The LF searcher
in this regime always fares worse (P< 1), the discrepancy in-
creasing for smaller values of the stable index. This is due to the
occurrence of leap-overs across the target for LFs. In the pres-
ence of a strong drift, the search reliability P becomes consid-
erably smaller. The opposite tendency is observed for the uphill
case when the walker needs to move against the stream toward
the target (Peα > 0). Now, LFs with a smaller stable index per-
form better, owing to the possibility of approaching the target
faster with fewer jumps. We note, however, that the absolute
gain of LF versus Brownian search in the uphill case is consid-
erably smaller than the loss in the downhill scenario.
The search efficiency E is affected by the external stream even

more dramatically than the search reliability P, as shown in Fig. 5.
Here, the initial position is fixed at x0 = 10 in Fig. 5, and at x0 = 1 in
Fig. 5, Inset. Black (full) lines correspond to the downhill case
with v= − 0:5 and red (dashed) curves to the uphill case with
v= 0:5. The neutral case v= 0 is shown by the blue (dotted) line.
For α→ 1 the curves converge at zero efficiency, in the case
x0 = 10 they almost coincide below α≈ 1:15. In the case without

bias and x0 = 1, consistent with our observations in the drift-free
case above, the optimal strategy remains Brownian (Fig. 3). In
contrast, for the larger initial separation x0 = 10 in the downhill
case the optimal search strategy is also Brownian, whereas with-
out bias we found αopt ≈ 1:5. In the uphill case the optimal stable
index is shifted to αopt ≈ 1:3. The delicate behaviors of E, P, and
αopt constitute our other important finding.

Discussion
What is now the best random search strategy? As we showed here
the answer to this question depends on what is more important—
to reach the target quickly or to locate it most reliably—and on the
physical situation: the presence of an external bias and the initial
separation between searcher and target. The main message from
this study is that LF search and its optimization is sensitive to the
exact conditions.
Specifically, we investigated the performance of LF search

models along or against an external stream. Defining the search
efficiency as the average inverse arrival time E = h1=ti to the target,
we obtained a versatile measure to quantify search processes when
the search space does not have a constant target density. The
search efficiency E reproduces the features of Brownian search and
works well for both unbiased and biased search processes, unlike
the similar but frequently applied construct 1=hti. In terms of this
efficiency we investigate the optimal search strategy, comparing
Lévy and Brownian search processes. Without an external bias, it
turns out that the optimal strategy depends on the initial separa-
tion between the searcher and the target: For small separations
Brownian motion is the most efficient way of finding the target.
On increasing this separation LFs become more and more effi-
cient in comparison with Brownian search: Consistent with pre-
vious findings in different scenarios, the stable index α decreases
toward unity in the limit of very large initial searcher–target
separation. In particular, we find that despite the frequent claim
that LFs with α= 1 are most efficient for sparse targets,
depending on the parameters of the search space the optimal
stable index may range in the whole interval between unity
and 2, and thus may include Brownian motion as the most effi-
cient strategy.
The analysis in terms of the complementary search reliability

P= 1−S ð∞Þ shows that when the initial position of the searcher
with respect to the target is along the stream, the optimal search
strategy is always Brownian, owing to the combined effect of bi-
ased motion and absence of the leap-overs. This result is even true
for a small bias. The average search time in this case is simply
given in terms of the classic ratio of initial searcher–target sepa-
ration and the drift velocity. When the searcher needs to reach the

Fig. 4. (Left) Dependence of the search reliability P = 1−S ð∞Þ on the
generalized Péclet number Peα. The residual value P quantifies how likely it
is that the walker eventually localizes the target. Lines are from numerical
solution of Eq. 2. The blue (solid) line corresponds to Brownian search α= 2,
the green (dashed) line represents LF search with α= 1:8, and the red (dot-
ted) line stands for α= 1:5. Finally, the black (dashed-dotted) line is for
α= 1:2. (Right) Same for small values of Peα. In addition to the numerical
solution of Eq. 2, the symbols and error bars are obtained from Langevin
equation simulations of LF trajectories based on Eq. S3.

Fig. 5. Search efficiency as a function of the stable index α for initial positions
x0 = 10 and x = 1 (Inset, same axes). We show the downhill case (v = − 0:5, solid
black curve), neutral case (v = 0, blue dotted curve), and uphill case (v = 0:5, red
dashed curve). For a short distance between the initial position and target, the
Brownian search always has the maximal efficiency, whereas for larger sepa-
ration x0 in the uphill (v >0) and neutral (v = 0) cases an optimum value dif-
ferent from 2 for the stable index α exists.
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target against the stream, in line with naive expectations, LFs in-
deed provide the better search strategy. Remarkably, the absolute
gain from using the Brownian strategy instead of LFs in the
downhill scenario is significantly larger than the loss from using
Brownian motion instead of LFs in the uphill case. Depending
on the details of the search space, without prior knowledge of the
strength and direction of external streams, the choice of a Brownian
strategy might therefore be advantageous overall, in contrast to the
LF hypothesis. This point is further illustrated in terms of the search
efficiency as function of the initial searcher–target separation in the
presence of a bias in Fig. 6. These observations may be of particular
importance to swimming or airborne searchers, because streams
occur most naturally there, or when the searcher itself prefers one
direction, for instance owing to prior experience. Our findings may
also be relevant for computational search algorithms in biased
landscapes (42). Of course, more quantitative statements need a
detailed investigation for a given, concrete system.
Our analysis was performed for a blind, saltatory random LF

search in one spatial dimension. What would be expected if these
conditions were relaxed? First, moving from one to two spatial
dimensions, regular Brownian motion remains recurrent, that is,
the sample path is fully connected and thus space-filling in both
one and two dimensions. LFs with 1< α< 2 are recurrent in one
dimension but always transient in two dimensions. We therefore
expect the results discovered herein to be equally relevant in two
dimensions. In both one and two dimensions (linearly or radially)
LFs are distinguished by the occurrence of leap-overs, owing to
which the target location may become less efficient than for
Brownian search. Most search processes indeed fall in the cate-
gory of (effectively) one or two dimensions. For instance, they are
one-dimensional in streams, along coastlines, or at forest–meadow
and other borders. For unbounded search processes as performed

by birds or fish of prey, the motion in the vertical dimension shows
a much smaller span than the radial horizontal motion, and thus
becomes effectively two dimensional. Second, when we modify the
condition of blind search and allow the walker to look out for prey
while relocating, in one dimension this would obviously completely
change the picture in favor of LFs with their long unidirectional
steps. However, in two dimensions the radial leap-overs would still
hamper the detection of the target as long as it is not exactly
crossed during a step, and our qualitative results remain relevant.
Third we address the question as to what will change if we

relax the saltatory motion condition and introduce a finite ve-
locity of propagation. This corresponds to the picture of LWs,
random walks with a spatiotemporal coupling (43). The coupling
penalizes long jumps by connecting these with long waiting times.
The resulting, non-Markovian process can be thought of as a
random change between velocity modes with different directions.
In the simplest case the probability density function of LWs are
characterized by two counter propagating δ peaks with time-
decreasing weight. In between these peaks a Lévy stable propa-
gator emerges. Thus, at longer times, we would expect the same
advantages to LW search as we know it from LF search, as, for
instance, observed in ref. 36. A detailed study of leap-overs and
the connected effects to search for LWs remains, however, elusive.
There exist alternative random search models, including inter-

mittent processes switching between local diffusive search and
blind, ballistic relocations (44–47), or persistent random walk
models with finite-ranged directional correlations (48). However,
the central advantage of LF strategies is their robustness: Although
other models perform equally well compared with LFs when their
parameters are optimized for specific, fixed environmental con-
ditions (e.g., the target density), owing to their scale-free nature
LFs remain close to optimal even when these conditions change
(36), whereas the other search strategies then fare significantly
worse. Moreover, owing to their connection with critical phe-
nomena (49), physicists tend to promote LFs for efficient search
(14, 50, 51). For their wide popularity, it is important to put the LF
search efficiency and reliability into perspective, as is done here.
It will be interesting to extend our findings to scenarios with a

finite search space, in which LFs eventually fill the entire area and
thus the search always becomes successful (compare ref. 52) and
to generalize this approach to higher dimensions and processes
with spatiotemporal coupling. Additionally, our results for a sin-
gle or few targets should be compared with the situation of a con-
stant target density.
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