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First-passage statistics for aging diffusion in systems with annealed and quenched disorder
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Aging, the dependence of the dynamics of a physical process on the time ta since its original preparation, is
observed in systems ranging from the motion of charge carriers in amorphous semiconductors over the blinking
dynamics of quantum dots to the tracer dispersion in living biological cells. Here we study the effects of aging
on one of the most fundamental properties of a stochastic process, the first-passage dynamics. We find that for an
aging continuous time random walk process, the scaling exponent of the density of first-passage times changes
twice as the aging progresses and reveals an intermediate scaling regime. The first-passage dynamics depends on
ta differently for intermediate and strong aging. Similar crossovers are obtained for the first-passage dynamics
for a confined and driven particle. Comparison to the motion of an aged particle in the quenched trap model
with a bias shows excellent agreement with our analytical findings. Our results demonstrate how first-passage
measurements can be used to unravel the age ta of a physical system.
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Introduction. In their groundbreaking 1975 paper, Scher
and Montroll introduced the scale-free distribution ψ(τ ) �
τ−1−α (0 < α < 1) of trapping times τ for moving charge
carriers in amorphous semiconductors to explain the measured
power-law form of the electrical current [1]. This then radical
assumption has since been observed in other semiconductor
materials [2] and found to be the defining property of
the dynamics in numerous other systems [3], including the
tracer dispersion in groundwater aquifers [4], the motion of
endogenous protein channels and granules in biological cells
[5,6] and of submicron tracers in structured environments [7],
or the blinking dynamics of quantum dots [8] and subrecoil
laser cooling [9].

The lack of a characteristic time scale 〈τ 〉 in these systems
effects the disparity between ensemble and time averages of
physical observables [10,11] and an explicit dependence of
observables on the time span between the initial preparation
of the system and start of the measurement at ta , the so-called
aging [12–15]. Aging phenomena can be rationalized by
particle dynamics in quenched energy landscapes [16] or
logistic maps [17], and were experimentally observed in
biological systems [5] as well as amorphous semiconductors
[18]. It is typical in these experiments that the aging time ta
is comparable to or longer than the actual observation time
[5,18].

Here we present analytical and numerical evidence for the
distinct effects of aging on the first-passage properties of aging
systems, i.e., the statistics of the times when the process first
crosses a preset value. In the above examples, this is the arrival
of charge carriers at the counterelectrode, giving rise to the
decay of the electrical current, the breakthrough of chemical
tracers at some probe location in an aquifer, the arrival of a
protein channel at a specific receptor in a cell membrane, or
for a quantum dot to reach its nth on-state. Our results for
the first-passage time density (FPTD) ℘(t) in systems with
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a diverging time scale 〈τ 〉 exhibit a clear dependence on the
aging time ta in the cases of intermediate and strong aging,
while ℘(t) is independent of ta for short aging times. More
importantly, progressing aging changes the scaling exponent
of ℘(t) and reveals an interesting intermediate scaling regime.
For biased diffusion, we show that our results agree well
with simulations in a quenched energy landscape. Finally, we
address the question of how first-passage measurements can
be used to unravel information on the age ta of the observed
system.

In the absence of aging (ta = 0), i.e., when the measurement
commences simultaneously with the initiation of the system
at t = 0, the Scher-Montroll continuous time random walk
(CTRW) process with trapping time density ψ(τ ) � τ−1−α and
0 < α < 1 causes free anomalous diffusion of the subdiffusive
form 〈x2(t)〉 � Kαtα , with the anomalous diffusion coefficient
Kα [1,3]. In contrast, when the system has aged for the period
ta , the mean squared displacement crosses over from 〈x2(t)〉 �
Kαtα−1

a t for ta � t to the age-independent asymptotic form
〈x2(t)〉 � Kαtα for ta � t [14,19]. Thus, when ta is of the
same order as t , clear aging effects appear. At the same time, ta
shows up merely as an algebraic prefactor in the corresponding
time averages [19].

On the semiaxis with δ-initial condition at x = 0, the FPTD
to the point x0 of this CTRW process reads

℘(t) =
(

Kα

x2
0

)1/α

lα/2

([
Kα

x2
0

]1/α

t

)
� x0/K

1/2
α

t1+α/2
(1)

in terms of the one-sided Lévy stable law lα/2(t) [20]. Its
asymptotic expansion shows the power-law decay t−1−α/2

characteristic for unbiased subdiffusion [3]. Equation (1) fol-
lows from the Laplace image [21] ℘(u) = exp(−x0u

α/2K
1/2
α )

derived in Ref. [22]. In the Brownian limit α = 1, the FPTD
reduces to the familiar Lévy-Smirnov law with asymptote
℘(t) � x0/[K1t

3/2] exhibiting the famed Sparre-Andersen 3/2
universality [23].

1539-3755/2014/89(4)/040101(5) 040101-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.040101


RAPID COMMUNICATIONS
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To extend this result for an aged system (ta > 0), we use
the propagator described by the aging CTRW [14,19],

Pa(k,s,u) = P0(s,u) + h(s,u)[u + Kαu1−αk2]−1, (2)

in Fourier-double Laplace representation Pa(x,ta,t) →
P (k,s,u) [24]. Its second term contains the Fourier-Laplace
image P (k,u) = 1/(u + Kαu1−αk2) of the nonaged CTRW
[3]. The additional component in Eq. (2) is the density
h(ta,t) for the so-called forward waiting (or recurrence) time
t for the occurrence of the first step in the random walk
process, after the system aged for ta originally derived by
Godrèche and Luck [13]. Due to the lack of a characteristic
scale of ψ , increasingly longer trapping times occur while
the system evolves. Typically, after the aging period, the
system is arrested in such a long trapping state. This changes
the statistics of the first step to occur, as quantified by the
distribution h. The double Laplace transform of h is h(s,u) =
[ψ(s) − ψ(u)]/{(u − s)[1 − ψ(s)]} [13,14,19], from which
the asymptotic behavior h(ta,t) � 1/(t1−α

a tα) in the aging
regime ta � t shows that in the aged system the statistics
for the forward waiting time t is much longer tailed than in
ψ(t) for the nonaged process. Finally, in Eq. (2), P0(s,u) =
[1 − sh(s,u)]/(su) is the Laplace transform of the probability
P0(ta,t) that no step occurs up to time t . The splitting
into a discrete part for completely immobile particles and a
continuous portion weighted by the density h is typical for
aging CTRW processes [19].

We consider the scenario that the walker moves in space
and, after an aging period ta , an absorbing site is introduced,
placed at a distance x0 from the walker independently of its
initial position. This is the relevant scenario when the travel
distance per time of aged fluorescent particles is measured
or for charge carriers when the electrical field is switched on
after the aging period. The case of initially fixed x0 is studied
elsewhere [25].

Using the standard method of images [23,26] and the
subordination trick [3,27], we find the general closed form

℘a(ta,t) =
(

Kα

x2
0

)1/α

h(ta,t) ⊗ lα/2

[(
Kα

x2
0

)1/α

t

]
(3)

for the FPTD, where ⊗ denotes a Laplace convolution. This
form is very useful for numerical evaluation. The exact
expression for ℘a(ta,t) involves a double-infinite power series
[25]. In the long-time limit (t → ∞), we find the three scaling
regimes,

℘a(ta,t) �

⎧⎪⎨
⎪⎩

tα−1
a t−α, ta � t

tαa t−1−α, ta � t � t�

x0K
−1/2
α t−1−α/2, t� � t,

(4)

depending on the severity of the aging, where the time
scale t� = t2

a {√Kα�(−α/2)/[x0�(α)�(1 + α)]} contains the
initial condition x0 and Kα . Thus, when aging is weak, the
asymptotic behavior of the nonaged process from Eq. (1)
is preserved. Remarkably, once the aging becomes more
pronounced, the competition between the magnitudes of the
measurement time t and the aging time ta effects a change of
the scaling exponent of t from 1 + α/2 to 1 + α at intermediate
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FIG. 1. (Color online) Semi-infinite domain. Left: CTRW sim-
ulation (blue) and analytical result (red) for α = 0.75, ta = 100,
x0 = 1, and Kα = 0.5. Right: Different scaling regimes in the
long-time limit for ta = 0.1 (black, bottom), ta = 107 (green, middle),
and ta = 1011 (blue, top), with α = 0.6, x0 = 1, Kα = 0.2.

values of ta , and a further change to α under strong aging
conditions. The crossover between these scaling regimes is
a key signature of scale-free CTRW processes. Figure 1 on
the left demonstrates excellent agreement of our analytical
result (3) with simulations of the CTRW process with trapping
time density ψ(τ ) [28]. On the right of Fig. 1, we confirm
the existence of the three different scaling regimes of ℘(t)
predicted by Eq. (4), again observing excellent agreement.
Note, however, that in order to see all three regimes, the
variation of ta needs to be quite large. Thus, depending on
the physical system and the experimental technique, all three
regimes may not be detectable. As the first crossover in
Eq. (4) increases the magnitude of the scaling exponent while
the second crossover decreases it again, the FPTD behavior
nevertheless provides an alternative method to deduce the age
ta of an aging system. The discovery of three distinct scaling
regimes and the dependence of the FPTD on the aging time ta
are our first main results.

Note that the results obtained here for CTRWs are fun-
damentally different from the first passage in long-range
correlated Gaussian processes [29] with only transient aging
[30]. It will be interesting to see whether similar crossovers
also occur in other weakly nonergodic systems, such as
diffusion processes with space-dependent diffusion coefficient
[31] or scaled Brownian motion [32].

Finite domain. For the first passage to the boundaries of a
finite domain, the asymptotic scaling of the nonaged FPTD is
℘(t) � x2

0K−1
α t−1−α [22], i.e., the decay is steeper than in the

semi-infinite case. Due to the divergence of the trapping time
scale 〈τ 〉, however, the mean first-passage time still diverges,
in contrast to the Brownian case (α = 1), for which ℘(t) has an
exponential cutoff [23]. For the aged system, we again derive
℘a(ta,t) via the images method. From a convolution similar to
Eq. (3), we find an exact solution in terms of a power series
with Lerch functions [25]. The long-time scaling

℘a(ta,t) �
{

tα−1
a t−α, ta � t[
x2

0/(2Kα) + tαa /�(1 + α)
]
t−1−α, ta � t

(5)

emerges, where this time we only observe two scaling regimes
in the measurement time t : at weak aging, the scaling exponent
is 1 + α, which changes to α at strong aging. Concurrently,
the aging time does not appear explicitly as long as ta �
[x2

0�(1 + α)/(2Kα) ]1/α . At intermediate aging, the prefactor
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FIG. 2. (Color online) Finite domain. Left: CTRW simulation
(blue) and analytical result (red) for α = 0.75, ta = 100, x0 = 1,
and Kα = 0.5. Right: Different scaling regimes in the long-time limit
for ta = 0.1 (black, bottom) and ta = 107 (green, top), with α = 0.6,
x0 = 1, Kα = 0.2.

tαa enters, while for strong aging, it changes to tα−1
a . Figure 2

shows excellent agreement with these results. The behavior
of the aged FPTD on a finite domain is our second important
result.

Biased diffusion. In many physical systems, the motion of
the particle is biased by an external force, for instance, the
electrical field acting on the charge carriers in the amorphous
semiconductor of Ref. [1] or a subsurface water stream
dragging along the dissolved tracer chemicals in groundwater
aquifers [4]. To explore the effects of an external bias on the
FPTD, we now add the force F to the dynamics. In the classical
Brownian case, a bias towards the absorbing boundary leads
to an exponential decay of the associated FPTD, with the
mean first-passage time x0mη/F , where η is the friction
coefficient. In the nonaged case with a scale-free distribution
ψ(τ ) of trapping times, the FPTD has the power-law form
℘(t) � x0t

−1−α and the mean first-passage time diverges.
When the system is aged, the method of images with an
appropriate correction factor still applies [23] and we find
the FPTD,

℘a(ta,t) = h(ta,t) ⊗ {⊗∞
k=1gk(t)

}
, (6)

as a multiple convolution ⊗n
k=1gk(t) = g1 ⊗ g2 ⊗ · · · ⊗ gn(t)

of the function gk(t) = D(α,k)lkα[D(α,k)t] [33] with

D(α,k) =
[(

2T

F

)2k−1 (
2

Kα

)k
�(3/2)

�(3/2 − k)k!

]−1/kα

. (7)

Here, the temperature T enters due to the competition between
the force F and the thermal energy kBT included through
the generalized Einstein-Stokes relation Kα = kBT /(mηα),
where ηα is the generalized friction coefficient [34]. The exact
solution involves a double series with generalized regularized
hypergeometric functions [25], from which two scaling forms
can be distinguished in the limit of long measurement times,

℘a(ta,t) ∼
{

tα−1
a t−α, ta � t[
x0T/(FKα) + tαa /�(1 + α)

]
t−1−α, ta � t.

(8)

Similar to Eq. (5) for a finite domain, we obtain the crossover
from the t scaling with exponent 1 + α to α with increased
aging, while the aging time appears explicitly for intermediate
and strong aging. Figure 3 shows excellent agreement of our
exact result with simulations.
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FIG. 3. (Color online) Semi-infinite domain, biased case. Left:
Simulations of quenched trap model (cyan) and CTRW (black), and
analytical result (red), for α = 0.5, ta = 100, F = 1, T = 0.5, x0 =
0.2, τ0 = 10−4. Right: Different scaling regimes for t1 = 0.1 (black,
bottom) and ta = 107 (green, top), for α = 0.6, x0 = 1, and Kα = 0.2.
In the quenched trap model, we averaged over 105 realizations.

Quenched trap model. The quenched trap model [16]
is often used as a physical model for CTRW processes
with scale-free trapping times. In this lattice model, each
site is assigned a random energy value, taken from an
exponential density p(E) = T −1

g exp(−E/Tg), where we set
the Boltzmann constant to unity. Tg is the system-specific
“glass” temperature setting the scale for the energy distribution
p(E) [16]. A sample realization for such a quenched energy
landscape is displayed in Fig. 4. At lattice site x, the walker
faces the trap energy Ex and needs to escape by thermal
fluctuations (Kramers escape). After escaping a trap, the
walker jumps to one of the two nearest sites and is trapped
again; see the schematic in Fig. 4. According to the Arrhenius
law, the trapping time at x becomes τx = τ0 exp(Ex/T ), where
T is the bath temperature and τ0 is an inverse microscopic
rate of escape attempts. The combination of the density p(E)
with the Arrhenius law yields the long-tailed distribution of
trapping times, ψ(τ ) = μτ

μ

0 τ−1−μ, with the scaling exponent
μ = T/Tg . When T < Tg , the quenched trap model thus
leads to a power-law trapping time density with diverging
characteristic trapping time 〈τ 〉 [16].

In the CTRW model, individual trapping times τ all have
the same distribution ψ but are independent variables, such
that the system is renewed each time a new trapping time is
drawn from ψ . This annealed form of the disorder contrasts
the quenched nature of the trap model. A walker that leaves a
trap may revisit it during later jumps, and the ensuing random
walk thus exhibits correlations and is not a renewal process.
Such correlations are irrelevant in dimensions three and higher,
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FIG. 4. (Color online) Left: Schematic motion in quenched trap
model with energy-dependent transition probabilities 1 − p and p

for moving to the left and right. Right: Realization of the tilted
quenched trapped model with Tg = 1, F = 1, and a = 10−3. The
lattice constant here is 2, while we chose 0.01 in Fig. 3.
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as random walks are transient. To avoid such correlations in
lower dimensions, we equip the quenched landscape with the
external bias force F [35]. This force tilts the quenched trap
landscape (Fig. 4) and thus minimizes the likelihood that the
walker returns to previously visited sites [16].

The result for the FPTD obtained from the simulations
of the quenched trap model matches excellently with both
the exact result and the simulation of the annealed CTRW
model, as shown in Fig. 3. We thus expect that the first-passage
dynamics of an aged particle to a surface in unbiased quenched
trap landscapes in three dimensions can be described by results
(4) or (5), depending on whether the volume is finite or semi-
infinite.

Conclusion. In this Rapid Communication, we studied
the first-passage dynamics of an aging diffusion process. In
the CTRW model with scale-free trapping time distribution,
we showed how aging changes the scaling exponent of the
measurement time t and how the aging time ta appears
in the FPTD. In the semi-infinite case, we revealed three
distinct scaling regimes, while on a finite domain and in the
biased case, two scaling regimes appear. Our exact results
were demonstrated to agree perfectly with simulations of the
CTRW process. In the biased case, the first-passage dynamics
measured in the quenched trap model showed excellent
agreement with the CTRW approach.

A general feature observed in our results is that aging
significantly reduces the efficiency of the first passage, as
seen by the decrease of the slope of the FPTD in an aged
system. This reflects a general property of processes with
scale-free trapping times: as the system evolves, longer and
longer trapping times appear on average and lead to a slowing
down of the dynamics. For free subdiffusion, this corresponds
to an effectively time-dependent diffusivity Keff � tα−1. In
the quenched trap model, this would correspond to the particle
finding an ever deeper trap during its motion across the energy
landscape.

The FPTD represents one of the fundamental concepts in
stochastic processes. In many systems, it is fairly easy to ex-
perimentally or numerically record the first-passage dynamics.
Our findings presented here for aged systems complement
the classical results for the first-passage dynamics in nonaged
systems governed by scale-free trapping times. In condensed-
matter systems, such as amorphous semiconductors, aging is a
relevant concern for applications, as it significantly changes
the first-passage dynamics and thus the signatures of the

electrical current. As the age of amorphous semiconductors
can be reliably controlled in experiment over several decades
[18], such systems would be ideal to further test the CTRW
model for charge carrier transport. In groundwater systems,
observation windows span many decades [36] and, due to
scale-free trapping time distributions [4], aging would cause
a decreased release of chemicals. In biological cells, aging
effects lead to the progressive immobilization of particles with
potentially relevant biological function in diffusion-limited
scenarios [5,11,19]. In these biological systems, more than
four time decades in the dynamics can be resolved [6] such
that sufficient information is available to determine their age.
Finally, also for quantum dots, the blinking dynamics can be
resolved sufficiently to observe aging effects in the FPTD [8].

The lack of a characteristic trapping time of both the
annealed aging CTRW process or the motion in the quenched
energy landscape naturally makes the process nonstationary, a
property that in turn is closely related to the nonergodicity of
the system [37]. Using relatively simple experimental methods
to probe the first-passage statistics of a system, such as the
charge carrier transport in amorphous semiconductors, as a
function of measurement and aging times would represent a
direct way to determine the nonstationarity of a system.

With the rapid advance of single molecule tracking tech-
niques, it has become possible to diagnose experimentally
recorded time series from individual particle trajectories with
respect to the very stochastic mechanism behind the measured
anomalous diffusion by various complementary tools [38–43].
This information of the nature of some particle’s dynamics, in
particular, whether it is an ergodic or nonergodic motion, then
allows one to deduce important consequences for the systems,
such as the (ir)reproducibility of experiments or the dynamics
of followup processes, for instance, the diffusion limitation of
reactions. With the characteristic crossovers between different
scaling regimes of the measurement time t and the explicit
aging time dependence, the current results provide a pow-
erful complementary tool to probe the underlying stochastic
mechanism. Moreover, given a sufficiently wide measurement
window, our results allow one to read out the actual age ta of
the system from measured first-passage data. The possibility
of extracting such information should be extremely useful in
the analysis of systems with unknown age.

Acknowledgments. A.G. acknowledges funding through an
Alexander von Humboldt Fellowship. R.M. acknowledges
funding from the Academy of Finland (FiDiPro scheme).

[1] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).
[2] R. Steyrleuthner et al., Adv. Mater. 22, 2799 (2010).
[3] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990); R.

Metzler and J. Klafter, ibid. 339, 1 (2000); ,J. Phys. A 37, R161
(2004).

[4] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev. Geophys.
44, RG2003 (2006); H. Scher, G. Margolin, R. Metzler, J.
Klafter, and B. Berkowitz, Geophys. Res. Lett. 29, 1061 (2002).

[5] S. M. A. Tabei et al., Proc. Natl. Acad. Sci. USA 110, 4911
(2013); A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf,
ibid. 108, 6438 (2011).

[6] J.-H. Jeon et al., Phys. Rev. Lett. 106, 048103 (2011).

[7] I. Y. Wong et al., Phys. Rev. Lett. 92, 178101 (2004); Q. Xu,
L. Feng, R. Sha, N. C. Seeman, and P. M. Chaikin, ibid. 106,
228102 (2011).

[8] X. Brokmann et al., Phys. Rev. Lett. 90, 120601 (2003); G.
Margolin and E. Barkai, J. Chem. Phys. 121, 1566 (2004); F. D.
Stephani, J. P. Hoogenboom, and E. Barkai, Phys. Today 62, 34
(2009).

[9] F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji,
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processes [29] and Lévy flights. See, e.g., A. Zoia, A. Rosso,
and M. Kardar, Phys. Rev. E 76, 021116 (2007); A. V. Chechkin
et al., J. Phys. A 36, L537 (2003).

[27] J. Klafter and I. M. Sokolov, First Steps in Random Walks: From
Tools to Applications (Cambridge University Press, Cambridge,
UK, 2011).

[28] The CTRW simulations were performed in continuous space and
time. The jump lengths were chosen from a Gaussian distribution
with zero mean and unit standard deviation. This means that
roughly 16% of the random walkers reach the boundary after one
step. The scaling parameter τ0 in the waiting time distribution
ψ(τ ) � τα

0 /τ 1+α is chosen such that Kα = σ 2/[2τα
0 ] = 0.5.

[29] S. N. Majumdar, A. Rosso, and A. Zoia, Phys. Rev. Lett. 104,
020602 (2010); see also J.-H. Jeon, A. V. Checkin, and R.
Metzler, Europhys. Lett. 94, 20008 (2011).

[30] J. Kursawe, J. H. P. Schulz, and R. Metzler, Phys. Rev. E 88,
062124 (2013).

[31] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, New J. Phys.
15, 083039 (2013); A. G. Cherstvy and R. Metzler, Phys. Chem.
Chem. Phys. 15, 20220 (2013); P. Massignan, C. Manzo, J. A.
Torreno-Pina, M. F. Garcı́a-Parajo, M. Lewenstein, and G. J.
Lapeyre, Jr., Phys. Rev. Lett. 112, 150603 (2014).

[32] S. C. Lim and S. V. Muniandy, Phys. Rev. E 66, 021114 (2002);
F. Thiel and I. M. Sokolov, ibid. 89, 012115 (2014).

[33] Here lkα(z) denotes a function that is formally defined in terms
of its Laplace image as lkα(u) = exp(−ukα). For kα > 1, this is
no longer a one-sided stable law.

[34] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563
(1999).

[35] S. Burov and E. Barkai, Phys. Rev. E 86, 041137 (2012).
[36] J. W. Kirchner, X. Feng, and C. Neal, Nature (London) 403, 524

(2000).
[37] S. Burov, R. Metzler, and E. Barkai, Proc. Natl. Acad. Sci. USA

107, 13228 (2010).
[38] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys.

Rev. Lett. 103, 180602 (2009); K. Burnecki et al., Biophys. J.
103, 1839 (2012).

[39] S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, and J.
Klafter, Proc. Natl. Acad. Sci. USA 105, 5675 (2008).

[40] I. M. Sokolov, Soft Matter 8, 9043 (2012); F. Thiel, F. Flegel,
and I. M. Sokolov, Phys. Rev. Lett. 111, 010601 (2013).

[41] V. Tejedor et al., Biophys. J. 98, 1364 (2010); J.-H. Jeon, E.
Barkai, and R. Metzler, J. Chem. Phys. 139, 121916 (2013); A.
Cherstvy, A. V. Chechkin, and R. Metzler, Soft Matter 10, 1591
(2014).

[42] T. Albers and G. Radons, Europhys. Lett. 102, 40006 (2013);
M. Heidernaetsch, M. Bauer, and G. Radons, J. Chem. Phys.
139, 184105 (2013).

[43] A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, Biophys.
J. 106, L09 (2014); M. Saxton, ibid. 103, 2411 (2012); ,72, 1744
(1997).

040101-5

http://dx.doi.org/10.1103/PhysRevLett.99.210601
http://dx.doi.org/10.1103/PhysRevLett.99.210601
http://dx.doi.org/10.1103/PhysRevLett.99.210601
http://dx.doi.org/10.1103/PhysRevLett.99.210601
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1103/PhysRevLett.106.090602
http://dx.doi.org/10.1103/PhysRevLett.106.090602
http://dx.doi.org/10.1103/PhysRevLett.106.090602
http://dx.doi.org/10.1103/PhysRevLett.106.090602
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1063/PT.3.1677
http://dx.doi.org/10.1088/0305-4470/29/14/012
http://dx.doi.org/10.1088/0305-4470/29/14/012
http://dx.doi.org/10.1088/0305-4470/29/14/012
http://dx.doi.org/10.1088/0305-4470/29/14/012
http://dx.doi.org/10.1103/PhysRevLett.84.5403
http://dx.doi.org/10.1103/PhysRevLett.84.5403
http://dx.doi.org/10.1103/PhysRevLett.84.5403
http://dx.doi.org/10.1103/PhysRevLett.84.5403
http://dx.doi.org/10.1023/A:1010364003250
http://dx.doi.org/10.1023/A:1010364003250
http://dx.doi.org/10.1023/A:1010364003250
http://dx.doi.org/10.1023/A:1010364003250
http://dx.doi.org/10.2307/1426397
http://dx.doi.org/10.2307/1426397
http://dx.doi.org/10.2307/1426397
http://dx.doi.org/10.2307/1426397
http://dx.doi.org/10.1063/1.1559676
http://dx.doi.org/10.1063/1.1559676
http://dx.doi.org/10.1063/1.1559676
http://dx.doi.org/10.1063/1.1559676
http://dx.doi.org/10.1103/PhysRevE.66.015101
http://dx.doi.org/10.1103/PhysRevE.66.015101
http://dx.doi.org/10.1103/PhysRevE.66.015101
http://dx.doi.org/10.1103/PhysRevE.66.015101
http://dx.doi.org/10.1103/PhysRevE.68.056123
http://dx.doi.org/10.1103/PhysRevE.68.056123
http://dx.doi.org/10.1103/PhysRevE.68.056123
http://dx.doi.org/10.1103/PhysRevE.68.056123
http://dx.doi.org/10.1103/PhysRevE.67.026128
http://dx.doi.org/10.1103/PhysRevE.67.026128
http://dx.doi.org/10.1103/PhysRevE.67.026128
http://dx.doi.org/10.1103/PhysRevE.67.026128
http://dx.doi.org/10.1103/PhysRevLett.98.250601
http://dx.doi.org/10.1103/PhysRevLett.98.250601
http://dx.doi.org/10.1103/PhysRevLett.98.250601
http://dx.doi.org/10.1103/PhysRevLett.98.250601
http://dx.doi.org/10.1103/PhysRevLett.90.104101
http://dx.doi.org/10.1103/PhysRevLett.90.104101
http://dx.doi.org/10.1103/PhysRevLett.90.104101
http://dx.doi.org/10.1103/PhysRevLett.90.104101
http://dx.doi.org/10.1103/PhysRevLett.52.1936
http://dx.doi.org/10.1103/PhysRevLett.52.1936
http://dx.doi.org/10.1103/PhysRevLett.52.1936
http://dx.doi.org/10.1103/PhysRevLett.52.1936
http://dx.doi.org/10.1007/BFb0107635
http://dx.doi.org/10.1007/BFb0107635
http://dx.doi.org/10.1007/BFb0107635
http://dx.doi.org/10.1007/BFb0107635
http://dx.doi.org/10.1103/PhysRevB.87.024203
http://dx.doi.org/10.1103/PhysRevB.87.024203
http://dx.doi.org/10.1103/PhysRevB.87.024203
http://dx.doi.org/10.1103/PhysRevB.87.024203
http://dx.doi.org/10.1103/PhysRevLett.110.020602
http://dx.doi.org/10.1103/PhysRevLett.110.020602
http://dx.doi.org/10.1103/PhysRevLett.110.020602
http://dx.doi.org/10.1103/PhysRevLett.110.020602
http://dx.doi.org/10.1103/PhysRevX.4.011028
http://dx.doi.org/10.1103/PhysRevX.4.011028
http://dx.doi.org/10.1103/PhysRevX.4.011028
http://dx.doi.org/10.1103/PhysRevX.4.011028
http://dx.doi.org/10.1016/S0378-4371(99)00503-8
http://dx.doi.org/10.1016/S0378-4371(99)00503-8
http://dx.doi.org/10.1016/S0378-4371(99)00503-8
http://dx.doi.org/10.1016/S0378-4371(99)00503-8
http://dx.doi.org/10.1103/PhysRevE.76.021116
http://dx.doi.org/10.1103/PhysRevE.76.021116
http://dx.doi.org/10.1103/PhysRevE.76.021116
http://dx.doi.org/10.1103/PhysRevE.76.021116
http://dx.doi.org/10.1088/0305-4470/36/41/L01
http://dx.doi.org/10.1088/0305-4470/36/41/L01
http://dx.doi.org/10.1088/0305-4470/36/41/L01
http://dx.doi.org/10.1088/0305-4470/36/41/L01
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://dx.doi.org/10.1209/0295-5075/94/20008
http://dx.doi.org/10.1209/0295-5075/94/20008
http://dx.doi.org/10.1209/0295-5075/94/20008
http://dx.doi.org/10.1209/0295-5075/94/20008
http://dx.doi.org/10.1103/PhysRevE.88.062124
http://dx.doi.org/10.1103/PhysRevE.88.062124
http://dx.doi.org/10.1103/PhysRevE.88.062124
http://dx.doi.org/10.1103/PhysRevE.88.062124
http://dx.doi.org/10.1088/1367-2630/15/8/083039
http://dx.doi.org/10.1088/1367-2630/15/8/083039
http://dx.doi.org/10.1088/1367-2630/15/8/083039
http://dx.doi.org/10.1088/1367-2630/15/8/083039
http://dx.doi.org/10.1039/c3cp53056f
http://dx.doi.org/10.1039/c3cp53056f
http://dx.doi.org/10.1039/c3cp53056f
http://dx.doi.org/10.1039/c3cp53056f
http://dx.doi.org/10.1103/PhysRevLett.112.150603
http://dx.doi.org/10.1103/PhysRevLett.112.150603
http://dx.doi.org/10.1103/PhysRevLett.112.150603
http://dx.doi.org/10.1103/PhysRevLett.112.150603
http://dx.doi.org/10.1103/PhysRevE.66.021114
http://dx.doi.org/10.1103/PhysRevE.66.021114
http://dx.doi.org/10.1103/PhysRevE.66.021114
http://dx.doi.org/10.1103/PhysRevE.66.021114
http://dx.doi.org/10.1103/PhysRevE.89.012115
http://dx.doi.org/10.1103/PhysRevE.89.012115
http://dx.doi.org/10.1103/PhysRevE.89.012115
http://dx.doi.org/10.1103/PhysRevE.89.012115
http://dx.doi.org/10.1103/PhysRevLett.82.3563
http://dx.doi.org/10.1103/PhysRevLett.82.3563
http://dx.doi.org/10.1103/PhysRevLett.82.3563
http://dx.doi.org/10.1103/PhysRevLett.82.3563
http://dx.doi.org/10.1103/PhysRevE.86.041137
http://dx.doi.org/10.1103/PhysRevE.86.041137
http://dx.doi.org/10.1103/PhysRevE.86.041137
http://dx.doi.org/10.1103/PhysRevE.86.041137
http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1038/35000537
http://dx.doi.org/10.1073/pnas.1003693107
http://dx.doi.org/10.1073/pnas.1003693107
http://dx.doi.org/10.1073/pnas.1003693107
http://dx.doi.org/10.1073/pnas.1003693107
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1103/PhysRevLett.111.010601
http://dx.doi.org/10.1103/PhysRevLett.111.010601
http://dx.doi.org/10.1103/PhysRevLett.111.010601
http://dx.doi.org/10.1103/PhysRevLett.111.010601
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1063/1.4816635
http://dx.doi.org/10.1063/1.4816635
http://dx.doi.org/10.1063/1.4816635
http://dx.doi.org/10.1063/1.4816635
http://dx.doi.org/10.1039/c3sm52846d
http://dx.doi.org/10.1039/c3sm52846d
http://dx.doi.org/10.1039/c3sm52846d
http://dx.doi.org/10.1039/c3sm52846d
http://dx.doi.org/10.1209/0295-5075/102/40006
http://dx.doi.org/10.1209/0295-5075/102/40006
http://dx.doi.org/10.1209/0295-5075/102/40006
http://dx.doi.org/10.1209/0295-5075/102/40006
http://dx.doi.org/10.1063/1.4828860
http://dx.doi.org/10.1063/1.4828860
http://dx.doi.org/10.1063/1.4828860
http://dx.doi.org/10.1063/1.4828860
http://dx.doi.org/10.1016/j.bpj.2013.12.013
http://dx.doi.org/10.1016/j.bpj.2013.12.013
http://dx.doi.org/10.1016/j.bpj.2013.12.013
http://dx.doi.org/10.1016/j.bpj.2013.12.013
http://dx.doi.org/10.1016/j.bpj.2012.10.038
http://dx.doi.org/10.1016/j.bpj.2012.10.038
http://dx.doi.org/10.1016/j.bpj.2012.10.038
http://dx.doi.org/10.1016/j.bpj.2012.10.038
http://dx.doi.org/10.1016/S0006-3495(97)78820-9
http://dx.doi.org/10.1016/S0006-3495(97)78820-9
http://dx.doi.org/10.1016/S0006-3495(97)78820-9



