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We study the elastic deformations in a cross-linked polymer network film triggered by the binding
of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin
films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dy-
namics simulations we quantify how far the network deformations propagate depending on the elas-
ticity parameters of the network and the adhesion strength of the particles. We examine the dynamics
of the collective area shrinkage of the network and obtain some simple relations for the associated
characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is
distributed between stretching and compression modes in response to the particle binding. We also
examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky par-
ticles in the polymer network film as a function of the particle-particle separation. The results of this
computational study provide new insight into collective phenomena in soft polymer network films
and may, in particular, be applied to applications for visual detection of pathogens such as viruses
via a macroscopic response of thin films of cross-linked hydrogels. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4893056]

I. INTRODUCTION

Cross-linked networks of polymers of varying stiffness
are a ubiquitous constituent of biological cells, their plasma
membranes, as well as the tissues they make up, and biofilms.
Such intra- and extracellular networks include, inter alia, fil-
aments such as microtubules, actin, collagen, fibrin, polysac-
charides, or the spectrin network maintaining the shape of red
blood cells.1 In the laboratory, cross-linked polymer gels are
widely used for the separation of molecules in setups such as
gel electrophoresis.2 Collective deformations of such elastic
networks occur, for instance, due to the motion of individual
cells in biofilms or the extracellular matrix, or when large ob-
jects such as viruses are taken up and transported inside cells
by molecular motors.3

Elastic deformations and propagation of strain in
networks of flexible, semi-flexible, and stiff polymers
were analysed in a number of analytical and simulations
studies.4–7 Specifically, both affine and non-affine deforma-
tions were studied,8 and the nonlinear stress-strain behaviour
investigated.9 For pre-stressed elastic networks, the rheo-
logical properties and the local mechanical response were
investigated.10 A pioneering simulations study in this con-
text is represented by Ref. 11 on the deformations of pla-
nar and buckled membranes in a bead-spring model at low
temperature. Some details of the simulations of self-avoiding
bead-spring fluctuating fluid membranes and networks in
three dimensions can be found in Refs. 12 and 13, includ-
ing the discretization procedure and the potentials used in the
setup. Could one use such network deformation characteris-
tics of polymeric networks to diagnose the presence of submi-
cron particles with specific surface properties, such as viruses,
in the ambient liquid?

Indeed, there exist a number of experimental tech-
niques implementing polymeric networks14 for the detec-
tion of pathogens, including setups based on highly specific
aptamers15 or antibody-antigen interactions.16, 17 Many of
these techniques adapt techniques based on virus immobilisa-
tion on supported surfaces. Another strategy for pathogen de-
tection was recently proposed based on experimental studies
of polymeric hydrogels,18 and virus detection based on pre-
stretched DNA bundles embedded in a hydrogel was ratio-
nalised theoretically.19 Hydrogel-based polymeric and poly-
electrolyte materials are known to exhibit a highly responsive
behaviour with respect to various external stimuli. The list
includes the response to the ambient temperature (including
polymeric micro- and nanogels20, 21), the solvent quality, pH
value, as well as the presence of various small molecules.22–26

The shrinkage of polyelectrolyte microgels at elevated tem-
peratures as triggered by temperature-dependent (hydropho-
bic) interactions was recently studied by simulations.27

However, volume-based methods of pathogen detection
involving hydrogel setups are not expected to have high
yields. This is due to the fact that the typical mesh size
of the gel network in many cases is comparable to or even
smaller than the size of the pathogens (even small viruses
measure some 15 to 20 nm). The diffusion of such compara-
tively large objects into the bulk of a hydrogel is strongly im-
peded and may even exhibit transient anomalous diffusion,28

and these larger particles are thus likely to predominantly
occupy a small surface layer. One alternative is to chemi-
cally disintegrate the viral components into nucleic acids and
capsid proteins or to release easily detectable mobile com-
pounds from the surface of adsorbed particles that then diffuse
into the bulk of a biosensor29 which may be combined with
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fluorescence-based methods.30 Another alternative is to use
a relatively thin, pseudo two-dimensional supported film of
an elastic polymeric material, to which pathogens of varying
sizes and adhesive strengths bind.18 The physical response of
this second kind of systems is the main focus of the current
study.

Based on extensive Langevin Dynamics simulations we
study in detail within a first approach based on a sim-
plistic model how elastic deformations of a cross-linked
polymer network are effected by introduction of submicron
particles into a sticky surface. In particular, we quantify
how the deformations propagate into the network, as function
of the system parameters given by the network elasticity and
the adhesion strength of the particles. The analysed quantities
are the collective network shrinkage and the associated decay
length. We also examine the distribution of the elastic energy
in the network, in particular, its partitioning into stretching
and compression modes. In addition to effects caused by a
single sticky particle we also study the network-mediated in-
teractions of two sticky particles.

In Sec. II, we specify our simulations and define the
quantities to be analysed. In Sec. III, we present the main
results of the simulations and support them with scaling re-
lations. Specifically, we first analyse the binding of a single
sticky particle to the thermally activated bead-spring lattice
(Sec. III A). Section III B focuses on static properties and de-
termines the partition of the system, followed by results for
the elastic propagation dynamics in Sec. III C. The effects
for the network-mediated interactions between two particles
in the film are examined in Sec. III D. Finally, we draw our
conclusions in Sec. IV.

II. MODEL

We use Langevin Dynamics simulations to study the elas-
tic deformations of the two dimensional, discretised lattice-
based model of the gel film. The latter consists of a square
lattice of Lennard-Jones (LJ) beads connected with elastic
springs, see Fig. 1. The elastic network with a lateral size n
(i.e., along one edge we put n bonds) contains (n + 1)2 beads
and 2n(n + 1) springs connecting them. We choose the loca-
tion of the origin in the lattice centre, and for the lattice size
n the x and y coordinates then vary from − n

2 × 2a to n
2 × 2a

with a step size 2a. In the simulations we vary the system
size in the range 9 < n < 35, in order to eliminate bound-
ary effects. Each bead is subjected to the thermal bath, whose
noise strength is linked to the temperature of the system. The
entire elastic film is anchored at its four corners to maintain
the shape and to prevent the partial or total collapse of the
network onto the attractive particles, which are treated as im-
mobile. Without this anchoring, the network collapse onto the
attractive center would occur for both for a square and hexag-
onal network of beads. The squarish geometry for the network
is chosen to reflect the squarish positioning of the anchoring
points. The latter mimics the basal tension in the membranous
network which is typically non-zero for membrane vesicles.
During the simulations we keep track of the elastic energy of
the anchoring bonds, which is added to the total elastic energy
discussed below.

One of the central quantities we target in our study is the
cumulative binding energy EA between a circular sticky par-
ticle and the beads of the elastic network. This quantity then
provides a basis to gauge the interactions of viral particles
with chemically functionalised cross-link points in the poly-
meric hydrogel network. The strength of the particle-bead ad-
hesion εA is a model parameter that can be tuned in exper-
iments via, for instance, a chemical functionalisation of the
virus surface changing its affinity to a given polymeric film. It
is also sensitive to the solutions conditions, in particular, the
concentration and valency of the ambient salt.

The interaction of one of the sticky particles with the
beads of the network follows a truncated short-range 6-12 LJ
potential of the form

Eattr(r) = 4εA

[(σ

r

)12
−

(σ

r

)6
]

+ εA, for r < 21/6σ,

(1)

and Eattr(r) = 0 otherwise. The interaction radius of this at-
tractive potential is ra ≈ 0.2a, recalling that the lattice con-
stant is 2a. This radius controls the number of beads Nb
counted as bound to the sticky particle in the simulations. De-
pending on the position of the bead in this attractive potential
shell surrounding the sticky particle, the energy gain due to
bead adsorption can be smaller than the maximum depth of
the attractive potential determined by εA > 0. Namely, the
magnitude of the overall adsorption energy EA for Nb bound

FIG. 1. Schematic of the responsive polymeric film supported by fixed linkers at its four corners. Network deformations spontaneously occur due to thermal
fluctuations (left) and are enhanced in the presence of a single (middle) or several (right) sticky particles. Stretched bonds are shown in red, while compressed
bonds appear blue. A relatively small lattice with an edge length of n = 9 bonds is shown to illustrate the stretching-compression features. We use the same
parameters for the snapshots shown here: attraction strength εA = 45kBT and network elasticity k = 15, see text.
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FIG. 2. Network response to a sticky particle analogously to Fig. 1, for different bead-particle attraction strengths εA and network stiffness k. Left: εA = 15
and k = 15. Middle: εA = 45 and k = 15. Right: εA = 15 and k = 45.

beads is then

|EA| � NbεA. (2)

The interactions between the network beads are represented
by the standard Weeks-Chandler-Andersen repulsive LJ-like
potential.31 The form of this LJ cut-shifted repulsive poten-
tial is the same as in Eq. (1), but with the interaction strength
of ε = 2. For realistic systems of pathogen-network binding,
the physical interactions remain quite obscure and may in fact
be a combination of several fundamental forces with different
interaction ranges (for instance, intermediate-range electro-
static and short-range hydrogen-bond based interactions). In
our simulations, we used the simplest possible 6-12 potentials
which are quite short-ranged, see Ref. 32 for more details on
possible potential forms.

The network dynamics are governed by the standard
Langevin equation in the presence of white Gaussian noise
that independently agitates each bead of the network. If we
label each network bead by the numbers i and j denoting its
position in the network in x and y direction and call ri,j (t) this
bead’s position in the embedding scape, the dynamic equation
reads

m
d2ri,j (t)

dt2
= −

∑
J

∇Eattr(|ri,j − Rv,J |)

−
(n+1)∑

m,n=1,m�=i,n�=j

∇ELJ(|ri,j − rm,n|)

−∇εel,(i,j ) − ξvi,j (t) + F(t). (3)

Here m is the mass of the bead, ξ is the friction coefficient, vi,j

is the bead velocity, Rv,J is the position of the surface of the
sticky particle J, and F(t) represents the Gaussian δ-correlated
noise with norm 〈F(t)F(t′)〉 = 4kBTξδ(t − t′).

The elastic energy stored in the springs connect-
ing the beads at the bead-bead separation δr(i,j )(i+1,j ) =
|ri,j − ri+1,j | is parameterised by the harmonic spring poten-
tial with the equilibrium distance 2a,

εel,(i,j ) = k

2
[(δr(i,j )(i+1,j ) − 2a)2

+ (δr(i,j )(i−1,j ) − 2a)2

+ (δr(i,j )(i,j+1) − 2a)2

+ (δr(i,j )(i,j−1) − 2a)2]. (4)

The elastic constant k varies in our simulations is the range
5 ≤ k ≤ 135 (in dimensionless units), and the total elastic
energy of the network is then

Eel = 1

2

(n+1)∑
i,j=1

εel,(i,j ). (5)

Depending on the sign of the terms δr(i, j)(i+1, j) − 2a, we dis-
tinguish stretching and compression modes.

For a typical hydrogel, the measured Young’s modulus Y
varies in a broad range Y = 0.01. . . 20 kPa,33 depending on a
number of parameters such as the mesh size and the volume
density of the network. The region of dimensionless elastic
constants k in our simulations which corresponds to the Young
modulus of hydrogels with the mesh size of 50 nm accom-
modating typical-size virions is 635 < k < 5/16. The range
of k in our simulations varies within this physical range for
hydrogels. Depending on the value of k with respect to the
adsorption energy εA, the binding of a sticky particle yields
different degrees of film deformation, compare the three snap-
shots presented in Fig. 2. At every time step we measure the
excess elastic energy, that is, the energy on top of the basal
energy level for film deformations caused solely by thermal
fluctuations, Eel(t) − Eth

el (t). There exist several analogies to
our computational model. For instance, the response of elas-
tic gels and the area reduction composed of magnetic particles
interconnected by a polymeric network has recently been ex-
amined by computer simulations in Ref. 34. The range of elas-
tic constants and LJ strengths used in that study is similar to
our parameter range. We implement the simplest cross-linking
method of network beads on a square lattice mimicking the of-
ten complex interconnected structures of real hydrogels, see
Fig. 7 of Ref. 35.

Our simulations are based on the velocity Ver-
let algorithm36 with integration time-step �t = 0.001.
One elementary step in simulation units is converted to
δτ = a

√
m/(kBT ) in real time units. Using realistic param-

eters for the mesh size of 50 nm in typical hydrogels,37, 38 we
estimate this time as δτ ≈ 6 ns. In all plots illustrating the
dynamics of the system we use the units of simulations time,
�t. The radius of the sticky particles placed in this lattice is
R = 0.9a, which is a fixed quantity throughout this study. Un-
less indicated otherwise, all figures presented below are ob-
tained from averaging over M = 500 independent realisations
of the particle-network system.
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III. RESULTS

We present the results of our simulations, starting with
the dynamics of a sticky particle in the network, followed
by the the static partition. We then move to the dynamic and
static properties when two sticky particles are introduced into
the network.

A. Dynamics: Number of adsorbed beads, total film
area, and elastic energy

The binding of sticky particles to the adhesive network
beads alters the spectrum of their thermal fluctuations. The
strength of the particle adhesion governs the interplay be-
tween the enthalpic and entropic contributions in the network
free energy. Namely, stronger particle binding restricts more
severely the conformational freedom of network elements. We
observe that softer networks and stronger binding energies
of particles trigger more extensive stress propagation in the
networks, as expected. Note that the outer contour of the de-
formed polymer networks observed in the simulations (Fig. 1)
reminds typical conformations of substrate adhering biologi-
cal cells.39

Our simulations show that the number Nb of gel lattice
beads initially increases quickly with the simulation time t and
then saturates to the steady state value Nmax

b = limt→∞ Nb(t),
as shown in Fig. 3. The number of bound beads Nb is de-
termined according to the following criterion: if the average
bead-particle distance during the simulations is smaller than
R + ra = R + 0.2a, it is considered as bound. Stronger adhe-
sion strengths εA trigger a faster initial increase in Nb(t), and
naturally the plateau value Nmax

b also increases.
The initial growth of the number of bound beads can be

described in terms of a single exponential function according
to

Nb(t) = Nmax
b (1 − e−t/t� ), (6)

with the characteristic crossover time t�. As demonstrated in
Fig. 3 (left) the quality of the fit in the linear representation
is excellent. We observe that the decay time t� decreases for
increasing attraction strengths εA and decreasing elastic con-
stants k. The characteristic time t� approximately follows the

 0

 200

 400

 1  10  100  1000

 E
ne

rg
y(

t)
, k

BT

t

Eel
th

Eel
Estr

Ecompr
|EA|     

FIG. 4. Time dependence of the total attraction energy EA (black) between
the network beads and the sticky particle as well as the elastic energy Eel of
the bond deformations of the gel (solid green). The latter is the sum of the
stretching Estr(t) (red curve) and compression energies Ecompr(t) (blue). The

network elastic energy solely due to thermal fluctuations, Eth
el (t), is repre-

sented by the dashed green curve. The parameters correspond to the situation
of Fig. 3: εA = 15, n = 11, and k = 45.

scaling laws

t�(εA) ∼ ε
−1/3
A (7)

as function of the attraction strength εA and

t�(k) ∼ k1/3 (8)

in dependence of the stiffness constant k, compare the insets
in Fig. 3. These scaling exponents remain almost constant
with varying network size (not shown).

The particle-bead attraction energy EA in the long-time
limit is naturally larger than the energy of the elastic deforma-
tions of the bonds mediated by the particle binding, as shown
in Fig. 4. The thermally-driven network beads are thermally
agitated and jiggle around before they get captured by sticky
particles, leading to a contraction of adjacent network springs
and subsequent compression deformations of further network
elements. The network deformation energy is measured as the
difference of the entire elastic energy minus the amount of
elastic energy caused solely by thermal fluctuations. Namely,
in the long-time limit we have

|EA| > �Eel = Eel − Eth
el . (9)

The temporal increase of the adsorption and elastic energies,
|EA(t)| and Eel(t), is a sensitive function of the model param-
eters. The convergence to the stationary values of the attrac-

FIG. 3. Left: Time dependence of the number Nb(t) of bound beads for different attraction strengths εA, for fixed elastic constant k = 45 and lattice size n
= 11. Fits to Eq. (6) are represented by the lines, and time units are measured in number of simulations steps. M = 500 realisations are used for averaging.
Inset: crossover time t�(εA) from Eq. (6) as function of εA. Right: Nb(t) on log-linear scale, showing the difference in convergence to the stationary value
Nmax

b = lim
t→∞ N

b
(t), shown for varying gel stiffness k and for fixed εA = 15. Inset: crossover time t�(k) as function of k. Both insets are presented in log-log

scale.
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FIG. 5. Left: Time dependence of the relative network area A(t)/A0 for different attractions strengths εA. The area shrinkage in the absence of sticky particles
is the dashed green curve. The inset illustrates the dependence of the crossover time t*(εA) in Eq. (10) on εA. The points at εA = 0 correspond to the area
relaxation of the lattice purely due to thermal effects in absence of sticky particles. The parameters are the same as in Fig. 4. Right: Area shrinkage for varying
network stiffness constant k. The inset shows the crossover time t*(k).

tion and elastic energies is displayed in Fig. 4. We also find
that larger adsorption strengths εA and smaller elastic con-
stants k (e.g., εA = 45, k = 15 as contrasted to εA = 15,
k = 45 considered in the majority of plots) cause faster re-
sponse of the system to particle binding and, as a conse-
quence, faster energy accumulation (not shown). As com-
pared to the thermal elastic energy that scales with the area of
the system, Eth

el (n) ∼ (n + 1)2, the elastic deformations medi-
ated by a weakly bound viral particle turn out to be relatively
small, �Eel � Eel, see Fig. 4. The magnitude of �Eel grows
when strongly adhesive particles are positioned in the elas-
tic network and the attraction energy exceeds the thermal en-
ergy Eth

el . Note that relating the attraction energy presented in
Fig. 4 to the number of bound beads shown in Fig. 3 we con-
clude that due to binding to the particle surface not all beads
gain the maximum attraction energy given by εA, as indicated
in Eq. (2).

Figure 5 (left) illustrates the changes in the network area
A(t) due to adsorption of network beads to the sticky parti-
cle. We see that with increasing attraction strength εA the film
area decreases faster and reaches smaller stationary values as
compared to a free film in response to thermal fluctuations.
We observe that the area shrinkage with time is a sensitive
function of the attraction strength εA. The shrinkage dynam-
ics can be fitted by the relaxation function

A(t)/A0 = e−t/t∗ + C(1 − e−t/t∗ ), (10)

with a single exponential, where A0 = (2an)2 is the initial
network area, and the parameter C = C(εA, k) accounts for
different plateau values of A/A0 at long times, as function of
εA and k. The fit to the simulations data is particularly good
when the relative area change in the course of the system is
substantial (for large εA and small k). To perform a systematic
fit for both the number of bound beads in Fig. 3 and the area
of the network in Fig. 5, we considered the time span during
which 90% of the area shrinkage is completed.

The number of bound beads Nb(t) reflects the local bind-
ing characteristics and naturally grows with the strength of
the bead-particle attraction. In contrast, the area of the film
is a global property, which involves also non-affine deforma-
tions. The latter contains, for instance, tilts and other rear-

rangements of rhomb-like network elements, leaving the elas-
tic energy of the network approximately unchanged. Note that
on the square lattice with these non-affine deformations, the
shrinkage of the network area does not necessarily imply the
prevalence of the compression mode in the elastic energy of
deformations of individual bonds.

The decay time t* of the initial relative area drop is an
increasing function of the attraction strength εA, as shown in
the inset of Fig. 5 (left). A stronger bead-particle attraction
strength εA causes more extensive and longer-ranged defor-
mations of the network, such that also more distant beads at-
tach to the sticky particle surface at later times. This effects
a longer time scale t*. Likewise, the response of more elas-
tic networks is faster but the relaxation time t* slightly grows
for smaller k values, see the inset in the right panel of Fig. 5.
It obeys the approximate scaling relations t∗(εA) ∼ ε

1/5
A and

t*(k) ∼ k−1/5. We also observe that this scaling of the decay
time varies only marginally with the system size (not shown).

Finally, for varying network stiffness we observe, as ex-
pected naively, that softer networks allow much more exten-
sive film deformations, compare the curves in Fig. 5 (right).
The initial area change follows again the exponential law,
A(t)/A0 ∼ exp (−t/t*). The inset in Fig. 5 (right) illustrates
the dependence of the decay time of area shrinkage on the
network elasticity.

B. Steady state: Energy partitioning in the gel

The variation of the cumulative steady state elastic en-
ergy of the polymer film is shown in Fig. 6. This total energy
is the sum of the stretching Estr and compression Ecompr ener-
gies, which at long times are written as

Eel(r) = Estr (r) + Ecompr (r). (11)

As seen from Fig. 6 the total elastic energy contained within
a radius r away from the centre of the introduced sticky par-
ticle grows quickly at smaller values of r and then saturates.
In other words, most of the elastic energy is accumulated in
the vicinity of the sticky particle. As function of the attraction
strength εA shows that higher values of εA cause more distant
network deformations in close proximity of the adsorbed par-
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FIG. 6. Total elastic energy Eel(r) as function of the relative distance from
the sticky particle in the steady state of the lattice deformation. The radii Ra
of circles containing 90% of Eel (horizontal black dashed-dotted line in the
main graph) are shown in the inset. Energies are normalised to their maximal
values achieved at r = rmax. Parameters: n = 19, k = 15.

ticle, see also the middle panel of Fig. 2. We cannot exclude
that the saturation in Fig. 6 is due to effects of the bound-
ary and anchoring points. To test this, the simulations of a
free-standing network are necessary, which is the topic of our
future investigations.

To rationalise this effect, we determine the effective ra-
dius Ra of network deformation around the centre of the sticky
particle that contains 90% of the elastic energy. The depen-
dence of Ra on the attraction strength εA and the network
stiffness k is shown in the inset of Fig. 6. Physically, this re-
sult implies that stronger particle-bead attractions cause more
extensive network deformations, while softer elastic networks
yield more localised film deformations (smaller Ra values for
smaller k values), in accordance with intuition. Note that we
are working with finite-temperature, soft responsive elastic
two-dimensional sheets. This simplistic model of the square-
like lattice elements permits rhomb-like deformations which
preserve the bond-length but alter the area of a particular ele-
ment at no energetic cost. We thus work in the limit opposite
to the limit of a large-stretching modulus of the elastic sheets
pioneered in Ref. 11. For the latter the energy of buckling
deformations is known to scale logarithmically with the sys-
tem size. In our case, the lattice deformations are localized
in the proximity of the attractive particle and, as we checked,
do not grow with the system size. We characterize the propa-
gation of these deformations in the network via the radius of
the patch size Ra within which 90% of the elastic deformation
energy is accumulated.

The stretching and compression components of the elas-
tic energy yield different magnitudes close to the surface of
the sticky particle (“core” region) and further away (“bulk” of
the film). Specifically, in the vicinity of the core the compres-
sion energy dominates, while on the boundary of the elastic
film the stretching energy acquires larger values. The profiles
of the stretching and compression energies as function of the
radial separation r from the centre of the sticky particle in the
steady state are shown in Fig. 7 (left). We observe that at pro-
gressively larger separations from the adsorbed particle the
energy profiles are nearly flat meaning that the network bulk
contributes only little to the deformation energy.

This energy partitioning is partially due to the fact that
the entire system is anchored at its four corners (Fig. 1). As
the sticky particle is smaller than the lattice spacing 2a, the
compression of the bonds takes place in the core region to en-
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FIG. 7. Left: Steady state distribution of stretching (Estr(r), red) and com-
pression (Ecompr(r), blue) energies of the network away from the adsorbed
particle. The physical distance r is the separation from the particle in the
deformed lattice, with rmax = 2

√
2 n

2 a. For comparison, the energy profiles
in the absence of bound particle εA = 0 are shown as well. Parameters: k
= 45, n = 19. Right: Relative stretching (red) and compression (blue) ener-
gies as functions of the lattice site number 1 < s < n for the non-deformed
film. For comparison, the energy profile of the bare network is shown as the
dotted lines. The sum of the corresponding red and blue curves at each s
always amounts to unity.

able binding of separated network beads to the attractive par-
ticle surface. Accompanying such a—generally non-affine—
core compression, the boundary of the system rather reveals
stretching deformations, as witnessed in Fig. 7. The anchoring
points and the lattice boundary effects also impact the inter-
action energy of two particles in the network, see Sec. III D.

Figure 7 (right) illustrates the elastic energy partition-
ing as computed in a layer-by-layer construction on the non-
deformed lattice up to the maximum radius rmax = 2

√
2 n

2 a.
We observe that for the bare, thermally agitated elastic film
the stretching and compression energies in the central region
are equally distributed. At the film boundary the entire elas-
tic energy is due to stretching of the lattice bonds, compare
Fig. 1. In contrast, when a strongly attractive particle is intro-
duced, its surface compresses the network, and the dispropor-
tions of the stretching and compression energies in the core
region of the film (small s values) become apparent.

C. Dynamics: Network deformations around
two viral particles

We now turn to study the effects of two sticky particles in
the elastic network, in particular, the particle-particle interac-
tions. Varying the centre-to-centre separation d between these
particles, we enumerate how the number Nb(t) of bound net-
work beads increases with time, as shown in Fig. 8 (here and
below curly letters denote two-particle quantities). We find
that for large inter-particle separations d the number of bound
beads is considerably smaller than for closely-positioned par-
ticles, indicating boundary effects.

As compared to a single sticky particle introduced into
the same network, the number of bound beads increases ap-
proximately twice as fast, compare Fig. 9. At long times, two
particles are somewhat less efficient in deforming the network
compared to twice the single particle effect. Thus, some frus-
tration and mutual impediment of the action of two particles
occurs.

A reason for the fact that the number of bound beads and
the adsorption energy are not simply proportional to one an-
other goes as follow. According to the adsorption criterion
we defined, beads within the attraction radius are counted
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FIG. 8. Time dependence of the number N
b
(t) of bound network beads and

the total adhesion energy |E
A

(t)| of beads to two viral particles introduced
into the network. The particles are separated by the distance d/(2a), as indi-
cated in the plots. Parameters: n = 25, k = 45, and εA = 15.

as adsorbed (their favourable attraction energy is not yet in
the minimum of the potential). In the course of adsorption,
the beads rearrange and their attraction energy increases in
magnitude. At relatively large separations between the sticky
particles, the anchoring points of the film start to influence
the network response, impeding bead adsorption to the sticky
particles. This is the likely reason for the apparent kink in
the time dependence of the bead adsorption energy |EA(t)|
at short times for well separated particles as well as for the
number Nb(t) of bound beads, see the lowest curves at d/(2a)
= 16 in Fig. 8. We also observe that the elastic network energy
for the adsorption of two relatively weakly-adhering sticky
particles, Eel , is not significantly different from that for a sin-
gle adsorbed particle (not shown). In a much larger network,
obviously the contribution from two well separated sticky par-
ticles is necessarily additive. However, for the realistic system
we have in mind, the finiteness of our simulations network re-
flects the attachment of the hydrogel to its solid support in the
corners.

We note that in the steady-state we observe a non-trivial
dependence of the number Nb(d) of adsorbed beads. Namely,
for very closely positioned particles, d/(2a) ≈ 1. . . 3, the num-
ber of bound beads decreases, indicating a shortage of the
network material in between the two particles capable of ad-
sorption. For small separations d the beads in between the
two sticky particles are frustrated in their tendency to bind
to either of the two attractive surfaces. This represents a cause
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FIG. 9. Comparison of the number of bound beads when two sticky parti-
cles are in the network to the case of a single particle, on a log-log scale.
Parameters are the same as in Fig. 8.

for repulsive particle-particle interactions at very close sepa-
rations d, see below.

D. Steady-state: Network-mediated
particle-particle interactions

We finally address the question of the partitioning of the
elastic energy in the network in the presence of two sticky
particles, in particular, as function of the particle-particle sep-
aration d.

In this context, it is worthwhile remarking that for lipid
membranes the topic of membrane-mediated attractive inter-
actions between shape-disturbing membrane inclusions,40–42

spherical colloidal particles,43–45 and cylindrical DNA
molecules deposited on cationic lipid membranes46, 56 at-
tracted significant theoretical and experimental attention in
recent years. The reason for inter-particle attraction put for-
ward in some fluctuation-based models is due to the tendency
to reduce the inter-particle separation in order to diminish
the area of a deformed membrane in which fluctuations are
suppressed due to binding of adhesive particles. In curvature-
based fluctuation-free models of membrane-mediated attrac-
tion, in contrast, the reduction of the membrane area with
large curvature gradients in the proximity of adhered parti-
cles, that deform the membrane substrate, causes their mutual
membrane-mediated attraction.56

To quantify the interaction energies Eint(d) we determine
the difference of the combined adsorption (EA(d)) and elastic
(Eel(d)) energies for two sticky particles and the same quanti-
ties for a single sticky particle in the same lattice (EA and Eel),
that is

Eint(d) = [EA(d) + Eel(d)] − 2(EA + Eel). (12)

In contrast to the membrane case, in which interaction-
induced wrapping of the membrane around adhesive parti-
cles may occur and thus the membrane assumes out-of-plane
deformations triggering the attraction, in our planar film the
network deformations are restricted to the x-y plane. Out-of-
plane deformations is the standard mode of elastic deforma-
tion of an unconfined elastic sheet in three dimensions, as a
response to thermal excitations and particle binding. Wrap-
ping of the elastic network onto an attractive particle may
then take place.47–51 This situation is entirely different for our
2D responsive sheet. The system geometry and the anchor-
ing of the sheet at the corners mimicking a pre-stress prevent
out-of-plane deformations. We note that experimentally, inter-
particle interactions mediated via elastic deformations of the
membrane were studied in Refs. 52–55.

According to Eq. (12) at large inter-particle separations d
the two particles deform the film to the same extent as twice
the effect of a single particle, see also the long time behaviour
in Fig. 9. Thus, in absence of boundary effects (n � 1) one ex-
pects the limit Eint(d → ∞) = 0. Note that finite lattice sizes
in simulations preclude this convergence. The relative contri-
bution of the adsorption energy versus the film deformation
term in Eq. (12) grows with the attraction strength εA.

We observe that the particle-particle interaction energy
is non-monotonic in the mutual separation d. Interactions
are attractive in the region of a positive force, that is, when
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FIG. 10. Inter-particle network-mediated interaction energy Eint(d) for dif-
ferent attraction strengths εA (left panel) and for varying elasticity constants
k (right panel). The interaction energy depth grows with εA. A non-zero value
of Eint(d = dmax) for the largest εA indicates a growing influence of boundary
effects. Parameters: n = 25, k = 5.

fint(d) = −(∂/∂d)Eint(d) < 0, while at close inter-particle
distance d the network-mediated interactions are repulsive.
At large d the interaction energy increases due to a prohib-
ited stretching of the film boundary. In the analysis we thus
should keep in mind this finite-size effect of the film when
d/(2a) becomes comparable to the lattice size n. Also note
that at high concentrations of sticky particles introduced into
the film (right panel in Fig. 1), when the average distances are
in the region of attraction we just estimated, these particles
aggregate into larger complexes.

The network-mediated particle-particle attraction be-
comes more pronounced at higher values of the attraction
strength εA, compare Fig. 10. The magnitude of the particle-
particle attraction, given by the maximum depth of the
attraction energy well Emax

int , naturally grows for stronger
bead-particle attraction εA and decreases for smaller network
elasticity k, as shown in Fig. 10. A somewhat counter-intuitive
feature is the diminished attraction strength for softer net-
works due to extensive binding of effectively volume-free
network elements to the sticky particles. Therefore, the “self-
energy” of an individual particle introduced into the network
is a relatively large number, with a large portion of network
beads already bound to the particle, as one can deduce from
Fig. 5. At the same time the interaction energy, Eq. (12),
which is the relative contribution in the particle pair as com-
pared to the contribution of two well separated particles, gets
smaller at smaller k values because of an impeded propen-
sity of binding even more network beads to the sticky parti-
cles, i.e., above-mentioned frustration effect. Conversely, as
particle-particle interactions are driven by elastic deforma-
tions of the network, it is expected that stiffer networks will
give rise to stronger attraction energies.

IV. DISCUSSION AND OUTLOOK

We presented a simple conceptual framework to ratio-
nalise the elastic response of a two-dimensional elastic film
to the binding of sticky particles. Such a planar system

can be a realistic physical scenario for pathogen-network
interactions,28 for which three-dimensional elastic deforma-
tions including wrapping are diminished or fully prevented by
the designed mechanical response of the underlying lattice,
corresponding to a pre-stretched sheet. From the dynamical
point of view, the kinetics of area shrinkage due to progres-
sive binding of network elements was quantified. In particu-
lar, we obtained simple scaling relations for the characteristic
relaxation times for the number of bound network beads and
the film area, as functions of the network stiffness and the
attraction strength of the particles to the network beads. In
the steady-state, we obtained the distribution of the elastic en-
ergy as function of the distance from the adsorbed particle and
also quantified the radius of propagation of the elastic defor-
mations. Finally, we enumerated the interaction energies and
forces acting between sticky particles in the network which
emerge due to the elastic network deformations.

The observed strengthening of the effective particle-
particle attraction for stronger bead-particle attraction
strength is similar to trends for membrane-mediated attrac-
tions between parallel DNA molecules adsorbed on unsup-
ported cationic lipid membranes which wrap around the neg-
atively charged DNAs.56 An every-day life analogy for this
network-mediated attraction between the sticky particles as
well as for the distribution of network deformations in the
vicinity of a pathogen can in fact be the example of two per-
sons on a trampoline. In fact, this simple analogy is particu-
larly close when the trampoline’s fabric is only anchored in
its four corners.

We also note that the interactions between sticky par-
ticles deposited on soft responsive networks are akin to
capillary forces acting between particles immersed on fluid
interfaces.57–59 The inter-particle attraction and clustering
emerges as a consequence of the reduction of regions of net-
work deformations with high elastic energy gradients, fo-
cused in the proximity of adsorbed particles. The concept of
particle interactions and clustering mediated by the substrate
elastic deformations is not new. The phase diagrams of self-
assembled particles, including proteins, DNA, and filamen-
tous viruses, were previously constructed as a function of the
network elasticity and adhesion energy, see, e.g., the discus-
sion in Refs. 32 and 43. The novelty of the current work is in
the reduced dimensionality of the elastic sheet.

As mentioned in the Introduction, the results we obtained
here may open new perspectives for the detection of particles
such as viral pathogens of different binding specifics by help
of thin highly-responsive polymeric films. The current area-
shrinkage setup for viral particle detection thus complements
the model of detection we proposed recently, which con-
verts the virus-DNA binding events and accompanying DNA
melting into measurable volumetric changes of the hydrogel
specimen.19 To exploit the whole phase space for such pur-
poses, future simulations should include particles with asym-
metric geometries (ellipsoidal or rod-like shapes, for instance,
Ref. 60) introduced into a three-dimensional inter-connected
network, instead of the simple 2D planar case examined here.
In this situation, anisotropic deformations of the network and
anisotropic inter-particle interactions will occur. These are the
targets for future investigations.
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